llvm-project/clang/lib/AST/ASTImporter.cpp

3175 lines
115 KiB
C++

//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTImporter class which imports AST nodes from one
// context into another context.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTImporter.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MemoryBuffer.h"
#include <deque>
using namespace clang;
namespace {
class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>,
public DeclVisitor<ASTNodeImporter, Decl *>,
public StmtVisitor<ASTNodeImporter, Stmt *> {
ASTImporter &Importer;
public:
explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { }
using TypeVisitor<ASTNodeImporter, QualType>::Visit;
using DeclVisitor<ASTNodeImporter, Decl *>::Visit;
using StmtVisitor<ASTNodeImporter, Stmt *>::Visit;
// Importing types
QualType VisitType(Type *T);
QualType VisitBuiltinType(BuiltinType *T);
QualType VisitComplexType(ComplexType *T);
QualType VisitPointerType(PointerType *T);
QualType VisitBlockPointerType(BlockPointerType *T);
QualType VisitLValueReferenceType(LValueReferenceType *T);
QualType VisitRValueReferenceType(RValueReferenceType *T);
QualType VisitMemberPointerType(MemberPointerType *T);
QualType VisitConstantArrayType(ConstantArrayType *T);
QualType VisitIncompleteArrayType(IncompleteArrayType *T);
QualType VisitVariableArrayType(VariableArrayType *T);
// FIXME: DependentSizedArrayType
// FIXME: DependentSizedExtVectorType
QualType VisitVectorType(VectorType *T);
QualType VisitExtVectorType(ExtVectorType *T);
QualType VisitFunctionNoProtoType(FunctionNoProtoType *T);
QualType VisitFunctionProtoType(FunctionProtoType *T);
// FIXME: UnresolvedUsingType
QualType VisitTypedefType(TypedefType *T);
QualType VisitTypeOfExprType(TypeOfExprType *T);
// FIXME: DependentTypeOfExprType
QualType VisitTypeOfType(TypeOfType *T);
QualType VisitDecltypeType(DecltypeType *T);
// FIXME: DependentDecltypeType
QualType VisitRecordType(RecordType *T);
QualType VisitEnumType(EnumType *T);
QualType VisitElaboratedType(ElaboratedType *T);
// FIXME: TemplateTypeParmType
// FIXME: SubstTemplateTypeParmType
// FIXME: TemplateSpecializationType
QualType VisitQualifiedNameType(QualifiedNameType *T);
// FIXME: TypenameType
QualType VisitObjCInterfaceType(ObjCInterfaceType *T);
QualType VisitObjCObjectPointerType(ObjCObjectPointerType *T);
// Importing declarations
bool ImportDeclParts(NamedDecl *D, DeclContext *&DC,
DeclContext *&LexicalDC, DeclarationName &Name,
SourceLocation &Loc);
void ImportDeclContext(DeclContext *FromDC);
bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord);
bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
Decl *VisitDecl(Decl *D);
Decl *VisitNamespaceDecl(NamespaceDecl *D);
Decl *VisitTypedefDecl(TypedefDecl *D);
Decl *VisitEnumDecl(EnumDecl *D);
Decl *VisitRecordDecl(RecordDecl *D);
Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
Decl *VisitFunctionDecl(FunctionDecl *D);
Decl *VisitCXXMethodDecl(CXXMethodDecl *D);
Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D);
Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D);
Decl *VisitCXXConversionDecl(CXXConversionDecl *D);
Decl *VisitFieldDecl(FieldDecl *D);
Decl *VisitObjCIvarDecl(ObjCIvarDecl *D);
Decl *VisitVarDecl(VarDecl *D);
Decl *VisitImplicitParamDecl(ImplicitParamDecl *D);
Decl *VisitParmVarDecl(ParmVarDecl *D);
Decl *VisitObjCMethodDecl(ObjCMethodDecl *D);
Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D);
Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D);
Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D);
Decl *VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D);
Decl *VisitObjCClassDecl(ObjCClassDecl *D);
// Importing statements
Stmt *VisitStmt(Stmt *S);
// Importing expressions
Expr *VisitExpr(Expr *E);
Expr *VisitDeclRefExpr(DeclRefExpr *E);
Expr *VisitIntegerLiteral(IntegerLiteral *E);
Expr *VisitCharacterLiteral(CharacterLiteral *E);
Expr *VisitParenExpr(ParenExpr *E);
Expr *VisitUnaryOperator(UnaryOperator *E);
Expr *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E);
Expr *VisitBinaryOperator(BinaryOperator *E);
Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E);
Expr *VisitImplicitCastExpr(ImplicitCastExpr *E);
Expr *VisitCStyleCastExpr(CStyleCastExpr *E);
};
}
//----------------------------------------------------------------------------
// Structural Equivalence
//----------------------------------------------------------------------------
namespace {
struct StructuralEquivalenceContext {
/// \brief AST contexts for which we are checking structural equivalence.
ASTContext &C1, &C2;
/// \brief Diagnostic object used to emit diagnostics.
Diagnostic &Diags;
/// \brief The set of "tentative" equivalences between two canonical
/// declarations, mapping from a declaration in the first context to the
/// declaration in the second context that we believe to be equivalent.
llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
/// \brief Queue of declarations in the first context whose equivalence
/// with a declaration in the second context still needs to be verified.
std::deque<Decl *> DeclsToCheck;
/// \brief Declaration (from, to) pairs that are known not to be equivalent
/// (which we have already complained about).
llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls;
/// \brief Whether we're being strict about the spelling of types when
/// unifying two types.
bool StrictTypeSpelling;
StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
Diagnostic &Diags,
llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls,
bool StrictTypeSpelling = false)
: C1(C1), C2(C2), Diags(Diags), NonEquivalentDecls(NonEquivalentDecls),
StrictTypeSpelling(StrictTypeSpelling) { }
/// \brief Determine whether the two declarations are structurally
/// equivalent.
bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
/// \brief Determine whether the two types are structurally equivalent.
bool IsStructurallyEquivalent(QualType T1, QualType T2);
private:
/// \brief Finish checking all of the structural equivalences.
///
/// \returns true if an error occurred, false otherwise.
bool Finish();
public:
DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(FullSourceLoc(Loc, C1.getSourceManager()), DiagID);
}
DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(FullSourceLoc(Loc, C2.getSourceManager()), DiagID);
}
};
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2);
/// \brief Determine if two APInts have the same value, after zero-extending
/// one of them (if needed!) to ensure that the bit-widths match.
static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth())
return I1 == I2;
if (I1.getBitWidth() > I2.getBitWidth())
return I1 == llvm::APInt(I2).zext(I1.getBitWidth());
return llvm::APInt(I1).zext(I2.getBitWidth()) == I2;
}
/// \brief Determine if two APSInts have the same value, zero- or sign-extending
/// as needed.
static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
return I1 == I2;
// Check for a bit-width mismatch.
if (I1.getBitWidth() > I2.getBitWidth())
return IsSameValue(I1, llvm::APSInt(I2).extend(I1.getBitWidth()));
else if (I2.getBitWidth() > I1.getBitWidth())
return IsSameValue(llvm::APSInt(I1).extend(I2.getBitWidth()), I2);
// We have a signedness mismatch. Turn the signed value into an unsigned
// value.
if (I1.isSigned()) {
if (I1.isNegative())
return false;
return llvm::APSInt(I1, true) == I2;
}
if (I2.isNegative())
return false;
return I1 == llvm::APSInt(I2, true);
}
/// \brief Determine structural equivalence of two expressions.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Expr *E1, Expr *E2) {
if (!E1 || !E2)
return E1 == E2;
// FIXME: Actually perform a structural comparison!
return true;
}
/// \brief Determine whether two identifiers are equivalent.
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
const IdentifierInfo *Name2) {
if (!Name1 || !Name2)
return Name1 == Name2;
return Name1->getName() == Name2->getName();
}
/// \brief Determine whether two nested-name-specifiers are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NestedNameSpecifier *NNS1,
NestedNameSpecifier *NNS2) {
// FIXME: Implement!
return true;
}
/// \brief Determine whether two template arguments are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2) {
// FIXME: Implement!
return true;
}
/// \brief Determine structural equivalence for the common part of array
/// types.
static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
const ArrayType *Array1,
const ArrayType *Array2) {
if (!IsStructurallyEquivalent(Context,
Array1->getElementType(),
Array2->getElementType()))
return false;
if (Array1->getSizeModifier() != Array2->getSizeModifier())
return false;
if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
return false;
return true;
}
/// \brief Determine structural equivalence of two types.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2) {
if (T1.isNull() || T2.isNull())
return T1.isNull() && T2.isNull();
if (!Context.StrictTypeSpelling) {
// We aren't being strict about token-to-token equivalence of types,
// so map down to the canonical type.
T1 = Context.C1.getCanonicalType(T1);
T2 = Context.C2.getCanonicalType(T2);
}
if (T1.getQualifiers() != T2.getQualifiers())
return false;
Type::TypeClass TC = T1->getTypeClass();
if (T1->getTypeClass() != T2->getTypeClass()) {
// Compare function types with prototypes vs. without prototypes as if
// both did not have prototypes.
if (T1->getTypeClass() == Type::FunctionProto &&
T2->getTypeClass() == Type::FunctionNoProto)
TC = Type::FunctionNoProto;
else if (T1->getTypeClass() == Type::FunctionNoProto &&
T2->getTypeClass() == Type::FunctionProto)
TC = Type::FunctionNoProto;
else
return false;
}
switch (TC) {
case Type::Builtin:
// FIXME: Deal with Char_S/Char_U.
if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
return false;
break;
case Type::Complex:
if (!IsStructurallyEquivalent(Context,
cast<ComplexType>(T1)->getElementType(),
cast<ComplexType>(T2)->getElementType()))
return false;
break;
case Type::Pointer:
if (!IsStructurallyEquivalent(Context,
cast<PointerType>(T1)->getPointeeType(),
cast<PointerType>(T2)->getPointeeType()))
return false;
break;
case Type::BlockPointer:
if (!IsStructurallyEquivalent(Context,
cast<BlockPointerType>(T1)->getPointeeType(),
cast<BlockPointerType>(T2)->getPointeeType()))
return false;
break;
case Type::LValueReference:
case Type::RValueReference: {
const ReferenceType *Ref1 = cast<ReferenceType>(T1);
const ReferenceType *Ref2 = cast<ReferenceType>(T2);
if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
return false;
if (Ref1->isInnerRef() != Ref2->isInnerRef())
return false;
if (!IsStructurallyEquivalent(Context,
Ref1->getPointeeTypeAsWritten(),
Ref2->getPointeeTypeAsWritten()))
return false;
break;
}
case Type::MemberPointer: {
const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
if (!IsStructurallyEquivalent(Context,
MemPtr1->getPointeeType(),
MemPtr2->getPointeeType()))
return false;
if (!IsStructurallyEquivalent(Context,
QualType(MemPtr1->getClass(), 0),
QualType(MemPtr2->getClass(), 0)))
return false;
break;
}
case Type::ConstantArray: {
const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
if (!IsSameValue(Array1->getSize(), Array2->getSize()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::IncompleteArray:
if (!IsArrayStructurallyEquivalent(Context,
cast<ArrayType>(T1),
cast<ArrayType>(T2)))
return false;
break;
case Type::VariableArray: {
const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
if (!IsStructurallyEquivalent(Context,
Array1->getSizeExpr(), Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedArray: {
const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
if (!IsStructurallyEquivalent(Context,
Array1->getSizeExpr(), Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *Vec1
= cast<DependentSizedExtVectorType>(T1);
const DependentSizedExtVectorType *Vec2
= cast<DependentSizedExtVectorType>(T2);
if (!IsStructurallyEquivalent(Context,
Vec1->getSizeExpr(), Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context,
Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::Vector:
case Type::ExtVector: {
const VectorType *Vec1 = cast<VectorType>(T1);
const VectorType *Vec2 = cast<VectorType>(T2);
if (!IsStructurallyEquivalent(Context,
Vec1->getElementType(),
Vec2->getElementType()))
return false;
if (Vec1->getNumElements() != Vec2->getNumElements())
return false;
if (Vec1->isAltiVec() != Vec2->isAltiVec())
return false;
if (Vec1->isPixel() != Vec2->isPixel())
return false;
break;
}
case Type::FunctionProto: {
const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
if (Proto1->getNumArgs() != Proto2->getNumArgs())
return false;
for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Proto1->getArgType(I),
Proto2->getArgType(I)))
return false;
}
if (Proto1->isVariadic() != Proto2->isVariadic())
return false;
if (Proto1->hasExceptionSpec() != Proto2->hasExceptionSpec())
return false;
if (Proto1->hasAnyExceptionSpec() != Proto2->hasAnyExceptionSpec())
return false;
if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
return false;
for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Proto1->getExceptionType(I),
Proto2->getExceptionType(I)))
return false;
}
if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
return false;
// Fall through to check the bits common with FunctionNoProtoType.
}
case Type::FunctionNoProto: {
const FunctionType *Function1 = cast<FunctionType>(T1);
const FunctionType *Function2 = cast<FunctionType>(T2);
if (!IsStructurallyEquivalent(Context,
Function1->getResultType(),
Function2->getResultType()))
return false;
if (Function1->getNoReturnAttr() != Function2->getNoReturnAttr())
return false;
if (Function1->getCallConv() != Function2->getCallConv())
return false;
break;
}
case Type::UnresolvedUsing:
if (!IsStructurallyEquivalent(Context,
cast<UnresolvedUsingType>(T1)->getDecl(),
cast<UnresolvedUsingType>(T2)->getDecl()))
return false;
break;
case Type::Typedef:
if (!IsStructurallyEquivalent(Context,
cast<TypedefType>(T1)->getDecl(),
cast<TypedefType>(T2)->getDecl()))
return false;
break;
case Type::TypeOfExpr:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::TypeOf:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfType>(T1)->getUnderlyingType(),
cast<TypeOfType>(T2)->getUnderlyingType()))
return false;
break;
case Type::Decltype:
if (!IsStructurallyEquivalent(Context,
cast<DecltypeType>(T1)->getUnderlyingExpr(),
cast<DecltypeType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::Record:
case Type::Enum:
if (!IsStructurallyEquivalent(Context,
cast<TagType>(T1)->getDecl(),
cast<TagType>(T2)->getDecl()))
return false;
break;
case Type::Elaborated: {
const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
if (Elab1->getTagKind() != Elab2->getTagKind())
return false;
if (!IsStructurallyEquivalent(Context,
Elab1->getUnderlyingType(),
Elab2->getUnderlyingType()))
return false;
break;
}
case Type::TemplateTypeParm: {
const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
if (Parm1->getDepth() != Parm2->getDepth())
return false;
if (Parm1->getIndex() != Parm2->getIndex())
return false;
if (Parm1->isParameterPack() != Parm2->isParameterPack())
return false;
// Names of template type parameters are never significant.
break;
}
case Type::SubstTemplateTypeParm: {
const SubstTemplateTypeParmType *Subst1
= cast<SubstTemplateTypeParmType>(T1);
const SubstTemplateTypeParmType *Subst2
= cast<SubstTemplateTypeParmType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context,
Subst1->getReplacementType(),
Subst2->getReplacementType()))
return false;
break;
}
case Type::TemplateSpecialization: {
const TemplateSpecializationType *Spec1
= cast<TemplateSpecializationType>(T1);
const TemplateSpecializationType *Spec2
= cast<TemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context,
Spec1->getTemplateName(),
Spec2->getTemplateName()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Spec1->getArg(I), Spec2->getArg(I)))
return false;
}
break;
}
case Type::QualifiedName: {
const QualifiedNameType *Qual1 = cast<QualifiedNameType>(T1);
const QualifiedNameType *Qual2 = cast<QualifiedNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Qual1->getQualifier(),
Qual2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Context,
Qual1->getNamedType(),
Qual2->getNamedType()))
return false;
break;
}
case Type::Typename: {
const TypenameType *Typename1 = cast<TypenameType>(T1);
const TypenameType *Typename2 = cast<TypenameType>(T2);
if (!IsStructurallyEquivalent(Context,
Typename1->getQualifier(),
Typename2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
Typename2->getIdentifier()))
return false;
if (!IsStructurallyEquivalent(Context,
QualType(Typename1->getTemplateId(), 0),
QualType(Typename2->getTemplateId(), 0)))
return false;
break;
}
case Type::ObjCInterface: {
const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
if (!IsStructurallyEquivalent(Context,
Iface1->getDecl(), Iface2->getDecl()))
return false;
if (Iface1->getNumProtocols() != Iface2->getNumProtocols())
return false;
for (unsigned I = 0, N = Iface1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Iface1->getProtocol(I),
Iface2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObjectPointer: {
const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
if (!IsStructurallyEquivalent(Context,
Ptr1->getPointeeType(),
Ptr2->getPointeeType()))
return false;
if (Ptr1->getNumProtocols() != Ptr2->getNumProtocols())
return false;
for (unsigned I = 0, N = Ptr1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Ptr1->getProtocol(I),
Ptr2->getProtocol(I)))
return false;
}
break;
}
} // end switch
return true;
}
/// \brief Determine structural equivalence of two records.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
RecordDecl *D1, RecordDecl *D2) {
if (D1->isUnion() != D2->isUnion()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
<< D1->getDeclName() << (unsigned)D1->getTagKind();
return false;
}
// Compare the definitions of these two records. If either or both are
// incomplete, we assume that they are equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
<< D2CXX->getNumBases();
Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
<< D1CXX->getNumBases();
return false;
}
// Check the base classes.
for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
BaseEnd1 = D1CXX->bases_end(),
Base2 = D2CXX->bases_begin();
Base1 != BaseEnd1;
++Base1, ++Base2) {
if (!IsStructurallyEquivalent(Context,
Base1->getType(), Base2->getType())) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Base2->getSourceRange().getBegin(), diag::note_odr_base)
<< Base2->getType()
<< Base2->getSourceRange();
Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
<< Base1->getType()
<< Base1->getSourceRange();
return false;
}
// Check virtual vs. non-virtual inheritance mismatch.
if (Base1->isVirtual() != Base2->isVirtual()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Base2->getSourceRange().getBegin(),
diag::note_odr_virtual_base)
<< Base2->isVirtual() << Base2->getSourceRange();
Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
<< Base1->isVirtual()
<< Base1->getSourceRange();
return false;
}
}
} else if (D1CXX->getNumBases() > 0) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
<< Base1->getType()
<< Base1->getSourceRange();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
return false;
}
}
// Check the fields for consistency.
CXXRecordDecl::field_iterator Field2 = D2->field_begin(),
Field2End = D2->field_end();
for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(),
Field1End = D1->field_end();
Field1 != Field1End;
++Field1, ++Field2) {
if (Field2 == Field2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
return false;
}
if (!IsStructurallyEquivalent(Context,
Field1->getType(), Field2->getType())) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
return false;
}
if (Field1->isBitField() != Field2->isBitField()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
if (Field1->isBitField()) {
llvm::APSInt Bits;
Field1->getBitWidth()->isIntegerConstantExpr(Bits, Context.C1);
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType()
<< Bits.toString(10, false);
Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
<< Field2->getDeclName();
} else {
llvm::APSInt Bits;
Field2->getBitWidth()->isIntegerConstantExpr(Bits, Context.C2);
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType()
<< Bits.toString(10, false);
Context.Diag1(Field1->getLocation(),
diag::note_odr_not_bit_field)
<< Field1->getDeclName();
}
return false;
}
if (Field1->isBitField()) {
// Make sure that the bit-fields are the same length.
llvm::APSInt Bits1, Bits2;
if (!Field1->getBitWidth()->isIntegerConstantExpr(Bits1, Context.C1))
return false;
if (!Field2->getBitWidth()->isIntegerConstantExpr(Bits2, Context.C2))
return false;
if (!IsSameValue(Bits1, Bits2)) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType()
<< Bits2.toString(10, false);
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType()
<< Bits1.toString(10, false);
return false;
}
}
}
if (Field2 != Field2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
return false;
}
return true;
}
/// \brief Determine structural equivalence of two enums.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
EnumDecl *D1, EnumDecl *D2) {
EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
EC2End = D2->enumerator_end();
for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
EC1End = D1->enumerator_end();
EC1 != EC1End; ++EC1, ++EC2) {
if (EC2 == EC2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName()
<< EC1->getInitVal().toString(10);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
return false;
}
llvm::APSInt Val1 = EC1->getInitVal();
llvm::APSInt Val2 = EC2->getInitVal();
if (!IsSameValue(Val1, Val2) ||
!IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName()
<< EC2->getInitVal().toString(10);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName()
<< EC1->getInitVal().toString(10);
return false;
}
}
if (EC2 != EC2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName()
<< EC2->getInitVal().toString(10);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
return false;
}
return true;
}
/// \brief Determine structural equivalence of two declarations.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2) {
// FIXME: Check for known structural equivalences via a callback of some sort.
// Check whether we already know that these two declarations are not
// structurally equivalent.
if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(),
D2->getCanonicalDecl())))
return false;
// Determine whether we've already produced a tentative equivalence for D1.
Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
if (EquivToD1)
return EquivToD1 == D2->getCanonicalDecl();
// Produce a tentative equivalence D1 <-> D2, which will be checked later.
EquivToD1 = D2->getCanonicalDecl();
Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
return true;
}
bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
Decl *D2) {
if (!::IsStructurallyEquivalent(*this, D1, D2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
QualType T2) {
if (!::IsStructurallyEquivalent(*this, T1, T2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::Finish() {
while (!DeclsToCheck.empty()) {
// Check the next declaration.
Decl *D1 = DeclsToCheck.front();
DeclsToCheck.pop_front();
Decl *D2 = TentativeEquivalences[D1];
assert(D2 && "Unrecorded tentative equivalence?");
bool Equivalent = true;
// FIXME: Switch on all declaration kinds. For now, we're just going to
// check the obvious ones.
if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
// Check for equivalent structure names.
IdentifierInfo *Name1 = Record1->getIdentifier();
if (!Name1 && Record1->getTypedefForAnonDecl())
Name1 = Record1->getTypedefForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Record2->getIdentifier();
if (!Name2 && Record2->getTypedefForAnonDecl())
Name2 = Record2->getTypedefForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Record1, Record2))
Equivalent = false;
} else {
// Record/non-record mismatch.
Equivalent = false;
}
} else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
// Check for equivalent enum names.
IdentifierInfo *Name1 = Enum1->getIdentifier();
if (!Name1 && Enum1->getTypedefForAnonDecl())
Name1 = Enum1->getTypedefForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Enum2->getIdentifier();
if (!Name2 && Enum2->getTypedefForAnonDecl())
Name2 = Enum2->getTypedefForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Enum1, Enum2))
Equivalent = false;
} else {
// Enum/non-enum mismatch
Equivalent = false;
}
} else if (TypedefDecl *Typedef1 = dyn_cast<TypedefDecl>(D1)) {
if (TypedefDecl *Typedef2 = dyn_cast<TypedefDecl>(D2)) {
if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
Typedef2->getIdentifier()) ||
!::IsStructurallyEquivalent(*this,
Typedef1->getUnderlyingType(),
Typedef2->getUnderlyingType()))
Equivalent = false;
} else {
// Typedef/non-typedef mismatch.
Equivalent = false;
}
}
if (!Equivalent) {
// Note that these two declarations are not equivalent (and we already
// know about it).
NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(),
D2->getCanonicalDecl()));
return true;
}
// FIXME: Check other declaration kinds!
}
return false;
}
//----------------------------------------------------------------------------
// Import Types
//----------------------------------------------------------------------------
QualType ASTNodeImporter::VisitType(Type *T) {
Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node)
<< T->getTypeClassName();
return QualType();
}
QualType ASTNodeImporter::VisitBuiltinType(BuiltinType *T) {
switch (T->getKind()) {
case BuiltinType::Void: return Importer.getToContext().VoidTy;
case BuiltinType::Bool: return Importer.getToContext().BoolTy;
case BuiltinType::Char_U:
// The context we're importing from has an unsigned 'char'. If we're
// importing into a context with a signed 'char', translate to
// 'unsigned char' instead.
if (Importer.getToContext().getLangOptions().CharIsSigned)
return Importer.getToContext().UnsignedCharTy;
return Importer.getToContext().CharTy;
case BuiltinType::UChar: return Importer.getToContext().UnsignedCharTy;
case BuiltinType::Char16:
// FIXME: Make sure that the "to" context supports C++!
return Importer.getToContext().Char16Ty;
case BuiltinType::Char32:
// FIXME: Make sure that the "to" context supports C++!
return Importer.getToContext().Char32Ty;
case BuiltinType::UShort: return Importer.getToContext().UnsignedShortTy;
case BuiltinType::UInt: return Importer.getToContext().UnsignedIntTy;
case BuiltinType::ULong: return Importer.getToContext().UnsignedLongTy;
case BuiltinType::ULongLong:
return Importer.getToContext().UnsignedLongLongTy;
case BuiltinType::UInt128: return Importer.getToContext().UnsignedInt128Ty;
case BuiltinType::Char_S:
// The context we're importing from has an unsigned 'char'. If we're
// importing into a context with a signed 'char', translate to
// 'unsigned char' instead.
if (!Importer.getToContext().getLangOptions().CharIsSigned)
return Importer.getToContext().SignedCharTy;
return Importer.getToContext().CharTy;
case BuiltinType::SChar: return Importer.getToContext().SignedCharTy;
case BuiltinType::WChar:
// FIXME: If not in C++, shall we translate to the C equivalent of
// wchar_t?
return Importer.getToContext().WCharTy;
case BuiltinType::Short : return Importer.getToContext().ShortTy;
case BuiltinType::Int : return Importer.getToContext().IntTy;
case BuiltinType::Long : return Importer.getToContext().LongTy;
case BuiltinType::LongLong : return Importer.getToContext().LongLongTy;
case BuiltinType::Int128 : return Importer.getToContext().Int128Ty;
case BuiltinType::Float: return Importer.getToContext().FloatTy;
case BuiltinType::Double: return Importer.getToContext().DoubleTy;
case BuiltinType::LongDouble: return Importer.getToContext().LongDoubleTy;
case BuiltinType::NullPtr:
// FIXME: Make sure that the "to" context supports C++0x!
return Importer.getToContext().NullPtrTy;
case BuiltinType::Overload: return Importer.getToContext().OverloadTy;
case BuiltinType::Dependent: return Importer.getToContext().DependentTy;
case BuiltinType::UndeducedAuto:
// FIXME: Make sure that the "to" context supports C++0x!
return Importer.getToContext().UndeducedAutoTy;
case BuiltinType::ObjCId:
// FIXME: Make sure that the "to" context supports Objective-C!
return Importer.getToContext().ObjCBuiltinIdTy;
case BuiltinType::ObjCClass:
return Importer.getToContext().ObjCBuiltinClassTy;
case BuiltinType::ObjCSel:
return Importer.getToContext().ObjCBuiltinSelTy;
}
return QualType();
}
QualType ASTNodeImporter::VisitComplexType(ComplexType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getComplexType(ToElementType);
}
QualType ASTNodeImporter::VisitPointerType(PointerType *T) {
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getPointerType(ToPointeeType);
}
QualType ASTNodeImporter::VisitBlockPointerType(BlockPointerType *T) {
// FIXME: Check for blocks support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getBlockPointerType(ToPointeeType);
}
QualType ASTNodeImporter::VisitLValueReferenceType(LValueReferenceType *T) {
// FIXME: Check for C++ support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getLValueReferenceType(ToPointeeType);
}
QualType ASTNodeImporter::VisitRValueReferenceType(RValueReferenceType *T) {
// FIXME: Check for C++0x support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getRValueReferenceType(ToPointeeType);
}
QualType ASTNodeImporter::VisitMemberPointerType(MemberPointerType *T) {
// FIXME: Check for C++ support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
QualType ClassType = Importer.Import(QualType(T->getClass(), 0));
return Importer.getToContext().getMemberPointerType(ToPointeeType,
ClassType.getTypePtr());
}
QualType ASTNodeImporter::VisitConstantArrayType(ConstantArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getConstantArrayType(ToElementType,
T->getSize(),
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers());
}
QualType ASTNodeImporter::VisitIncompleteArrayType(IncompleteArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getIncompleteArrayType(ToElementType,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers());
}
QualType ASTNodeImporter::VisitVariableArrayType(VariableArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
Expr *Size = Importer.Import(T->getSizeExpr());
if (!Size)
return QualType();
SourceRange Brackets = Importer.Import(T->getBracketsRange());
return Importer.getToContext().getVariableArrayType(ToElementType, Size,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers(),
Brackets);
}
QualType ASTNodeImporter::VisitVectorType(VectorType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getVectorType(ToElementType,
T->getNumElements(),
T->isAltiVec(),
T->isPixel());
}
QualType ASTNodeImporter::VisitExtVectorType(ExtVectorType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getExtVectorType(ToElementType,
T->getNumElements());
}
QualType ASTNodeImporter::VisitFunctionNoProtoType(FunctionNoProtoType *T) {
// FIXME: What happens if we're importing a function without a prototype
// into C++? Should we make it variadic?
QualType ToResultType = Importer.Import(T->getResultType());
if (ToResultType.isNull())
return QualType();
return Importer.getToContext().getFunctionNoProtoType(ToResultType,
T->getNoReturnAttr(),
T->getCallConv());
}
QualType ASTNodeImporter::VisitFunctionProtoType(FunctionProtoType *T) {
QualType ToResultType = Importer.Import(T->getResultType());
if (ToResultType.isNull())
return QualType();
// Import argument types
llvm::SmallVector<QualType, 4> ArgTypes;
for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
AEnd = T->arg_type_end();
A != AEnd; ++A) {
QualType ArgType = Importer.Import(*A);
if (ArgType.isNull())
return QualType();
ArgTypes.push_back(ArgType);
}
// Import exception types
llvm::SmallVector<QualType, 4> ExceptionTypes;
for (FunctionProtoType::exception_iterator E = T->exception_begin(),
EEnd = T->exception_end();
E != EEnd; ++E) {
QualType ExceptionType = Importer.Import(*E);
if (ExceptionType.isNull())
return QualType();
ExceptionTypes.push_back(ExceptionType);
}
return Importer.getToContext().getFunctionType(ToResultType, ArgTypes.data(),
ArgTypes.size(),
T->isVariadic(),
T->getTypeQuals(),
T->hasExceptionSpec(),
T->hasAnyExceptionSpec(),
ExceptionTypes.size(),
ExceptionTypes.data(),
T->getNoReturnAttr(),
T->getCallConv());
}
QualType ASTNodeImporter::VisitTypedefType(TypedefType *T) {
TypedefDecl *ToDecl
= dyn_cast_or_null<TypedefDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTypeDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitTypeOfExprType(TypeOfExprType *T) {
Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
if (!ToExpr)
return QualType();
return Importer.getToContext().getTypeOfExprType(ToExpr);
}
QualType ASTNodeImporter::VisitTypeOfType(TypeOfType *T) {
QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
if (ToUnderlyingType.isNull())
return QualType();
return Importer.getToContext().getTypeOfType(ToUnderlyingType);
}
QualType ASTNodeImporter::VisitDecltypeType(DecltypeType *T) {
Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
if (!ToExpr)
return QualType();
return Importer.getToContext().getDecltypeType(ToExpr);
}
QualType ASTNodeImporter::VisitRecordType(RecordType *T) {
RecordDecl *ToDecl
= dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTagDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitEnumType(EnumType *T) {
EnumDecl *ToDecl
= dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTagDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitElaboratedType(ElaboratedType *T) {
QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
if (ToUnderlyingType.isNull())
return QualType();
return Importer.getToContext().getElaboratedType(ToUnderlyingType,
T->getTagKind());
}
QualType ASTNodeImporter::VisitQualifiedNameType(QualifiedNameType *T) {
NestedNameSpecifier *ToQualifier = Importer.Import(T->getQualifier());
if (!ToQualifier)
return QualType();
QualType ToNamedType = Importer.Import(T->getNamedType());
if (ToNamedType.isNull())
return QualType();
return Importer.getToContext().getQualifiedNameType(ToQualifier, ToNamedType);
}
QualType ASTNodeImporter::VisitObjCInterfaceType(ObjCInterfaceType *T) {
ObjCInterfaceDecl *Class
= dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl()));
if (!Class)
return QualType();
llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
for (ObjCInterfaceType::qual_iterator P = T->qual_begin(),
PEnd = T->qual_end();
P != PEnd; ++P) {
ObjCProtocolDecl *Protocol
= dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P));
if (!Protocol)
return QualType();
Protocols.push_back(Protocol);
}
return Importer.getToContext().getObjCInterfaceType(Class,
Protocols.data(),
Protocols.size());
}
QualType ASTNodeImporter::VisitObjCObjectPointerType(ObjCObjectPointerType *T) {
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
for (ObjCObjectPointerType::qual_iterator P = T->qual_begin(),
PEnd = T->qual_end();
P != PEnd; ++P) {
ObjCProtocolDecl *Protocol
= dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P));
if (!Protocol)
return QualType();
Protocols.push_back(Protocol);
}
return Importer.getToContext().getObjCObjectPointerType(ToPointeeType,
Protocols.data(),
Protocols.size());
}
//----------------------------------------------------------------------------
// Import Declarations
//----------------------------------------------------------------------------
bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC,
DeclContext *&LexicalDC,
DeclarationName &Name,
SourceLocation &Loc) {
// Import the context of this declaration.
DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return true;
LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return true;
}
// Import the name of this declaration.
Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return true;
// Import the location of this declaration.
Loc = Importer.Import(D->getLocation());
return false;
}
void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC) {
for (DeclContext::decl_iterator From = FromDC->decls_begin(),
FromEnd = FromDC->decls_end();
From != FromEnd;
++From)
Importer.Import(*From);
}
bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord,
RecordDecl *ToRecord) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getDiags(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord);
}
bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getDiags(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum);
}
Decl *ASTNodeImporter::VisitDecl(Decl *D) {
Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node)
<< D->getDeclKindName();
return 0;
}
Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) {
// Import the major distinguishing characteristics of this namespace.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
NamespaceDecl *MergeWithNamespace = 0;
if (!Name) {
// This is an anonymous namespace. Adopt an existing anonymous
// namespace if we can.
// FIXME: Not testable.
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
MergeWithNamespace = TU->getAnonymousNamespace();
else
MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace();
} else {
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(*Lookup.first)) {
MergeWithNamespace = FoundNS;
ConflictingDecls.clear();
break;
}
ConflictingDecls.push_back(*Lookup.first);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the "to" namespace, if needed.
NamespaceDecl *ToNamespace = MergeWithNamespace;
if (!ToNamespace) {
ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo());
ToNamespace->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToNamespace);
// If this is an anonymous namespace, register it as the anonymous
// namespace within its context.
if (!Name) {
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
TU->setAnonymousNamespace(ToNamespace);
else
cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace);
}
}
Importer.Imported(D, ToNamespace);
ImportDeclContext(D);
return ToNamespace;
}
Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) {
// Import the major distinguishing characteristics of this typedef.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// If this typedef is not in block scope, determine whether we've
// seen a typedef with the same name (that we can merge with) or any
// other entity by that name (which name lookup could conflict with).
if (!DC->isFunctionOrMethod()) {
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
continue;
if (TypedefDecl *FoundTypedef = dyn_cast<TypedefDecl>(*Lookup.first)) {
if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(),
FoundTypedef->getUnderlyingType()))
return Importer.Imported(D, FoundTypedef);
}
ConflictingDecls.push_back(*Lookup.first);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
// Import the underlying type of this typedef;
QualType T = Importer.Import(D->getUnderlyingType());
if (T.isNull())
return 0;
// Create the new typedef node.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
TypedefDecl *ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
TInfo);
ToTypedef->setAccess(D->getAccess());
ToTypedef->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToTypedef);
LexicalDC->addDecl(ToTypedef);
return ToTypedef;
}
Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) {
// Import the major distinguishing characteristics of this enum.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Figure out what enum name we're looking for.
unsigned IDNS = Decl::IDNS_Tag;
DeclarationName SearchName = Name;
if (!SearchName && D->getTypedefForAnonDecl()) {
SearchName = Importer.Import(D->getTypedefForAnonDecl()->getDeclName());
IDNS = Decl::IDNS_Ordinary;
} else if (Importer.getToContext().getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Ordinary;
// We may already have an enum of the same name; try to find and match it.
if (!DC->isFunctionOrMethod() && SearchName) {
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
continue;
Decl *Found = *Lookup.first;
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Found)) {
if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
Found = Tag->getDecl();
}
if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) {
if (IsStructuralMatch(D, FoundEnum))
return Importer.Imported(D, FoundEnum);
}
ConflictingDecls.push_back(*Lookup.first);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the enum declaration.
EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getTagKeywordLoc()),
0);
D2->setAccess(D->getAccess());
D2->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, D2);
LexicalDC->addDecl(D2);
// Import the integer type.
QualType ToIntegerType = Importer.Import(D->getIntegerType());
if (ToIntegerType.isNull())
return 0;
D2->setIntegerType(ToIntegerType);
// Import the definition
if (D->isDefinition()) {
QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(D));
if (T.isNull())
return 0;
QualType ToPromotionType = Importer.Import(D->getPromotionType());
if (ToPromotionType.isNull())
return 0;
D2->startDefinition();
ImportDeclContext(D);
D2->completeDefinition(T, ToPromotionType);
}
return D2;
}
Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
TagDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return 0;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of this record.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Figure out what structure name we're looking for.
unsigned IDNS = Decl::IDNS_Tag;
DeclarationName SearchName = Name;
if (!SearchName && D->getTypedefForAnonDecl()) {
SearchName = Importer.Import(D->getTypedefForAnonDecl()->getDeclName());
IDNS = Decl::IDNS_Ordinary;
} else if (Importer.getToContext().getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Ordinary;
// We may already have a record of the same name; try to find and match it.
RecordDecl *AdoptDecl = 0;
if (!DC->isFunctionOrMethod() && SearchName) {
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
continue;
Decl *Found = *Lookup.first;
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Found)) {
if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
Found = Tag->getDecl();
}
if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) {
if (RecordDecl *FoundDef = FoundRecord->getDefinition()) {
if (!D->isDefinition() || IsStructuralMatch(D, FoundDef)) {
// The record types structurally match, or the "from" translation
// unit only had a forward declaration anyway; call it the same
// function.
// FIXME: For C++, we should also merge methods here.
return Importer.Imported(D, FoundDef);
}
} else {
// We have a forward declaration of this type, so adopt that forward
// declaration rather than building a new one.
AdoptDecl = FoundRecord;
continue;
}
}
ConflictingDecls.push_back(*Lookup.first);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the record declaration.
RecordDecl *D2 = AdoptDecl;
if (!D2) {
if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D)) {
CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(),
D->getTagKind(),
DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getTagKeywordLoc()));
D2 = D2CXX;
D2->setAccess(D->getAccess());
if (D->isDefinition()) {
// Add base classes.
llvm::SmallVector<CXXBaseSpecifier *, 4> Bases;
for (CXXRecordDecl::base_class_iterator
Base1 = D1CXX->bases_begin(),
FromBaseEnd = D1CXX->bases_end();
Base1 != FromBaseEnd;
++Base1) {
QualType T = Importer.Import(Base1->getType());
if (T.isNull())
return 0;
Bases.push_back(
new (Importer.getToContext())
CXXBaseSpecifier(Importer.Import(Base1->getSourceRange()),
Base1->isVirtual(),
Base1->isBaseOfClass(),
Base1->getAccessSpecifierAsWritten(),
T));
}
if (!Bases.empty())
D2CXX->setBases(Bases.data(), Bases.size());
}
} else {
D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(),
DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getTagKeywordLoc()));
}
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(D2);
}
Importer.Imported(D, D2);
if (D->isDefinition()) {
D2->startDefinition();
ImportDeclContext(D);
D2->completeDefinition();
}
return D2;
}
Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) {
// Import the major distinguishing characteristics of this enumerator.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Determine whether there are any other declarations with the same name and
// in the same context.
if (!LexicalDC->isFunctionOrMethod()) {
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
continue;
ConflictingDecls.push_back(*Lookup.first);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
Expr *Init = Importer.Import(D->getInitExpr());
if (D->getInitExpr() && !Init)
return 0;
EnumConstantDecl *ToEnumerator
= EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc,
Name.getAsIdentifierInfo(), T,
Init, D->getInitVal());
ToEnumerator->setAccess(D->getAccess());
ToEnumerator->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToEnumerator);
LexicalDC->addDecl(ToEnumerator);
return ToEnumerator;
}
Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) {
// Import the major distinguishing characteristics of this function.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Try to find a function in our own ("to") context with the same name, same
// type, and in the same context as the function we're importing.
if (!LexicalDC->isFunctionOrMethod()) {
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
continue;
if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(*Lookup.first)) {
if (isExternalLinkage(FoundFunction->getLinkage()) &&
isExternalLinkage(D->getLinkage())) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundFunction->getType())) {
// FIXME: Actually try to merge the body and other attributes.
return Importer.Imported(D, FoundFunction);
}
// FIXME: Check for overloading more carefully, e.g., by boosting
// Sema::IsOverload out to the AST library.
// Function overloading is okay in C++.
if (Importer.getToContext().getLangOptions().CPlusPlus)
continue;
// Complain about inconsistent function types.
Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent)
<< Name << D->getType() << FoundFunction->getType();
Importer.ToDiag(FoundFunction->getLocation(),
diag::note_odr_value_here)
<< FoundFunction->getType();
}
}
ConflictingDecls.push_back(*Lookup.first);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Import the function parameters.
llvm::SmallVector<ParmVarDecl *, 8> Parameters;
for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end();
P != PEnd; ++P) {
ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*P));
if (!ToP)
return 0;
Parameters.push_back(ToP);
}
// Create the imported function.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
FunctionDecl *ToFunction = 0;
if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) {
ToFunction = CXXConstructorDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
Loc, Name, T, TInfo,
FromConstructor->isExplicit(),
D->isInlineSpecified(),
D->isImplicit());
} else if (isa<CXXDestructorDecl>(D)) {
ToFunction = CXXDestructorDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
Loc, Name, T,
D->isInlineSpecified(),
D->isImplicit());
} else if (CXXConversionDecl *FromConversion
= dyn_cast<CXXConversionDecl>(D)) {
ToFunction = CXXConversionDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
Loc, Name, T, TInfo,
D->isInlineSpecified(),
FromConversion->isExplicit());
} else {
ToFunction = FunctionDecl::Create(Importer.getToContext(), DC, Loc,
Name, T, TInfo, D->getStorageClass(),
D->isInlineSpecified(),
D->hasWrittenPrototype());
}
ToFunction->setAccess(D->getAccess());
ToFunction->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToFunction);
LexicalDC->addDecl(ToFunction);
// Set the parameters.
for (unsigned I = 0, N = Parameters.size(); I != N; ++I) {
Parameters[I]->setOwningFunction(ToFunction);
ToFunction->addDecl(Parameters[I]);
}
ToFunction->setParams(Parameters.data(), Parameters.size());
// FIXME: Other bits to merge?
return ToFunction;
}
Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) {
return VisitFunctionDecl(D);
}
Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
Expr *BitWidth = Importer.Import(D->getBitWidth());
if (!BitWidth && D->getBitWidth())
return 0;
FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
T, TInfo, BitWidth, D->isMutable());
ToField->setAccess(D->getAccess());
ToField->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToField);
LexicalDC->addDecl(ToField);
return ToField;
}
Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) {
// Import the major distinguishing characteristics of an ivar.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Determine whether we've already imported this ivar
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(*Lookup.first)) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundIvar->getType())) {
Importer.Imported(D, FoundIvar);
return FoundIvar;
}
Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent)
<< Name << D->getType() << FoundIvar->getType();
Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here)
<< FoundIvar->getType();
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
Expr *BitWidth = Importer.Import(D->getBitWidth());
if (!BitWidth && D->getBitWidth())
return 0;
ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
T, TInfo, D->getAccessControl(),
BitWidth);
ToIvar->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToIvar);
LexicalDC->addDecl(ToIvar);
return ToIvar;
}
Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Try to find a variable in our own ("to") context with the same name and
// in the same context as the variable we're importing.
if (D->isFileVarDecl()) {
VarDecl *MergeWithVar = 0;
llvm::SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(IDNS))
continue;
if (VarDecl *FoundVar = dyn_cast<VarDecl>(*Lookup.first)) {
// We have found a variable that we may need to merge with. Check it.
if (isExternalLinkage(FoundVar->getLinkage()) &&
isExternalLinkage(D->getLinkage())) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundVar->getType())) {
MergeWithVar = FoundVar;
break;
}
const ArrayType *FoundArray
= Importer.getToContext().getAsArrayType(FoundVar->getType());
const ArrayType *TArray
= Importer.getToContext().getAsArrayType(D->getType());
if (FoundArray && TArray) {
if (isa<IncompleteArrayType>(FoundArray) &&
isa<ConstantArrayType>(TArray)) {
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
FoundVar->setType(T);
MergeWithVar = FoundVar;
break;
} else if (isa<IncompleteArrayType>(TArray) &&
isa<ConstantArrayType>(FoundArray)) {
MergeWithVar = FoundVar;
break;
}
}
Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent)
<< Name << D->getType() << FoundVar->getType();
Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here)
<< FoundVar->getType();
}
}
ConflictingDecls.push_back(*Lookup.first);
}
if (MergeWithVar) {
// An equivalent variable with external linkage has been found. Link
// the two declarations, then merge them.
Importer.Imported(D, MergeWithVar);
if (VarDecl *DDef = D->getDefinition()) {
if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) {
Importer.ToDiag(ExistingDef->getLocation(),
diag::err_odr_variable_multiple_def)
<< Name;
Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here);
} else {
Expr *Init = Importer.Import(DDef->getInit());
MergeWithVar->setInit(Init);
}
}
return MergeWithVar;
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the imported variable.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo(), T, TInfo,
D->getStorageClass());
ToVar->setAccess(D->getAccess());
ToVar->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToVar);
LexicalDC->addDecl(ToVar);
// Merge the initializer.
// FIXME: Can we really import any initializer? Alternatively, we could force
// ourselves to import every declaration of a variable and then only use
// getInit() here.
ToVar->setInit(Importer.Import(const_cast<Expr *>(D->getAnyInitializer())));
// FIXME: Other bits to merge?
return ToVar;
}
Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) {
// Parameters are created in the translation unit's context, then moved
// into the function declaration's context afterward.
DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return 0;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the parameter's type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the imported parameter.
ImplicitParamDecl *ToParm
= ImplicitParamDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
T);
return Importer.Imported(D, ToParm);
}
Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) {
// Parameters are created in the translation unit's context, then moved
// into the function declaration's context afterward.
DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return 0;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the parameter's type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the imported parameter.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
T, TInfo, D->getStorageClass(),
/*FIXME: Default argument*/ 0);
return Importer.Imported(D, ToParm);
}
Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) {
// Import the major distinguishing characteristics of a method.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(*Lookup.first)) {
if (FoundMethod->isInstanceMethod() != D->isInstanceMethod())
continue;
// Check return types.
if (!Importer.IsStructurallyEquivalent(D->getResultType(),
FoundMethod->getResultType())) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent)
<< D->isInstanceMethod() << Name
<< D->getResultType() << FoundMethod->getResultType();
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return 0;
}
// Check the number of parameters.
if (D->param_size() != FoundMethod->param_size()) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent)
<< D->isInstanceMethod() << Name
<< D->param_size() << FoundMethod->param_size();
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return 0;
}
// Check parameter types.
for (ObjCMethodDecl::param_iterator P = D->param_begin(),
PEnd = D->param_end(), FoundP = FoundMethod->param_begin();
P != PEnd; ++P, ++FoundP) {
if (!Importer.IsStructurallyEquivalent((*P)->getType(),
(*FoundP)->getType())) {
Importer.FromDiag((*P)->getLocation(),
diag::err_odr_objc_method_param_type_inconsistent)
<< D->isInstanceMethod() << Name
<< (*P)->getType() << (*FoundP)->getType();
Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here)
<< (*FoundP)->getType();
return 0;
}
}
// Check variadic/non-variadic.
// Check the number of parameters.
if (D->isVariadic() != FoundMethod->isVariadic()) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent)
<< D->isInstanceMethod() << Name;
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return 0;
}
// FIXME: Any other bits we need to merge?
return Importer.Imported(D, FoundMethod);
}
}
// Import the result type.
QualType ResultTy = Importer.Import(D->getResultType());
if (ResultTy.isNull())
return 0;
ObjCMethodDecl *ToMethod
= ObjCMethodDecl::Create(Importer.getToContext(),
Loc,
Importer.Import(D->getLocEnd()),
Name.getObjCSelector(),
ResultTy, DC,
D->isInstanceMethod(),
D->isVariadic(),
D->isSynthesized(),
D->getImplementationControl());
// FIXME: When we decide to merge method definitions, we'll need to
// deal with implicit parameters.
// Import the parameters
llvm::SmallVector<ParmVarDecl *, 5> ToParams;
for (ObjCMethodDecl::param_iterator FromP = D->param_begin(),
FromPEnd = D->param_end();
FromP != FromPEnd;
++FromP) {
ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*FromP));
if (!ToP)
return 0;
ToParams.push_back(ToP);
}
// Set the parameters.
for (unsigned I = 0, N = ToParams.size(); I != N; ++I) {
ToParams[I]->setOwningFunction(ToMethod);
ToMethod->addDecl(ToParams[I]);
}
ToMethod->setMethodParams(Importer.getToContext(),
ToParams.data(), ToParams.size());
ToMethod->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToMethod);
LexicalDC->addDecl(ToMethod);
return ToMethod;
}
Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) {
// Import the major distinguishing characteristics of a category.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
ObjCInterfaceDecl *ToInterface
= cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface()));
if (!ToInterface)
return 0;
// Determine if we've already encountered this category.
ObjCCategoryDecl *MergeWithCategory
= ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo());
ObjCCategoryDecl *ToCategory = MergeWithCategory;
if (!ToCategory) {
ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getAtLoc()),
Loc,
Importer.Import(D->getCategoryNameLoc()),
Name.getAsIdentifierInfo());
ToCategory->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToCategory);
Importer.Imported(D, ToCategory);
// Link this category into its class's category list.
ToCategory->setClassInterface(ToInterface);
ToCategory->insertNextClassCategory();
// Import protocols
llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
llvm::SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc
= D->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(),
FromProtoEnd = D->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return 0;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
ToCategory->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
} else {
Importer.Imported(D, ToCategory);
}
// Import all of the members of this category.
ImportDeclContext(D);
// If we have an implementation, import it as well.
if (D->getImplementation()) {
ObjCCategoryImplDecl *Impl
= cast<ObjCCategoryImplDecl>(Importer.Import(D->getImplementation()));
if (!Impl)
return 0;
ToCategory->setImplementation(Impl);
}
return ToCategory;
}
Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) {
// Import the major distinguishing characteristics of a protocol.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
ObjCProtocolDecl *MergeWithProtocol = 0;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol))
continue;
if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(*Lookup.first)))
break;
}
ObjCProtocolDecl *ToProto = MergeWithProtocol;
if (!ToProto || ToProto->isForwardDecl()) {
if (!ToProto) {
ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo());
ToProto->setForwardDecl(D->isForwardDecl());
ToProto->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToProto);
}
Importer.Imported(D, ToProto);
// Import protocols
llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
llvm::SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCProtocolDecl::protocol_loc_iterator
FromProtoLoc = D->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator FromProto = D->protocol_begin(),
FromProtoEnd = D->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return 0;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
ToProto->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
} else {
Importer.Imported(D, ToProto);
}
// Import all of the members of this protocol.
ImportDeclContext(D);
return ToProto;
}
Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
// Import the major distinguishing characteristics of an @interface.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
ObjCInterfaceDecl *MergeWithIface = 0;
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (!(*Lookup.first)->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(*Lookup.first)))
break;
}
ObjCInterfaceDecl *ToIface = MergeWithIface;
if (!ToIface || ToIface->isForwardDecl()) {
if (!ToIface) {
ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(),
DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getClassLoc()),
D->isForwardDecl(),
D->isImplicitInterfaceDecl());
ToIface->setForwardDecl(D->isForwardDecl());
ToIface->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToIface);
}
Importer.Imported(D, ToIface);
if (D->getSuperClass()) {
ObjCInterfaceDecl *Super
= cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getSuperClass()));
if (!Super)
return 0;
ToIface->setSuperClass(Super);
ToIface->setSuperClassLoc(Importer.Import(D->getSuperClassLoc()));
}
// Import protocols
llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
llvm::SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCInterfaceDecl::protocol_loc_iterator
FromProtoLoc = D->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator FromProto = D->protocol_begin(),
FromProtoEnd = D->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return 0;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
ToIface->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
// Import @end range
ToIface->setAtEndRange(Importer.Import(D->getAtEndRange()));
} else {
Importer.Imported(D, ToIface);
// Check for consistency of superclasses.
DeclarationName FromSuperName, ToSuperName;
if (D->getSuperClass())
FromSuperName = Importer.Import(D->getSuperClass()->getDeclName());
if (ToIface->getSuperClass())
ToSuperName = ToIface->getSuperClass()->getDeclName();
if (FromSuperName != ToSuperName) {
Importer.ToDiag(ToIface->getLocation(),
diag::err_odr_objc_superclass_inconsistent)
<< ToIface->getDeclName();
if (ToIface->getSuperClass())
Importer.ToDiag(ToIface->getSuperClassLoc(),
diag::note_odr_objc_superclass)
<< ToIface->getSuperClass()->getDeclName();
else
Importer.ToDiag(ToIface->getLocation(),
diag::note_odr_objc_missing_superclass);
if (D->getSuperClass())
Importer.FromDiag(D->getSuperClassLoc(),
diag::note_odr_objc_superclass)
<< D->getSuperClass()->getDeclName();
else
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_missing_superclass);
return 0;
}
}
// Import categories. When the categories themselves are imported, they'll
// hook themselves into this interface.
for (ObjCCategoryDecl *FromCat = D->getCategoryList(); FromCat;
FromCat = FromCat->getNextClassCategory())
Importer.Import(FromCat);
// Import all of the members of this class.
ImportDeclContext(D);
// If we have an @implementation, import it as well.
if (D->getImplementation()) {
ObjCImplementationDecl *Impl
= cast<ObjCImplementationDecl>(Importer.Import(D->getImplementation()));
if (!Impl)
return 0;
ToIface->setImplementation(Impl);
}
return ToIface;
}
Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
// Import the major distinguishing characteristics of an @property.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Check whether we have already imported this property.
for (DeclContext::lookup_result Lookup = DC->lookup(Name);
Lookup.first != Lookup.second;
++Lookup.first) {
if (ObjCPropertyDecl *FoundProp
= dyn_cast<ObjCPropertyDecl>(*Lookup.first)) {
// Check property types.
if (!Importer.IsStructurallyEquivalent(D->getType(),
FoundProp->getType())) {
Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent)
<< Name << D->getType() << FoundProp->getType();
Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here)
<< FoundProp->getType();
return 0;
}
// FIXME: Check property attributes, getters, setters, etc.?
// Consider these properties to be equivalent.
Importer.Imported(D, FoundProp);
return FoundProp;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the new property.
ObjCPropertyDecl *ToProperty
= ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getAtLoc()),
T,
D->getPropertyImplementation());
Importer.Imported(D, ToProperty);
ToProperty->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToProperty);
ToProperty->setPropertyAttributes(D->getPropertyAttributes());
ToProperty->setGetterName(Importer.Import(D->getGetterName()));
ToProperty->setSetterName(Importer.Import(D->getSetterName()));
ToProperty->setGetterMethodDecl(
cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl())));
ToProperty->setSetterMethodDecl(
cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl())));
ToProperty->setPropertyIvarDecl(
cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl())));
return ToProperty;
}
Decl *
ASTNodeImporter::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) {
// Import the context of this declaration.
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return 0;
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return 0;
}
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols;
llvm::SmallVector<SourceLocation, 4> Locations;
ObjCForwardProtocolDecl::protocol_loc_iterator FromProtoLoc
= D->protocol_loc_begin();
for (ObjCForwardProtocolDecl::protocol_iterator FromProto
= D->protocol_begin(), FromProtoEnd = D->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
continue;
Protocols.push_back(ToProto);
Locations.push_back(Importer.Import(*FromProtoLoc));
}
ObjCForwardProtocolDecl *ToForward
= ObjCForwardProtocolDecl::Create(Importer.getToContext(), DC, Loc,
Protocols.data(), Protocols.size(),
Locations.data());
ToForward->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToForward);
Importer.Imported(D, ToForward);
return ToForward;
}
Decl *ASTNodeImporter::VisitObjCClassDecl(ObjCClassDecl *D) {
// Import the context of this declaration.
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return 0;
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return 0;
}
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
llvm::SmallVector<ObjCInterfaceDecl *, 4> Interfaces;
llvm::SmallVector<SourceLocation, 4> Locations;
for (ObjCClassDecl::iterator From = D->begin(), FromEnd = D->end();
From != FromEnd; ++From) {
ObjCInterfaceDecl *ToIface
= cast_or_null<ObjCInterfaceDecl>(Importer.Import(From->getInterface()));
if (!ToIface)
continue;
Interfaces.push_back(ToIface);
Locations.push_back(Importer.Import(From->getLocation()));
}
ObjCClassDecl *ToClass = ObjCClassDecl::Create(Importer.getToContext(), DC,
Loc,
Interfaces.data(),
Locations.data(),
Interfaces.size());
ToClass->setLexicalDeclContext(LexicalDC);
LexicalDC->addDecl(ToClass);
Importer.Imported(D, ToClass);
return ToClass;
}
//----------------------------------------------------------------------------
// Import Statements
//----------------------------------------------------------------------------
Stmt *ASTNodeImporter::VisitStmt(Stmt *S) {
Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node)
<< S->getStmtClassName();
return 0;
}
//----------------------------------------------------------------------------
// Import Expressions
//----------------------------------------------------------------------------
Expr *ASTNodeImporter::VisitExpr(Expr *E) {
Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node)
<< E->getStmtClassName();
return 0;
}
Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) {
NestedNameSpecifier *Qualifier = 0;
if (E->getQualifier()) {
Qualifier = Importer.Import(E->getQualifier());
if (!E->getQualifier())
return 0;
}
ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl()));
if (!ToD)
return 0;
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
return DeclRefExpr::Create(Importer.getToContext(), Qualifier,
Importer.Import(E->getQualifierRange()),
ToD,
Importer.Import(E->getLocation()),
T,
/*FIXME:TemplateArgs=*/0);
}
Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
return new (Importer.getToContext())
IntegerLiteral(E->getValue(), T, Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
return new (Importer.getToContext()) CharacterLiteral(E->getValue(),
E->isWide(), T,
Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) {
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext())
ParenExpr(Importer.Import(E->getLParen()),
Importer.Import(E->getRParen()),
SubExpr);
}
Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(),
T,
Importer.Import(E->getOperatorLoc()));
}
Expr *ASTNodeImporter::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
QualType ResultType = Importer.Import(E->getType());
if (E->isArgumentType()) {
TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo());
if (!TInfo)
return 0;
return new (Importer.getToContext()) SizeOfAlignOfExpr(E->isSizeOf(),
TInfo, ResultType,
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getRParenLoc()));
}
Expr *SubExpr = Importer.Import(E->getArgumentExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext()) SizeOfAlignOfExpr(E->isSizeOf(),
SubExpr, ResultType,
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *LHS = Importer.Import(E->getLHS());
if (!LHS)
return 0;
Expr *RHS = Importer.Import(E->getRHS());
if (!RHS)
return 0;
return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(),
T,
Importer.Import(E->getOperatorLoc()));
}
Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
QualType CompLHSType = Importer.Import(E->getComputationLHSType());
if (CompLHSType.isNull())
return 0;
QualType CompResultType = Importer.Import(E->getComputationResultType());
if (CompResultType.isNull())
return 0;
Expr *LHS = Importer.Import(E->getLHS());
if (!LHS)
return 0;
Expr *RHS = Importer.Import(E->getRHS());
if (!RHS)
return 0;
return new (Importer.getToContext())
CompoundAssignOperator(LHS, RHS, E->getOpcode(),
T, CompLHSType, CompResultType,
Importer.Import(E->getOperatorLoc()));
}
Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext()) ImplicitCastExpr(T, E->getCastKind(),
SubExpr,
E->isLvalueCast());
}
Expr *ASTNodeImporter::VisitCStyleCastExpr(CStyleCastExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten());
if (!TInfo && E->getTypeInfoAsWritten())
return 0;
return new (Importer.getToContext()) CStyleCastExpr(T, E->getCastKind(),
SubExpr, TInfo,
Importer.Import(E->getLParenLoc()),
Importer.Import(E->getRParenLoc()));
}
ASTImporter::ASTImporter(Diagnostic &Diags,
ASTContext &ToContext, FileManager &ToFileManager,
ASTContext &FromContext, FileManager &FromFileManager)
: ToContext(ToContext), FromContext(FromContext),
ToFileManager(ToFileManager), FromFileManager(FromFileManager),
Diags(Diags) {
ImportedDecls[FromContext.getTranslationUnitDecl()]
= ToContext.getTranslationUnitDecl();
}
ASTImporter::~ASTImporter() { }
QualType ASTImporter::Import(QualType FromT) {
if (FromT.isNull())
return QualType();
// Check whether we've already imported this type.
llvm::DenseMap<Type *, Type *>::iterator Pos
= ImportedTypes.find(FromT.getTypePtr());
if (Pos != ImportedTypes.end())
return ToContext.getQualifiedType(Pos->second, FromT.getQualifiers());
// Import the type
ASTNodeImporter Importer(*this);
QualType ToT = Importer.Visit(FromT.getTypePtr());
if (ToT.isNull())
return ToT;
// Record the imported type.
ImportedTypes[FromT.getTypePtr()] = ToT.getTypePtr();
return ToContext.getQualifiedType(ToT, FromT.getQualifiers());
}
TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) {
if (!FromTSI)
return FromTSI;
// FIXME: For now we just create a "trivial" type source info based
// on the type and a seingle location. Implement a real version of
// this.
QualType T = Import(FromTSI->getType());
if (T.isNull())
return 0;
return ToContext.getTrivialTypeSourceInfo(T,
FromTSI->getTypeLoc().getFullSourceRange().getBegin());
}
Decl *ASTImporter::Import(Decl *FromD) {
if (!FromD)
return 0;
// Check whether we've already imported this declaration.
llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
if (Pos != ImportedDecls.end())
return Pos->second;
// Import the type
ASTNodeImporter Importer(*this);
Decl *ToD = Importer.Visit(FromD);
if (!ToD)
return 0;
// Record the imported declaration.
ImportedDecls[FromD] = ToD;
if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) {
// Keep track of anonymous tags that have an associated typedef.
if (FromTag->getTypedefForAnonDecl())
AnonTagsWithPendingTypedefs.push_back(FromTag);
} else if (TypedefDecl *FromTypedef = dyn_cast<TypedefDecl>(FromD)) {
// When we've finished transforming a typedef, see whether it was the
// typedef for an anonymous tag.
for (llvm::SmallVector<TagDecl *, 4>::iterator
FromTag = AnonTagsWithPendingTypedefs.begin(),
FromTagEnd = AnonTagsWithPendingTypedefs.end();
FromTag != FromTagEnd; ++FromTag) {
if ((*FromTag)->getTypedefForAnonDecl() == FromTypedef) {
if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) {
// We found the typedef for an anonymous tag; link them.
ToTag->setTypedefForAnonDecl(cast<TypedefDecl>(ToD));
AnonTagsWithPendingTypedefs.erase(FromTag);
break;
}
}
}
}
return ToD;
}
DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) {
if (!FromDC)
return FromDC;
return cast_or_null<DeclContext>(Import(cast<Decl>(FromDC)));
}
Expr *ASTImporter::Import(Expr *FromE) {
if (!FromE)
return 0;
return cast_or_null<Expr>(Import(cast<Stmt>(FromE)));
}
Stmt *ASTImporter::Import(Stmt *FromS) {
if (!FromS)
return 0;
// Check whether we've already imported this declaration.
llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS);
if (Pos != ImportedStmts.end())
return Pos->second;
// Import the type
ASTNodeImporter Importer(*this);
Stmt *ToS = Importer.Visit(FromS);
if (!ToS)
return 0;
// Record the imported declaration.
ImportedStmts[FromS] = ToS;
return ToS;
}
NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) {
if (!FromNNS)
return 0;
// FIXME: Implement!
return 0;
}
SourceLocation ASTImporter::Import(SourceLocation FromLoc) {
if (FromLoc.isInvalid())
return SourceLocation();
SourceManager &FromSM = FromContext.getSourceManager();
// For now, map everything down to its spelling location, so that we
// don't have to import macro instantiations.
// FIXME: Import macro instantiations!
FromLoc = FromSM.getSpellingLoc(FromLoc);
std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc);
SourceManager &ToSM = ToContext.getSourceManager();
return ToSM.getLocForStartOfFile(Import(Decomposed.first))
.getFileLocWithOffset(Decomposed.second);
}
SourceRange ASTImporter::Import(SourceRange FromRange) {
return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd()));
}
FileID ASTImporter::Import(FileID FromID) {
llvm::DenseMap<unsigned, FileID>::iterator Pos
= ImportedFileIDs.find(FromID.getHashValue());
if (Pos != ImportedFileIDs.end())
return Pos->second;
SourceManager &FromSM = FromContext.getSourceManager();
SourceManager &ToSM = ToContext.getSourceManager();
const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID);
assert(FromSLoc.isFile() && "Cannot handle macro instantiations yet");
// Include location of this file.
SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc());
// Map the FileID for to the "to" source manager.
FileID ToID;
const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache();
if (Cache->Entry) {
// FIXME: We probably want to use getVirtualFile(), so we don't hit the
// disk again
// FIXME: We definitely want to re-use the existing MemoryBuffer, rather
// than mmap the files several times.
const FileEntry *Entry = ToFileManager.getFile(Cache->Entry->getName());
ToID = ToSM.createFileID(Entry, ToIncludeLoc,
FromSLoc.getFile().getFileCharacteristic());
} else {
// FIXME: We want to re-use the existing MemoryBuffer!
const llvm::MemoryBuffer *FromBuf = Cache->getBuffer();
llvm::MemoryBuffer *ToBuf
= llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBufferStart(),
FromBuf->getBufferEnd(),
FromBuf->getBufferIdentifier());
ToID = ToSM.createFileIDForMemBuffer(ToBuf);
}
ImportedFileIDs[FromID.getHashValue()] = ToID;
return ToID;
}
DeclarationName ASTImporter::Import(DeclarationName FromName) {
if (!FromName)
return DeclarationName();
switch (FromName.getNameKind()) {
case DeclarationName::Identifier:
return Import(FromName.getAsIdentifierInfo());
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return Import(FromName.getObjCSelector());
case DeclarationName::CXXConstructorName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXConstructorName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXDestructorName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXDestructorName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXConversionFunctionName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXConversionFunctionName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXOperatorName:
return ToContext.DeclarationNames.getCXXOperatorName(
FromName.getCXXOverloadedOperator());
case DeclarationName::CXXLiteralOperatorName:
return ToContext.DeclarationNames.getCXXLiteralOperatorName(
Import(FromName.getCXXLiteralIdentifier()));
case DeclarationName::CXXUsingDirective:
// FIXME: STATICS!
return DeclarationName::getUsingDirectiveName();
}
// Silence bogus GCC warning
return DeclarationName();
}
IdentifierInfo *ASTImporter::Import(IdentifierInfo *FromId) {
if (!FromId)
return 0;
return &ToContext.Idents.get(FromId->getName());
}
Selector ASTImporter::Import(Selector FromSel) {
if (FromSel.isNull())
return Selector();
llvm::SmallVector<IdentifierInfo *, 4> Idents;
Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0)));
for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I)
Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I)));
return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data());
}
DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name,
DeclContext *DC,
unsigned IDNS,
NamedDecl **Decls,
unsigned NumDecls) {
return Name;
}
DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(FullSourceLoc(Loc, ToContext.getSourceManager()),
DiagID);
}
DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(FullSourceLoc(Loc, FromContext.getSourceManager()),
DiagID);
}
Decl *ASTImporter::Imported(Decl *From, Decl *To) {
ImportedDecls[From] = To;
return To;
}
bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To) {
llvm::DenseMap<Type *, Type *>::iterator Pos
= ImportedTypes.find(From.getTypePtr());
if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To))
return true;
StructuralEquivalenceContext Ctx(FromContext, ToContext, Diags,
NonEquivalentDecls);
return Ctx.IsStructurallyEquivalent(From, To);
}