forked from OSchip/llvm-project
1212 lines
37 KiB
C++
1212 lines
37 KiB
C++
//===- HexagonSplitDouble.cpp ---------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hsdr"
|
|
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
FunctionPass *createHexagonSplitDoubleRegs();
|
|
void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
|
|
|
|
} // end namespace llvm
|
|
|
|
static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
|
|
cl::desc("Maximum number of split partitions"));
|
|
static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
|
|
cl::desc("Do not split loads or stores"));
|
|
|
|
namespace {
|
|
|
|
class HexagonSplitDoubleRegs : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {
|
|
initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Hexagon Split Double Registers";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
static const TargetRegisterClass *const DoubleRC;
|
|
|
|
const HexagonRegisterInfo *TRI = nullptr;
|
|
const HexagonInstrInfo *TII = nullptr;
|
|
const MachineLoopInfo *MLI;
|
|
MachineRegisterInfo *MRI;
|
|
|
|
using USet = std::set<unsigned>;
|
|
using UUSetMap = std::map<unsigned, USet>;
|
|
using UUPair = std::pair<unsigned, unsigned>;
|
|
using UUPairMap = std::map<unsigned, UUPair>;
|
|
using LoopRegMap = std::map<const MachineLoop *, USet>;
|
|
|
|
bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
|
|
bool isVolatileInstr(const MachineInstr *MI) const;
|
|
bool isFixedInstr(const MachineInstr *MI) const;
|
|
void partitionRegisters(UUSetMap &P2Rs);
|
|
int32_t profit(const MachineInstr *MI) const;
|
|
bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
|
|
|
|
void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
|
|
void collectIndRegs(LoopRegMap &IRM);
|
|
|
|
void createHalfInstr(unsigned Opc, MachineInstr *MI,
|
|
const UUPairMap &PairMap, unsigned SubR);
|
|
void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
|
|
bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
|
|
void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
|
|
bool splitPartition(const USet &Part);
|
|
|
|
static int Counter;
|
|
|
|
static void dump_partition(raw_ostream&, const USet&,
|
|
const TargetRegisterInfo&);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char HexagonSplitDoubleRegs::ID;
|
|
int HexagonSplitDoubleRegs::Counter = 0;
|
|
const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
|
|
&Hexagon::DoubleRegsRegClass;
|
|
|
|
INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
|
|
"Hexagon Split Double Registers", false, false)
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
|
|
const USet &Part, const TargetRegisterInfo &TRI) {
|
|
dbgs() << '{';
|
|
for (auto I : Part)
|
|
dbgs() << ' ' << printReg(I, &TRI);
|
|
dbgs() << " }";
|
|
}
|
|
#endif
|
|
|
|
bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
|
|
for (auto I : IRM) {
|
|
const USet &Rs = I.second;
|
|
if (Rs.find(Reg) != Rs.end())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
|
|
for (auto &I : MI->memoperands())
|
|
if (I->isVolatile())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
|
|
if (MI->mayLoad() || MI->mayStore())
|
|
if (MemRefsFixed || isVolatileInstr(MI))
|
|
return true;
|
|
if (MI->isDebugValue())
|
|
return false;
|
|
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
default:
|
|
return true;
|
|
|
|
case TargetOpcode::PHI:
|
|
case TargetOpcode::COPY:
|
|
break;
|
|
|
|
case Hexagon::L2_loadrd_io:
|
|
// Not handling stack stores (only reg-based addresses).
|
|
if (MI->getOperand(1).isReg())
|
|
break;
|
|
return true;
|
|
case Hexagon::S2_storerd_io:
|
|
// Not handling stack stores (only reg-based addresses).
|
|
if (MI->getOperand(0).isReg())
|
|
break;
|
|
return true;
|
|
case Hexagon::L2_loadrd_pi:
|
|
case Hexagon::S2_storerd_pi:
|
|
|
|
case Hexagon::A2_tfrpi:
|
|
case Hexagon::A2_combineii:
|
|
case Hexagon::A4_combineir:
|
|
case Hexagon::A4_combineii:
|
|
case Hexagon::A4_combineri:
|
|
case Hexagon::A2_combinew:
|
|
case Hexagon::CONST64:
|
|
|
|
case Hexagon::A2_sxtw:
|
|
|
|
case Hexagon::A2_andp:
|
|
case Hexagon::A2_orp:
|
|
case Hexagon::A2_xorp:
|
|
case Hexagon::S2_asl_i_p_or:
|
|
case Hexagon::S2_asl_i_p:
|
|
case Hexagon::S2_asr_i_p:
|
|
case Hexagon::S2_lsr_i_p:
|
|
break;
|
|
}
|
|
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg())
|
|
continue;
|
|
unsigned R = Op.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(R))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
|
|
using UUMap = std::map<unsigned, unsigned>;
|
|
using UVect = std::vector<unsigned>;
|
|
|
|
unsigned NumRegs = MRI->getNumVirtRegs();
|
|
BitVector DoubleRegs(NumRegs);
|
|
for (unsigned i = 0; i < NumRegs; ++i) {
|
|
unsigned R = TargetRegisterInfo::index2VirtReg(i);
|
|
if (MRI->getRegClass(R) == DoubleRC)
|
|
DoubleRegs.set(i);
|
|
}
|
|
|
|
BitVector FixedRegs(NumRegs);
|
|
for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
|
|
unsigned R = TargetRegisterInfo::index2VirtReg(x);
|
|
MachineInstr *DefI = MRI->getVRegDef(R);
|
|
// In some cases a register may exist, but never be defined or used.
|
|
// It should never appear anywhere, but mark it as "fixed", just to be
|
|
// safe.
|
|
if (!DefI || isFixedInstr(DefI))
|
|
FixedRegs.set(x);
|
|
}
|
|
|
|
UUSetMap AssocMap;
|
|
for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
|
|
if (FixedRegs[x])
|
|
continue;
|
|
unsigned R = TargetRegisterInfo::index2VirtReg(x);
|
|
DEBUG(dbgs() << printReg(R, TRI) << " ~~");
|
|
USet &Asc = AssocMap[R];
|
|
for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
|
|
U != Z; ++U) {
|
|
MachineOperand &Op = *U;
|
|
MachineInstr *UseI = Op.getParent();
|
|
if (isFixedInstr(UseI))
|
|
continue;
|
|
for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
|
|
MachineOperand &MO = UseI->getOperand(i);
|
|
// Skip non-registers or registers with subregisters.
|
|
if (&MO == &Op || !MO.isReg() || MO.getSubReg())
|
|
continue;
|
|
unsigned T = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(T)) {
|
|
FixedRegs.set(x);
|
|
continue;
|
|
}
|
|
if (MRI->getRegClass(T) != DoubleRC)
|
|
continue;
|
|
unsigned u = TargetRegisterInfo::virtReg2Index(T);
|
|
if (FixedRegs[u])
|
|
continue;
|
|
DEBUG(dbgs() << ' ' << printReg(T, TRI));
|
|
Asc.insert(T);
|
|
// Make it symmetric.
|
|
AssocMap[T].insert(R);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
|
|
UUMap R2P;
|
|
unsigned NextP = 1;
|
|
USet Visited;
|
|
for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
|
|
unsigned R = TargetRegisterInfo::index2VirtReg(x);
|
|
if (Visited.count(R))
|
|
continue;
|
|
// Create a new partition for R.
|
|
unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
|
|
UVect WorkQ;
|
|
WorkQ.push_back(R);
|
|
for (unsigned i = 0; i < WorkQ.size(); ++i) {
|
|
unsigned T = WorkQ[i];
|
|
if (Visited.count(T))
|
|
continue;
|
|
R2P[T] = ThisP;
|
|
Visited.insert(T);
|
|
// Add all registers associated with T.
|
|
USet &Asc = AssocMap[T];
|
|
for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
|
|
WorkQ.push_back(*J);
|
|
}
|
|
}
|
|
|
|
for (auto I : R2P)
|
|
P2Rs[I.second].insert(I.first);
|
|
}
|
|
|
|
static inline int32_t profitImm(unsigned Lo, unsigned Hi) {
|
|
int32_t P = 0;
|
|
bool LoZ1 = false, HiZ1 = false;
|
|
if (Lo == 0 || Lo == 0xFFFFFFFF)
|
|
P += 10, LoZ1 = true;
|
|
if (Hi == 0 || Hi == 0xFFFFFFFF)
|
|
P += 10, HiZ1 = true;
|
|
if (!LoZ1 && !HiZ1 && Lo == Hi)
|
|
P += 3;
|
|
return P;
|
|
}
|
|
|
|
int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
|
|
unsigned ImmX = 0;
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case TargetOpcode::PHI:
|
|
for (const auto &Op : MI->operands())
|
|
if (!Op.getSubReg())
|
|
return 0;
|
|
return 10;
|
|
case TargetOpcode::COPY:
|
|
if (MI->getOperand(1).getSubReg() != 0)
|
|
return 10;
|
|
return 0;
|
|
|
|
case Hexagon::L2_loadrd_io:
|
|
case Hexagon::S2_storerd_io:
|
|
return -1;
|
|
case Hexagon::L2_loadrd_pi:
|
|
case Hexagon::S2_storerd_pi:
|
|
return 2;
|
|
|
|
case Hexagon::A2_tfrpi:
|
|
case Hexagon::CONST64: {
|
|
uint64_t D = MI->getOperand(1).getImm();
|
|
unsigned Lo = D & 0xFFFFFFFFULL;
|
|
unsigned Hi = D >> 32;
|
|
return profitImm(Lo, Hi);
|
|
}
|
|
case Hexagon::A2_combineii:
|
|
case Hexagon::A4_combineii:
|
|
return profitImm(MI->getOperand(1).getImm(),
|
|
MI->getOperand(2).getImm());
|
|
case Hexagon::A4_combineri:
|
|
ImmX++;
|
|
// Fall through into A4_combineir.
|
|
LLVM_FALLTHROUGH;
|
|
case Hexagon::A4_combineir: {
|
|
ImmX++;
|
|
int64_t V = MI->getOperand(ImmX).getImm();
|
|
if (V == 0 || V == -1)
|
|
return 10;
|
|
// Fall through into A2_combinew.
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case Hexagon::A2_combinew:
|
|
return 2;
|
|
|
|
case Hexagon::A2_sxtw:
|
|
return 3;
|
|
|
|
case Hexagon::A2_andp:
|
|
case Hexagon::A2_orp:
|
|
case Hexagon::A2_xorp:
|
|
return 1;
|
|
|
|
case Hexagon::S2_asl_i_p_or: {
|
|
unsigned S = MI->getOperand(3).getImm();
|
|
if (S == 0 || S == 32)
|
|
return 10;
|
|
return -1;
|
|
}
|
|
case Hexagon::S2_asl_i_p:
|
|
case Hexagon::S2_asr_i_p:
|
|
case Hexagon::S2_lsr_i_p:
|
|
unsigned S = MI->getOperand(2).getImm();
|
|
if (S == 0 || S == 32)
|
|
return 10;
|
|
if (S == 16)
|
|
return 5;
|
|
if (S == 48)
|
|
return 7;
|
|
return -10;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
|
|
const {
|
|
unsigned FixedNum = 0, LoopPhiNum = 0;
|
|
int32_t TotalP = 0;
|
|
|
|
for (unsigned DR : Part) {
|
|
MachineInstr *DefI = MRI->getVRegDef(DR);
|
|
int32_t P = profit(DefI);
|
|
if (P == std::numeric_limits<int>::min())
|
|
return false;
|
|
TotalP += P;
|
|
// Reduce the profitability of splitting induction registers.
|
|
if (isInduction(DR, IRM))
|
|
TotalP -= 30;
|
|
|
|
for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
|
|
U != W; ++U) {
|
|
MachineInstr *UseI = U->getParent();
|
|
if (isFixedInstr(UseI)) {
|
|
FixedNum++;
|
|
// Calculate the cost of generating REG_SEQUENCE instructions.
|
|
for (auto &Op : UseI->operands()) {
|
|
if (Op.isReg() && Part.count(Op.getReg()))
|
|
if (Op.getSubReg())
|
|
TotalP -= 2;
|
|
}
|
|
continue;
|
|
}
|
|
// If a register from this partition is used in a fixed instruction,
|
|
// and there is also a register in this partition that is used in
|
|
// a loop phi node, then decrease the splitting profit as this can
|
|
// confuse the modulo scheduler.
|
|
if (UseI->isPHI()) {
|
|
const MachineBasicBlock *PB = UseI->getParent();
|
|
const MachineLoop *L = MLI->getLoopFor(PB);
|
|
if (L && L->getHeader() == PB)
|
|
LoopPhiNum++;
|
|
}
|
|
// Splittable instruction.
|
|
int32_t P = profit(UseI);
|
|
if (P == std::numeric_limits<int>::min())
|
|
return false;
|
|
TotalP += P;
|
|
}
|
|
}
|
|
|
|
if (FixedNum > 0 && LoopPhiNum > 0)
|
|
TotalP -= 20*LoopPhiNum;
|
|
|
|
DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
|
|
return TotalP > 0;
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
|
|
USet &Rs) {
|
|
const MachineBasicBlock *HB = L->getHeader();
|
|
const MachineBasicBlock *LB = L->getLoopLatch();
|
|
if (!HB || !LB)
|
|
return;
|
|
|
|
// Examine the latch branch. Expect it to be a conditional branch to
|
|
// the header (either "br-cond header" or "br-cond exit; br header").
|
|
MachineBasicBlock *TB = nullptr, *FB = nullptr;
|
|
MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
|
|
SmallVector<MachineOperand,2> Cond;
|
|
bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
|
|
// Only analyzable conditional branches. HII::analyzeBranch will put
|
|
// the branch opcode as the first element of Cond, and the predicate
|
|
// operand as the second.
|
|
if (BadLB || Cond.size() != 2)
|
|
return;
|
|
// Only simple jump-conditional (with or without negation).
|
|
if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
|
|
return;
|
|
// Must go to the header.
|
|
if (TB != HB && FB != HB)
|
|
return;
|
|
assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
|
|
// Expect a predicate register.
|
|
unsigned PR = Cond[1].getReg();
|
|
assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
|
|
|
|
// Get the registers on which the loop controlling compare instruction
|
|
// depends.
|
|
unsigned CmpR1 = 0, CmpR2 = 0;
|
|
const MachineInstr *CmpI = MRI->getVRegDef(PR);
|
|
while (CmpI->getOpcode() == Hexagon::C2_not)
|
|
CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
|
|
|
|
int Mask = 0, Val = 0;
|
|
bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
|
|
if (!OkCI)
|
|
return;
|
|
// Eliminate non-double input registers.
|
|
if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
|
|
CmpR1 = 0;
|
|
if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
|
|
CmpR2 = 0;
|
|
if (!CmpR1 && !CmpR2)
|
|
return;
|
|
|
|
// Now examine the top of the loop: the phi nodes that could poten-
|
|
// tially define loop induction registers. The registers defined by
|
|
// such a phi node would be used in a 64-bit add, which then would
|
|
// be used in the loop compare instruction.
|
|
|
|
// Get the set of all double registers defined by phi nodes in the
|
|
// loop header.
|
|
using UVect = std::vector<unsigned>;
|
|
|
|
UVect DP;
|
|
for (auto &MI : *HB) {
|
|
if (!MI.isPHI())
|
|
break;
|
|
const MachineOperand &MD = MI.getOperand(0);
|
|
unsigned R = MD.getReg();
|
|
if (MRI->getRegClass(R) == DoubleRC)
|
|
DP.push_back(R);
|
|
}
|
|
if (DP.empty())
|
|
return;
|
|
|
|
auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
|
|
for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
|
|
I != E; ++I) {
|
|
const MachineInstr *UseI = I->getParent();
|
|
if (UseI->getOpcode() != Hexagon::A2_addp)
|
|
continue;
|
|
// Get the output from the add. If it is one of the inputs to the
|
|
// loop-controlling compare instruction, then R is likely an induc-
|
|
// tion register.
|
|
unsigned T = UseI->getOperand(0).getReg();
|
|
if (T == CmpR1 || T == CmpR2)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
UVect::iterator End = llvm::remove_if(DP, NoIndOp);
|
|
Rs.insert(DP.begin(), End);
|
|
Rs.insert(CmpR1);
|
|
Rs.insert(CmpR2);
|
|
|
|
DEBUG({
|
|
dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
|
|
dump_partition(dbgs(), Rs, *TRI);
|
|
dbgs() << '\n';
|
|
});
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
|
|
using LoopVector = std::vector<MachineLoop *>;
|
|
|
|
LoopVector WorkQ;
|
|
|
|
for (auto I : *MLI)
|
|
WorkQ.push_back(I);
|
|
for (unsigned i = 0; i < WorkQ.size(); ++i) {
|
|
for (auto I : *WorkQ[i])
|
|
WorkQ.push_back(I);
|
|
}
|
|
|
|
USet Rs;
|
|
for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
|
|
MachineLoop *L = WorkQ[i];
|
|
Rs.clear();
|
|
collectIndRegsForLoop(L, Rs);
|
|
if (!Rs.empty())
|
|
IRM.insert(std::make_pair(L, Rs));
|
|
}
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
|
|
const UUPairMap &PairMap, unsigned SubR) {
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
|
|
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg()) {
|
|
NewI->addOperand(Op);
|
|
continue;
|
|
}
|
|
// For register operands, set the subregister.
|
|
unsigned R = Op.getReg();
|
|
unsigned SR = Op.getSubReg();
|
|
bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
|
|
bool isKill = Op.isKill();
|
|
if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
|
|
isKill = false;
|
|
UUPairMap::const_iterator F = PairMap.find(R);
|
|
if (F == PairMap.end()) {
|
|
SR = SubR;
|
|
} else {
|
|
const UUPair &P = F->second;
|
|
R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
|
|
SR = 0;
|
|
}
|
|
}
|
|
auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
|
|
Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
|
|
Op.isInternalRead());
|
|
NewI->addOperand(CO);
|
|
}
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
bool Load = MI->mayLoad();
|
|
unsigned OrigOpc = MI->getOpcode();
|
|
bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
|
|
OrigOpc == Hexagon::S2_storerd_pi);
|
|
MachineInstr *LowI, *HighI;
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// Index of the base-address-register operand.
|
|
unsigned AdrX = PostInc ? (Load ? 2 : 1)
|
|
: (Load ? 1 : 0);
|
|
MachineOperand &AdrOp = MI->getOperand(AdrX);
|
|
unsigned RSA = getRegState(AdrOp);
|
|
MachineOperand &ValOp = Load ? MI->getOperand(0)
|
|
: (PostInc ? MI->getOperand(3)
|
|
: MI->getOperand(2));
|
|
UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
|
|
assert(F != PairMap.end());
|
|
|
|
if (Load) {
|
|
const UUPair &P = F->second;
|
|
int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
|
|
LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
|
|
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
|
|
.addImm(Off);
|
|
HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
|
|
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
|
|
.addImm(Off+4);
|
|
} else {
|
|
const UUPair &P = F->second;
|
|
int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
|
|
LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
|
|
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
|
|
.addImm(Off)
|
|
.addReg(P.first);
|
|
HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
|
|
.addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
|
|
.addImm(Off+4)
|
|
.addReg(P.second);
|
|
}
|
|
|
|
if (PostInc) {
|
|
// Create the increment of the address register.
|
|
int64_t Inc = Load ? MI->getOperand(3).getImm()
|
|
: MI->getOperand(2).getImm();
|
|
MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
|
|
unsigned NewR = MRI->createVirtualRegister(RC);
|
|
assert(!UpdOp.getSubReg() && "Def operand with subreg");
|
|
BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
|
|
.addReg(AdrOp.getReg(), RSA)
|
|
.addImm(Inc);
|
|
MRI->replaceRegWith(UpdOp.getReg(), NewR);
|
|
// The original instruction will be deleted later.
|
|
}
|
|
|
|
// Generate a new pair of memory-operands.
|
|
MachineFunction &MF = *B.getParent();
|
|
for (auto &MO : MI->memoperands()) {
|
|
const MachinePointerInfo &Ptr = MO->getPointerInfo();
|
|
MachineMemOperand::Flags F = MO->getFlags();
|
|
int A = MO->getAlignment();
|
|
|
|
auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
|
|
LowI->addMemOperand(MF, Tmp1);
|
|
auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
|
|
HighI->addMemOperand(MF, Tmp2);
|
|
}
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
MachineOperand &Op0 = MI->getOperand(0);
|
|
MachineOperand &Op1 = MI->getOperand(1);
|
|
assert(Op0.isReg() && Op1.isImm());
|
|
uint64_t V = Op1.getImm();
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
|
|
assert(F != PairMap.end());
|
|
const UUPair &P = F->second;
|
|
|
|
// The operand to A2_tfrsi can only have 32 significant bits. Immediate
|
|
// values in MachineOperand are stored as 64-bit integers, and so the
|
|
// value -1 may be represented either as 64-bit -1, or 4294967295. Both
|
|
// will have the 32 higher bits truncated in the end, but -1 will remain
|
|
// as -1, while the latter may appear to be a large unsigned value
|
|
// requiring a constant extender. The casting to int32_t will select the
|
|
// former representation. (The same reasoning applies to all 32-bit
|
|
// values.)
|
|
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
|
|
.addImm(int32_t(V & 0xFFFFFFFFULL));
|
|
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
|
|
.addImm(int32_t(V >> 32));
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
MachineOperand &Op0 = MI->getOperand(0);
|
|
MachineOperand &Op1 = MI->getOperand(1);
|
|
MachineOperand &Op2 = MI->getOperand(2);
|
|
assert(Op0.isReg());
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
|
|
assert(F != PairMap.end());
|
|
const UUPair &P = F->second;
|
|
|
|
if (Op1.isImm()) {
|
|
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
|
|
.addImm(Op1.getImm());
|
|
} else if (Op1.isReg()) {
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
|
|
.addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
|
|
} else
|
|
llvm_unreachable("Unexpected operand");
|
|
|
|
if (Op2.isImm()) {
|
|
BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
|
|
.addImm(Op2.getImm());
|
|
} else if (Op2.isReg()) {
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
|
|
.addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
|
|
} else
|
|
llvm_unreachable("Unexpected operand");
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
MachineOperand &Op0 = MI->getOperand(0);
|
|
MachineOperand &Op1 = MI->getOperand(1);
|
|
assert(Op0.isReg() && Op1.isReg());
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
|
|
assert(F != PairMap.end());
|
|
const UUPair &P = F->second;
|
|
unsigned RS = getRegState(Op1);
|
|
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
|
|
BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
|
|
.addReg(Op1.getReg(), RS, Op1.getSubReg())
|
|
.addImm(31);
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
using namespace Hexagon;
|
|
|
|
MachineOperand &Op0 = MI->getOperand(0);
|
|
MachineOperand &Op1 = MI->getOperand(1);
|
|
MachineOperand &Op2 = MI->getOperand(2);
|
|
assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
|
|
int64_t Sh64 = Op2.getImm();
|
|
assert(Sh64 >= 0 && Sh64 < 64);
|
|
unsigned S = Sh64;
|
|
|
|
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
|
|
assert(F != PairMap.end());
|
|
const UUPair &P = F->second;
|
|
unsigned LoR = P.first;
|
|
unsigned HiR = P.second;
|
|
|
|
unsigned Opc = MI->getOpcode();
|
|
bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
|
|
bool Left = !Right;
|
|
bool Signed = (Opc == S2_asr_i_p);
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned RS = getRegState(Op1);
|
|
unsigned ShiftOpc = Left ? S2_asl_i_r
|
|
: (Signed ? S2_asr_i_r : S2_lsr_i_r);
|
|
unsigned LoSR = isub_lo;
|
|
unsigned HiSR = isub_hi;
|
|
|
|
if (S == 0) {
|
|
// No shift, subregister copy.
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
|
|
.addReg(Op1.getReg(), RS, HiSR);
|
|
} else if (S < 32) {
|
|
const TargetRegisterClass *IntRC = &IntRegsRegClass;
|
|
unsigned TmpR = MRI->createVirtualRegister(IntRC);
|
|
// Expansion:
|
|
// Shift left: DR = shl R, #s
|
|
// LoR = shl R.lo, #s
|
|
// TmpR = extractu R.lo, #s, #32-s
|
|
// HiR = or (TmpR, asl(R.hi, #s))
|
|
// Shift right: DR = shr R, #s
|
|
// HiR = shr R.hi, #s
|
|
// TmpR = shr R.lo, #s
|
|
// LoR = insert TmpR, R.hi, #s, #32-s
|
|
|
|
// Shift left:
|
|
// LoR = shl R.lo, #s
|
|
// Shift right:
|
|
// TmpR = shr R.lo, #s
|
|
|
|
// Make a special case for A2_aslh and A2_asrh (they are predicable as
|
|
// opposed to S2_asl_i_r/S2_asr_i_r).
|
|
if (S == 16 && Left)
|
|
BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
|
|
else if (S == 16 && Signed)
|
|
BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
|
|
else
|
|
BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
|
|
.addImm(S);
|
|
|
|
if (Left) {
|
|
// TmpR = extractu R.lo, #s, #32-s
|
|
BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
|
|
.addImm(S)
|
|
.addImm(32-S);
|
|
// HiR = or (TmpR, asl(R.hi, #s))
|
|
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
|
|
.addReg(TmpR)
|
|
.addReg(Op1.getReg(), RS, HiSR)
|
|
.addImm(S);
|
|
} else {
|
|
// HiR = shr R.hi, #s
|
|
BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
|
|
.addImm(S);
|
|
// LoR = insert TmpR, R.hi, #s, #32-s
|
|
BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
|
|
.addReg(TmpR)
|
|
.addReg(Op1.getReg(), RS, HiSR)
|
|
.addImm(S)
|
|
.addImm(32-S);
|
|
}
|
|
} else if (S == 32) {
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
|
|
if (!Signed)
|
|
BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
|
|
.addImm(0);
|
|
else // Must be right shift.
|
|
BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
|
|
.addReg(Op1.getReg(), RS, HiSR)
|
|
.addImm(31);
|
|
} else if (S < 64) {
|
|
S -= 32;
|
|
if (S == 16 && Left)
|
|
BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
|
|
else if (S == 16 && Signed)
|
|
BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
|
|
else
|
|
BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
|
|
.addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
|
|
.addImm(S);
|
|
|
|
if (Signed)
|
|
BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
|
|
.addReg(Op1.getReg(), RS, HiSR)
|
|
.addImm(31);
|
|
else
|
|
BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
|
|
.addImm(0);
|
|
}
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
using namespace Hexagon;
|
|
|
|
MachineOperand &Op0 = MI->getOperand(0);
|
|
MachineOperand &Op1 = MI->getOperand(1);
|
|
MachineOperand &Op2 = MI->getOperand(2);
|
|
MachineOperand &Op3 = MI->getOperand(3);
|
|
assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
|
|
int64_t Sh64 = Op3.getImm();
|
|
assert(Sh64 >= 0 && Sh64 < 64);
|
|
unsigned S = Sh64;
|
|
|
|
UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
|
|
assert(F != PairMap.end());
|
|
const UUPair &P = F->second;
|
|
unsigned LoR = P.first;
|
|
unsigned HiR = P.second;
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned RS1 = getRegState(Op1);
|
|
unsigned RS2 = getRegState(Op2);
|
|
const TargetRegisterClass *IntRC = &IntRegsRegClass;
|
|
|
|
unsigned LoSR = isub_lo;
|
|
unsigned HiSR = isub_hi;
|
|
|
|
// Op0 = S2_asl_i_p_or Op1, Op2, Op3
|
|
// means: Op0 = or (Op1, asl(Op2, Op3))
|
|
|
|
// Expansion of
|
|
// DR = or (R1, asl(R2, #s))
|
|
//
|
|
// LoR = or (R1.lo, asl(R2.lo, #s))
|
|
// Tmp1 = extractu R2.lo, #s, #32-s
|
|
// Tmp2 = or R1.hi, Tmp1
|
|
// HiR = or (Tmp2, asl(R2.hi, #s))
|
|
|
|
if (S == 0) {
|
|
// DR = or (R1, asl(R2, #0))
|
|
// -> or (R1, R2)
|
|
// i.e. LoR = or R1.lo, R2.lo
|
|
// HiR = or R1.hi, R2.hi
|
|
BuildMI(B, MI, DL, TII->get(A2_or), LoR)
|
|
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
|
|
.addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
|
|
BuildMI(B, MI, DL, TII->get(A2_or), HiR)
|
|
.addReg(Op1.getReg(), RS1, HiSR)
|
|
.addReg(Op2.getReg(), RS2, HiSR);
|
|
} else if (S < 32) {
|
|
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
|
|
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
|
|
.addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
|
|
.addImm(S);
|
|
unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
|
|
BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
|
|
.addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
|
|
.addImm(S)
|
|
.addImm(32-S);
|
|
unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
|
|
BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
|
|
.addReg(Op1.getReg(), RS1, HiSR)
|
|
.addReg(TmpR1);
|
|
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
|
|
.addReg(TmpR2)
|
|
.addReg(Op2.getReg(), RS2, HiSR)
|
|
.addImm(S);
|
|
} else if (S == 32) {
|
|
// DR = or (R1, asl(R2, #32))
|
|
// -> or R1, R2.lo
|
|
// LoR = R1.lo
|
|
// HiR = or R1.hi, R2.lo
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
|
|
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
|
|
BuildMI(B, MI, DL, TII->get(A2_or), HiR)
|
|
.addReg(Op1.getReg(), RS1, HiSR)
|
|
.addReg(Op2.getReg(), RS2, LoSR);
|
|
} else if (S < 64) {
|
|
// DR = or (R1, asl(R2, #s))
|
|
//
|
|
// LoR = R1:lo
|
|
// HiR = or (R1:hi, asl(R2:lo, #s-32))
|
|
S -= 32;
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
|
|
.addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
|
|
BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
|
|
.addReg(Op1.getReg(), RS1, HiSR)
|
|
.addReg(Op2.getReg(), RS2, LoSR)
|
|
.addImm(S);
|
|
}
|
|
}
|
|
|
|
bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
using namespace Hexagon;
|
|
|
|
DEBUG(dbgs() << "Splitting: " << *MI);
|
|
bool Split = false;
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
switch (Opc) {
|
|
case TargetOpcode::PHI:
|
|
case TargetOpcode::COPY: {
|
|
unsigned DstR = MI->getOperand(0).getReg();
|
|
if (MRI->getRegClass(DstR) == DoubleRC) {
|
|
createHalfInstr(Opc, MI, PairMap, isub_lo);
|
|
createHalfInstr(Opc, MI, PairMap, isub_hi);
|
|
Split = true;
|
|
}
|
|
break;
|
|
}
|
|
case A2_andp:
|
|
createHalfInstr(A2_and, MI, PairMap, isub_lo);
|
|
createHalfInstr(A2_and, MI, PairMap, isub_hi);
|
|
Split = true;
|
|
break;
|
|
case A2_orp:
|
|
createHalfInstr(A2_or, MI, PairMap, isub_lo);
|
|
createHalfInstr(A2_or, MI, PairMap, isub_hi);
|
|
Split = true;
|
|
break;
|
|
case A2_xorp:
|
|
createHalfInstr(A2_xor, MI, PairMap, isub_lo);
|
|
createHalfInstr(A2_xor, MI, PairMap, isub_hi);
|
|
Split = true;
|
|
break;
|
|
|
|
case L2_loadrd_io:
|
|
case L2_loadrd_pi:
|
|
case S2_storerd_io:
|
|
case S2_storerd_pi:
|
|
splitMemRef(MI, PairMap);
|
|
Split = true;
|
|
break;
|
|
|
|
case A2_tfrpi:
|
|
case CONST64:
|
|
splitImmediate(MI, PairMap);
|
|
Split = true;
|
|
break;
|
|
|
|
case A2_combineii:
|
|
case A4_combineir:
|
|
case A4_combineii:
|
|
case A4_combineri:
|
|
case A2_combinew:
|
|
splitCombine(MI, PairMap);
|
|
Split = true;
|
|
break;
|
|
|
|
case A2_sxtw:
|
|
splitExt(MI, PairMap);
|
|
Split = true;
|
|
break;
|
|
|
|
case S2_asl_i_p:
|
|
case S2_asr_i_p:
|
|
case S2_lsr_i_p:
|
|
splitShift(MI, PairMap);
|
|
Split = true;
|
|
break;
|
|
|
|
case S2_asl_i_p_or:
|
|
splitAslOr(MI, PairMap);
|
|
Split = true;
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Instruction not splitable");
|
|
return false;
|
|
}
|
|
|
|
return Split;
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
|
|
continue;
|
|
unsigned R = Op.getReg();
|
|
UUPairMap::const_iterator F = PairMap.find(R);
|
|
if (F == PairMap.end())
|
|
continue;
|
|
const UUPair &P = F->second;
|
|
switch (Op.getSubReg()) {
|
|
case Hexagon::isub_lo:
|
|
Op.setReg(P.first);
|
|
break;
|
|
case Hexagon::isub_hi:
|
|
Op.setReg(P.second);
|
|
break;
|
|
}
|
|
Op.setSubReg(0);
|
|
}
|
|
}
|
|
|
|
void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
|
|
const UUPairMap &PairMap) {
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isUse())
|
|
continue;
|
|
unsigned R = Op.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(R))
|
|
continue;
|
|
if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
|
|
continue;
|
|
UUPairMap::const_iterator F = PairMap.find(R);
|
|
if (F == PairMap.end())
|
|
continue;
|
|
const UUPair &Pr = F->second;
|
|
unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
|
|
BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
|
|
.addReg(Pr.first)
|
|
.addImm(Hexagon::isub_lo)
|
|
.addReg(Pr.second)
|
|
.addImm(Hexagon::isub_hi);
|
|
Op.setReg(NewDR);
|
|
}
|
|
}
|
|
|
|
bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
|
|
using MISet = std::set<MachineInstr *>;
|
|
|
|
const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
|
|
bool Changed = false;
|
|
|
|
DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI);
|
|
dbgs() << '\n');
|
|
|
|
UUPairMap PairMap;
|
|
|
|
MISet SplitIns;
|
|
for (unsigned DR : Part) {
|
|
MachineInstr *DefI = MRI->getVRegDef(DR);
|
|
SplitIns.insert(DefI);
|
|
|
|
// Collect all instructions, including fixed ones. We won't split them,
|
|
// but we need to visit them again to insert the REG_SEQUENCE instructions.
|
|
for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
|
|
U != W; ++U)
|
|
SplitIns.insert(U->getParent());
|
|
|
|
unsigned LoR = MRI->createVirtualRegister(IntRC);
|
|
unsigned HiR = MRI->createVirtualRegister(IntRC);
|
|
DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
|
|
<< printReg(HiR, TRI) << ':' << printReg(LoR, TRI) << '\n');
|
|
PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
|
|
}
|
|
|
|
MISet Erase;
|
|
for (auto MI : SplitIns) {
|
|
if (isFixedInstr(MI)) {
|
|
collapseRegPairs(MI, PairMap);
|
|
} else {
|
|
bool Done = splitInstr(MI, PairMap);
|
|
if (Done)
|
|
Erase.insert(MI);
|
|
Changed |= Done;
|
|
}
|
|
}
|
|
|
|
for (unsigned DR : Part) {
|
|
// Before erasing "double" instructions, revisit all uses of the double
|
|
// registers in this partition, and replace all uses of them with subre-
|
|
// gisters, with the corresponding single registers.
|
|
MISet Uses;
|
|
for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
|
|
U != W; ++U)
|
|
Uses.insert(U->getParent());
|
|
for (auto M : Uses)
|
|
replaceSubregUses(M, PairMap);
|
|
}
|
|
|
|
for (auto MI : Erase) {
|
|
MachineBasicBlock *B = MI->getParent();
|
|
B->erase(MI);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
|
|
DEBUG(dbgs() << "Splitting double registers in function: "
|
|
<< MF.getName() << '\n');
|
|
|
|
if (skipFunction(*MF.getFunction()))
|
|
return false;
|
|
|
|
auto &ST = MF.getSubtarget<HexagonSubtarget>();
|
|
TRI = ST.getRegisterInfo();
|
|
TII = ST.getInstrInfo();
|
|
MRI = &MF.getRegInfo();
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
|
|
UUSetMap P2Rs;
|
|
LoopRegMap IRM;
|
|
|
|
collectIndRegs(IRM);
|
|
partitionRegisters(P2Rs);
|
|
|
|
DEBUG({
|
|
dbgs() << "Register partitioning: (partition #0 is fixed)\n";
|
|
for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
|
|
dbgs() << '#' << I->first << " -> ";
|
|
dump_partition(dbgs(), I->second, *TRI);
|
|
dbgs() << '\n';
|
|
}
|
|
});
|
|
|
|
bool Changed = false;
|
|
int Limit = MaxHSDR;
|
|
|
|
for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
|
|
if (I->first == 0)
|
|
continue;
|
|
if (Limit >= 0 && Counter >= Limit)
|
|
break;
|
|
USet &Part = I->second;
|
|
DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n');
|
|
if (!isProfitable(Part, IRM))
|
|
continue;
|
|
Counter++;
|
|
Changed |= splitPartition(Part);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *llvm::createHexagonSplitDoubleRegs() {
|
|
return new HexagonSplitDoubleRegs();
|
|
}
|