llvm-project/llvm/lib/CodeGen/MachineOperand.cpp

769 lines
26 KiB
C++

//===- lib/CodeGen/MachineOperand.cpp -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Methods common to all machine operands.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/CodeGen/MIRPrinter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<int>
PrintRegMaskNumRegs("print-regmask-num-regs",
cl::desc("Number of registers to limit to when "
"printing regmask operands in IR dumps. "
"unlimited = -1"),
cl::init(32), cl::Hidden);
static const MachineFunction *getMFIfAvailable(const MachineOperand &MO) {
if (const MachineInstr *MI = MO.getParent())
if (const MachineBasicBlock *MBB = MI->getParent())
if (const MachineFunction *MF = MBB->getParent())
return MF;
return nullptr;
}
static MachineFunction *getMFIfAvailable(MachineOperand &MO) {
return const_cast<MachineFunction *>(
getMFIfAvailable(const_cast<const MachineOperand &>(MO)));
}
void MachineOperand::setReg(unsigned Reg) {
if (getReg() == Reg)
return; // No change.
// Otherwise, we have to change the register. If this operand is embedded
// into a machine function, we need to update the old and new register's
// use/def lists.
if (MachineFunction *MF = getMFIfAvailable(*this)) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.removeRegOperandFromUseList(this);
SmallContents.RegNo = Reg;
MRI.addRegOperandToUseList(this);
return;
}
// Otherwise, just change the register, no problem. :)
SmallContents.RegNo = Reg;
}
void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
const TargetRegisterInfo &TRI) {
assert(TargetRegisterInfo::isVirtualRegister(Reg));
if (SubIdx && getSubReg())
SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
setReg(Reg);
if (SubIdx)
setSubReg(SubIdx);
}
void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (getSubReg()) {
Reg = TRI.getSubReg(Reg, getSubReg());
// Note that getSubReg() may return 0 if the sub-register doesn't exist.
// That won't happen in legal code.
setSubReg(0);
if (isDef())
setIsUndef(false);
}
setReg(Reg);
}
/// Change a def to a use, or a use to a def.
void MachineOperand::setIsDef(bool Val) {
assert(isReg() && "Wrong MachineOperand accessor");
assert((!Val || !isDebug()) && "Marking a debug operation as def");
if (IsDef == Val)
return;
// MRI may keep uses and defs in different list positions.
if (MachineFunction *MF = getMFIfAvailable(*this)) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.removeRegOperandFromUseList(this);
IsDef = Val;
MRI.addRegOperandToUseList(this);
return;
}
IsDef = Val;
}
// If this operand is currently a register operand, and if this is in a
// function, deregister the operand from the register's use/def list.
void MachineOperand::removeRegFromUses() {
if (!isReg() || !isOnRegUseList())
return;
if (MachineFunction *MF = getMFIfAvailable(*this))
MF->getRegInfo().removeRegOperandFromUseList(this);
}
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
removeRegFromUses();
OpKind = MO_Immediate;
Contents.ImmVal = ImmVal;
}
void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
removeRegFromUses();
OpKind = MO_FPImmediate;
Contents.CFP = FPImm;
}
void MachineOperand::ChangeToES(const char *SymName,
unsigned char TargetFlags) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into an external symbol");
removeRegFromUses();
OpKind = MO_ExternalSymbol;
Contents.OffsetedInfo.Val.SymbolName = SymName;
setOffset(0); // Offset is always 0.
setTargetFlags(TargetFlags);
}
void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into an MCSymbol");
removeRegFromUses();
OpKind = MO_MCSymbol;
Contents.Sym = Sym;
}
void MachineOperand::ChangeToFrameIndex(int Idx) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into a FrameIndex");
removeRegFromUses();
OpKind = MO_FrameIndex;
setIndex(Idx);
}
void MachineOperand::ChangeToTargetIndex(unsigned Idx, int64_t Offset,
unsigned char TargetFlags) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into a FrameIndex");
removeRegFromUses();
OpKind = MO_TargetIndex;
setIndex(Idx);
setOffset(Offset);
setTargetFlags(TargetFlags);
}
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
bool isKill, bool isDead, bool isUndef,
bool isDebug) {
MachineRegisterInfo *RegInfo = nullptr;
if (MachineFunction *MF = getMFIfAvailable(*this))
RegInfo = &MF->getRegInfo();
// If this operand is already a register operand, remove it from the
// register's use/def lists.
bool WasReg = isReg();
if (RegInfo && WasReg)
RegInfo->removeRegOperandFromUseList(this);
// Change this to a register and set the reg#.
OpKind = MO_Register;
SmallContents.RegNo = Reg;
SubReg_TargetFlags = 0;
IsDef = isDef;
IsImp = isImp;
IsKill = isKill;
IsDead = isDead;
IsUndef = isUndef;
IsInternalRead = false;
IsEarlyClobber = false;
IsDebug = isDebug;
// Ensure isOnRegUseList() returns false.
Contents.Reg.Prev = nullptr;
// Preserve the tie when the operand was already a register.
if (!WasReg)
TiedTo = 0;
// If this operand is embedded in a function, add the operand to the
// register's use/def list.
if (RegInfo)
RegInfo->addRegOperandToUseList(this);
}
/// isIdenticalTo - Return true if this operand is identical to the specified
/// operand. Note that this should stay in sync with the hash_value overload
/// below.
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
if (getType() != Other.getType() ||
getTargetFlags() != Other.getTargetFlags())
return false;
switch (getType()) {
case MachineOperand::MO_Register:
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
getSubReg() == Other.getSubReg();
case MachineOperand::MO_Immediate:
return getImm() == Other.getImm();
case MachineOperand::MO_CImmediate:
return getCImm() == Other.getCImm();
case MachineOperand::MO_FPImmediate:
return getFPImm() == Other.getFPImm();
case MachineOperand::MO_MachineBasicBlock:
return getMBB() == Other.getMBB();
case MachineOperand::MO_FrameIndex:
return getIndex() == Other.getIndex();
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
case MachineOperand::MO_JumpTableIndex:
return getIndex() == Other.getIndex();
case MachineOperand::MO_GlobalAddress:
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
case MachineOperand::MO_ExternalSymbol:
return strcmp(getSymbolName(), Other.getSymbolName()) == 0 &&
getOffset() == Other.getOffset();
case MachineOperand::MO_BlockAddress:
return getBlockAddress() == Other.getBlockAddress() &&
getOffset() == Other.getOffset();
case MachineOperand::MO_RegisterMask:
case MachineOperand::MO_RegisterLiveOut: {
// Shallow compare of the two RegMasks
const uint32_t *RegMask = getRegMask();
const uint32_t *OtherRegMask = Other.getRegMask();
if (RegMask == OtherRegMask)
return true;
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
// Calculate the size of the RegMask
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
// Deep compare of the two RegMasks
return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
}
// We don't know the size of the RegMask, so we can't deep compare the two
// reg masks.
return false;
}
case MachineOperand::MO_MCSymbol:
return getMCSymbol() == Other.getMCSymbol();
case MachineOperand::MO_CFIIndex:
return getCFIIndex() == Other.getCFIIndex();
case MachineOperand::MO_Metadata:
return getMetadata() == Other.getMetadata();
case MachineOperand::MO_IntrinsicID:
return getIntrinsicID() == Other.getIntrinsicID();
case MachineOperand::MO_Predicate:
return getPredicate() == Other.getPredicate();
}
llvm_unreachable("Invalid machine operand type");
}
// Note: this must stay exactly in sync with isIdenticalTo above.
hash_code llvm::hash_value(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Register:
// Register operands don't have target flags.
return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
case MachineOperand::MO_Immediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
case MachineOperand::MO_CImmediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
case MachineOperand::MO_FPImmediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
case MachineOperand::MO_MachineBasicBlock:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
case MachineOperand::MO_FrameIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
MO.getOffset());
case MachineOperand::MO_JumpTableIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
case MachineOperand::MO_ExternalSymbol:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
MO.getSymbolName());
case MachineOperand::MO_GlobalAddress:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
MO.getOffset());
case MachineOperand::MO_BlockAddress:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getBlockAddress(),
MO.getOffset());
case MachineOperand::MO_RegisterMask:
case MachineOperand::MO_RegisterLiveOut:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
case MachineOperand::MO_Metadata:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
case MachineOperand::MO_MCSymbol:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
case MachineOperand::MO_CFIIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
case MachineOperand::MO_IntrinsicID:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
case MachineOperand::MO_Predicate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
}
llvm_unreachable("Invalid machine operand type");
}
// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
// it.
static void tryToGetTargetInfo(const MachineOperand &MO,
const TargetRegisterInfo *&TRI,
const TargetIntrinsicInfo *&IntrinsicInfo) {
if (const MachineFunction *MF = getMFIfAvailable(MO)) {
TRI = MF->getSubtarget().getRegisterInfo();
IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
}
}
void MachineOperand::printSubregIdx(raw_ostream &OS, uint64_t Index,
const TargetRegisterInfo *TRI) {
OS << "%subreg.";
if (TRI)
OS << TRI->getSubRegIndexName(Index);
else
OS << Index;
}
void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const {
tryToGetTargetInfo(*this, TRI, IntrinsicInfo);
ModuleSlotTracker DummyMST(nullptr);
print(OS, DummyMST, LLT{}, /*PrintDef=*/false,
/*ShouldPrintRegisterTies=*/true,
/*TiedOperandIdx=*/0, TRI, IntrinsicInfo);
}
void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
LLT TypeToPrint, bool PrintDef,
bool ShouldPrintRegisterTies,
unsigned TiedOperandIdx,
const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const {
switch (getType()) {
case MachineOperand::MO_Register: {
unsigned Reg = getReg();
if (isImplicit())
OS << (isDef() ? "implicit-def " : "implicit ");
else if (PrintDef && isDef())
// Print the 'def' flag only when the operand is defined after '='.
OS << "def ";
if (isInternalRead())
OS << "internal ";
if (isDead())
OS << "dead ";
if (isKill())
OS << "killed ";
if (isUndef())
OS << "undef ";
if (isEarlyClobber())
OS << "early-clobber ";
if (isDebug())
OS << "debug-use ";
OS << printReg(Reg, TRI);
// Print the sub register.
if (unsigned SubReg = getSubReg()) {
if (TRI)
OS << '.' << TRI->getSubRegIndexName(SubReg);
else
OS << ".subreg" << SubReg;
}
// Print the register class / bank.
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
const MachineRegisterInfo &MRI = MF->getRegInfo();
if (!PrintDef || MRI.def_empty(Reg)) {
OS << ':';
OS << printRegClassOrBank(Reg, MRI, TRI);
}
}
}
// Print ties.
if (ShouldPrintRegisterTies && isTied() && !isDef())
OS << "(tied-def " << TiedOperandIdx << ")";
// Print types.
if (TypeToPrint.isValid())
OS << '(' << TypeToPrint << ')';
break;
}
case MachineOperand::MO_Immediate:
OS << getImm();
break;
case MachineOperand::MO_CImmediate:
getCImm()->printAsOperand(OS, /*PrintType=*/true, MST);
break;
case MachineOperand::MO_FPImmediate:
if (getFPImm()->getType()->isFloatTy()) {
OS << getFPImm()->getValueAPF().convertToFloat();
} else if (getFPImm()->getType()->isHalfTy()) {
APFloat APF = getFPImm()->getValueAPF();
bool Unused;
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
OS << "half " << APF.convertToFloat();
} else if (getFPImm()->getType()->isFP128Ty()) {
APFloat APF = getFPImm()->getValueAPF();
SmallString<16> Str;
getFPImm()->getValueAPF().toString(Str);
OS << "quad " << Str;
} else if (getFPImm()->getType()->isX86_FP80Ty()) {
APFloat APF = getFPImm()->getValueAPF();
OS << "x86_fp80 0xK";
APInt API = APF.bitcastToAPInt();
OS << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
/*Upper=*/true);
OS << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
} else {
OS << getFPImm()->getValueAPF().convertToDouble();
}
break;
case MachineOperand::MO_MachineBasicBlock:
OS << printMBBReference(*getMBB());
break;
case MachineOperand::MO_FrameIndex:
OS << "<fi#" << getIndex() << '>';
break;
case MachineOperand::MO_ConstantPoolIndex:
OS << "<cp#" << getIndex();
if (getOffset())
OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_TargetIndex:
OS << "<ti#" << getIndex();
if (getOffset())
OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_JumpTableIndex:
OS << "<jt#" << getIndex() << '>';
break;
case MachineOperand::MO_GlobalAddress:
OS << "<ga:";
getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
if (getOffset())
OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_ExternalSymbol:
OS << "<es:" << getSymbolName();
if (getOffset())
OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_BlockAddress:
OS << '<';
getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
if (getOffset())
OS << "+" << getOffset();
OS << '>';
break;
case MachineOperand::MO_RegisterMask: {
OS << "<regmask";
if (TRI) {
unsigned NumRegsInMask = 0;
unsigned NumRegsEmitted = 0;
for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
unsigned MaskWord = i / 32;
unsigned MaskBit = i % 32;
if (getRegMask()[MaskWord] & (1 << MaskBit)) {
if (PrintRegMaskNumRegs < 0 ||
NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) {
OS << " " << printReg(i, TRI);
NumRegsEmitted++;
}
NumRegsInMask++;
}
}
if (NumRegsEmitted != NumRegsInMask)
OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
} else {
OS << " ...";
}
OS << ">";
break;
}
case MachineOperand::MO_RegisterLiveOut:
OS << "<regliveout>";
break;
case MachineOperand::MO_Metadata:
OS << '<';
getMetadata()->printAsOperand(OS, MST);
OS << '>';
break;
case MachineOperand::MO_MCSymbol:
OS << "<MCSym=" << *getMCSymbol() << '>';
break;
case MachineOperand::MO_CFIIndex:
OS << "<call frame instruction>";
break;
case MachineOperand::MO_IntrinsicID: {
Intrinsic::ID ID = getIntrinsicID();
if (ID < Intrinsic::num_intrinsics)
OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
else if (IntrinsicInfo)
OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
else
OS << "<intrinsic:" << ID << '>';
break;
}
case MachineOperand::MO_Predicate: {
auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
<< CmpInst::getPredicateName(Pred) << '>';
break;
}
}
if (unsigned TF = getTargetFlags())
OS << "[TF=" << TF << ']';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineOperand::dump() const { dbgs() << *this << '\n'; }
#endif
//===----------------------------------------------------------------------===//
// MachineMemOperand Implementation
//===----------------------------------------------------------------------===//
/// getAddrSpace - Return the LLVM IR address space number that this pointer
/// points into.
unsigned MachinePointerInfo::getAddrSpace() const { return AddrSpace; }
/// isDereferenceable - Return true if V is always dereferenceable for
/// Offset + Size byte.
bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C,
const DataLayout &DL) const {
if (!V.is<const Value *>())
return false;
const Value *BasePtr = V.get<const Value *>();
if (BasePtr == nullptr)
return false;
return isDereferenceableAndAlignedPointer(
BasePtr, 1, APInt(DL.getPointerSizeInBits(), Offset + Size), DL);
}
/// getConstantPool - Return a MachinePointerInfo record that refers to the
/// constant pool.
MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
return MachinePointerInfo(MF.getPSVManager().getConstantPool());
}
/// getFixedStack - Return a MachinePointerInfo record that refers to the
/// the specified FrameIndex.
MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
int FI, int64_t Offset) {
return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
}
MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
return MachinePointerInfo(MF.getPSVManager().getJumpTable());
}
MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
return MachinePointerInfo(MF.getPSVManager().getGOT());
}
MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
int64_t Offset, uint8_t ID) {
return MachinePointerInfo(MF.getPSVManager().getStack(), Offset, ID);
}
MachinePointerInfo MachinePointerInfo::getUnknownStack(MachineFunction &MF) {
return MachinePointerInfo(MF.getDataLayout().getAllocaAddrSpace());
}
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
uint64_t s, unsigned int a,
const AAMDNodes &AAInfo,
const MDNode *Ranges, SyncScope::ID SSID,
AtomicOrdering Ordering,
AtomicOrdering FailureOrdering)
: PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
AAInfo(AAInfo), Ranges(Ranges) {
assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue *>() ||
isa<PointerType>(PtrInfo.V.get<const Value *>()->getType())) &&
"invalid pointer value");
assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
assert((isLoad() || isStore()) && "Not a load/store!");
AtomicInfo.SSID = static_cast<unsigned>(SSID);
assert(getSyncScopeID() == SSID && "Value truncated");
AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
assert(getOrdering() == Ordering && "Value truncated");
AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
assert(getFailureOrdering() == FailureOrdering && "Value truncated");
}
/// Profile - Gather unique data for the object.
///
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(getOffset());
ID.AddInteger(Size);
ID.AddPointer(getOpaqueValue());
ID.AddInteger(getFlags());
ID.AddInteger(getBaseAlignment());
}
void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
// The Value and Offset may differ due to CSE. But the flags and size
// should be the same.
assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
assert(MMO->getSize() == getSize() && "Size mismatch!");
if (MMO->getBaseAlignment() >= getBaseAlignment()) {
// Update the alignment value.
BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
// Also update the base and offset, because the new alignment may
// not be applicable with the old ones.
PtrInfo = MMO->PtrInfo;
}
}
/// getAlignment - Return the minimum known alignment in bytes of the
/// actual memory reference.
uint64_t MachineMemOperand::getAlignment() const {
return MinAlign(getBaseAlignment(), getOffset());
}
void MachineMemOperand::print(raw_ostream &OS) const {
ModuleSlotTracker DummyMST(nullptr);
print(OS, DummyMST);
}
void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
assert((isLoad() || isStore()) && "SV has to be a load, store or both.");
if (isVolatile())
OS << "Volatile ";
if (isLoad())
OS << "LD";
if (isStore())
OS << "ST";
OS << getSize();
// Print the address information.
OS << "[";
if (const Value *V = getValue())
V->printAsOperand(OS, /*PrintType=*/false, MST);
else if (const PseudoSourceValue *PSV = getPseudoValue())
PSV->printCustom(OS);
else
OS << "<unknown>";
unsigned AS = getAddrSpace();
if (AS != 0)
OS << "(addrspace=" << AS << ')';
// If the alignment of the memory reference itself differs from the alignment
// of the base pointer, print the base alignment explicitly, next to the base
// pointer.
if (getBaseAlignment() != getAlignment())
OS << "(align=" << getBaseAlignment() << ")";
if (getOffset() != 0)
OS << "+" << getOffset();
OS << "]";
// Print the alignment of the reference.
if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
OS << "(align=" << getAlignment() << ")";
// Print TBAA info.
if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
OS << "(tbaa=";
if (TBAAInfo->getNumOperands() > 0)
TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
else
OS << "<unknown>";
OS << ")";
}
// Print AA scope info.
if (const MDNode *ScopeInfo = getAAInfo().Scope) {
OS << "(alias.scope=";
if (ScopeInfo->getNumOperands() > 0)
for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
if (i != ie - 1)
OS << ",";
}
else
OS << "<unknown>";
OS << ")";
}
// Print AA noalias scope info.
if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
OS << "(noalias=";
if (NoAliasInfo->getNumOperands() > 0)
for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
if (i != ie - 1)
OS << ",";
}
else
OS << "<unknown>";
OS << ")";
}
if (const MDNode *Ranges = getRanges()) {
unsigned NumRanges = Ranges->getNumOperands();
if (NumRanges != 0) {
OS << "(ranges=";
for (unsigned I = 0; I != NumRanges; ++I) {
Ranges->getOperand(I)->printAsOperand(OS, MST);
if (I != NumRanges - 1)
OS << ',';
}
OS << ')';
}
}
if (isNonTemporal())
OS << "(nontemporal)";
if (isDereferenceable())
OS << "(dereferenceable)";
if (isInvariant())
OS << "(invariant)";
if (getFlags() & MOTargetFlag1)
OS << "(flag1)";
if (getFlags() & MOTargetFlag2)
OS << "(flag2)";
if (getFlags() & MOTargetFlag3)
OS << "(flag3)";
}