llvm-project/llvm/lib/FuzzMutate/Operations.cpp

323 lines
13 KiB
C++

//===-- Operations.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
using namespace llvm;
using namespace fuzzerop;
void llvm::describeFuzzerIntOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
Ops.push_back(binOpDescriptor(1, Instruction::Add));
Ops.push_back(binOpDescriptor(1, Instruction::Sub));
Ops.push_back(binOpDescriptor(1, Instruction::Mul));
Ops.push_back(binOpDescriptor(1, Instruction::SDiv));
Ops.push_back(binOpDescriptor(1, Instruction::UDiv));
Ops.push_back(binOpDescriptor(1, Instruction::SRem));
Ops.push_back(binOpDescriptor(1, Instruction::URem));
Ops.push_back(binOpDescriptor(1, Instruction::Shl));
Ops.push_back(binOpDescriptor(1, Instruction::LShr));
Ops.push_back(binOpDescriptor(1, Instruction::AShr));
Ops.push_back(binOpDescriptor(1, Instruction::And));
Ops.push_back(binOpDescriptor(1, Instruction::Or));
Ops.push_back(binOpDescriptor(1, Instruction::Xor));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_EQ));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_NE));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_UGT));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_UGE));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_ULT));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_ULE));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SGT));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SGE));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SLT));
Ops.push_back(cmpOpDescriptor(1, Instruction::ICmp, CmpInst::ICMP_SLE));
}
void llvm::describeFuzzerFloatOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
Ops.push_back(binOpDescriptor(1, Instruction::FAdd));
Ops.push_back(binOpDescriptor(1, Instruction::FSub));
Ops.push_back(binOpDescriptor(1, Instruction::FMul));
Ops.push_back(binOpDescriptor(1, Instruction::FDiv));
Ops.push_back(binOpDescriptor(1, Instruction::FRem));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_FALSE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OEQ));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OGT));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OGE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OLT));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_OLE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ONE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ORD));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UNO));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UEQ));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UGT));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UGE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ULT));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_ULE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_UNE));
Ops.push_back(cmpOpDescriptor(1, Instruction::FCmp, CmpInst::FCMP_TRUE));
}
void llvm::describeFuzzerControlFlowOps(
std::vector<fuzzerop::OpDescriptor> &Ops) {
Ops.push_back(splitBlockDescriptor(1));
}
void llvm::describeFuzzerPointerOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
Ops.push_back(gepDescriptor(1));
}
void llvm::describeFuzzerAggregateOps(
std::vector<fuzzerop::OpDescriptor> &Ops) {
Ops.push_back(extractValueDescriptor(1));
Ops.push_back(insertValueDescriptor(1));
}
void llvm::describeFuzzerVectorOps(std::vector<fuzzerop::OpDescriptor> &Ops) {
Ops.push_back(extractElementDescriptor(1));
Ops.push_back(insertElementDescriptor(1));
Ops.push_back(shuffleVectorDescriptor(1));
}
OpDescriptor llvm::fuzzerop::binOpDescriptor(unsigned Weight,
Instruction::BinaryOps Op) {
auto buildOp = [Op](ArrayRef<Value *> Srcs, Instruction *Inst) {
return BinaryOperator::Create(Op, Srcs[0], Srcs[1], "B", Inst);
};
switch (Op) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return {Weight, {anyIntType(), matchFirstType()}, buildOp};
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
return {Weight, {anyFloatType(), matchFirstType()}, buildOp};
case Instruction::BinaryOpsEnd:
llvm_unreachable("Value out of range of enum");
}
llvm_unreachable("Covered switch");
}
OpDescriptor llvm::fuzzerop::cmpOpDescriptor(unsigned Weight,
Instruction::OtherOps CmpOp,
CmpInst::Predicate Pred) {
auto buildOp = [CmpOp, Pred](ArrayRef<Value *> Srcs, Instruction *Inst) {
return CmpInst::Create(CmpOp, Pred, Srcs[0], Srcs[1], "C", Inst);
};
switch (CmpOp) {
case Instruction::ICmp:
return {Weight, {anyIntType(), matchFirstType()}, buildOp};
case Instruction::FCmp:
return {Weight, {anyFloatType(), matchFirstType()}, buildOp};
default:
llvm_unreachable("CmpOp must be ICmp or FCmp");
}
}
OpDescriptor llvm::fuzzerop::splitBlockDescriptor(unsigned Weight) {
auto buildSplitBlock = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
BasicBlock *Block = Inst->getParent();
BasicBlock *Next = Block->splitBasicBlock(Inst, "BB");
// If it was an exception handling block, we are done.
if (Block->isEHPad())
return nullptr;
// Loop back on this block by replacing the unconditional forward branch
// with a conditional with a backedge.
if (Block != &Block->getParent()->getEntryBlock()) {
BranchInst::Create(Block, Next, Srcs[0], Block->getTerminator());
Block->getTerminator()->eraseFromParent();
// We need values for each phi in the block. Since there isn't a good way
// to do a variable number of input values currently, we just fill them
// with undef.
for (PHINode &PHI : Block->phis())
PHI.addIncoming(UndefValue::get(PHI.getType()), Block);
}
return nullptr;
};
SourcePred isInt1Ty{[](ArrayRef<Value *>, const Value *V) {
return V->getType()->isIntegerTy(1);
},
None};
return {Weight, {isInt1Ty}, buildSplitBlock};
}
OpDescriptor llvm::fuzzerop::gepDescriptor(unsigned Weight) {
auto buildGEP = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
Type *Ty = cast<PointerType>(Srcs[0]->getType())->getElementType();
auto Indices = makeArrayRef(Srcs).drop_front(1);
return GetElementPtrInst::Create(Ty, Srcs[0], Indices, "G", Inst);
};
// TODO: Handle aggregates and vectors
// TODO: Support multiple indices.
// TODO: Try to avoid meaningless accesses.
return {Weight, {sizedPtrType(), anyIntType()}, buildGEP};
}
static uint64_t getAggregateNumElements(Type *T) {
assert(T->isAggregateType() && "Not a struct or array");
if (isa<StructType>(T))
return T->getStructNumElements();
return T->getArrayNumElements();
}
static SourcePred validExtractValueIndex() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
if (auto *CI = dyn_cast<ConstantInt>(V))
if (!CI->uge(getAggregateNumElements(Cur[0]->getType())))
return true;
return false;
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
std::vector<Constant *> Result;
auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
uint64_t N = getAggregateNumElements(Cur[0]->getType());
// Create indices at the start, end, and middle, but avoid dups.
Result.push_back(ConstantInt::get(Int32Ty, 0));
if (N > 1)
Result.push_back(ConstantInt::get(Int32Ty, N - 1));
if (N > 2)
Result.push_back(ConstantInt::get(Int32Ty, N / 2));
return Result;
};
return {Pred, Make};
}
OpDescriptor llvm::fuzzerop::extractValueDescriptor(unsigned Weight) {
auto buildExtract = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
// TODO: It's pretty inefficient to shuffle this all through constants.
unsigned Idx = cast<ConstantInt>(Srcs[1])->getZExtValue();
return ExtractValueInst::Create(Srcs[0], {Idx}, "E", Inst);
};
// TODO: Should we handle multiple indices?
return {Weight, {anyAggregateType(), validExtractValueIndex()}, buildExtract};
}
static SourcePred matchScalarInAggregate() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
if (auto *ArrayT = dyn_cast<ArrayType>(Cur[0]->getType()))
return V->getType() == ArrayT->getElementType();
auto *STy = cast<StructType>(Cur[0]->getType());
for (int I = 0, E = STy->getNumElements(); I < E; ++I)
if (STy->getTypeAtIndex(I) == V->getType())
return true;
return false;
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) {
if (auto *ArrayT = dyn_cast<ArrayType>(Cur[0]->getType()))
return makeConstantsWithType(ArrayT->getElementType());
std::vector<Constant *> Result;
auto *STy = cast<StructType>(Cur[0]->getType());
for (int I = 0, E = STy->getNumElements(); I < E; ++I)
makeConstantsWithType(STy->getTypeAtIndex(I), Result);
return Result;
};
return {Pred, Make};
}
static SourcePred validInsertValueIndex() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
if (auto *CI = dyn_cast<ConstantInt>(V))
if (CI->getBitWidth() == 32) {
Type *Indexed = ExtractValueInst::getIndexedType(Cur[0]->getType(),
CI->getZExtValue());
return Indexed == Cur[1]->getType();
}
return false;
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
std::vector<Constant *> Result;
auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
auto *BaseTy = Cur[0]->getType();
int I = 0;
while (Type *Indexed = ExtractValueInst::getIndexedType(BaseTy, I)) {
if (Indexed == Cur[1]->getType())
Result.push_back(ConstantInt::get(Int32Ty, I));
++I;
}
return Result;
};
return {Pred, Make};
}
OpDescriptor llvm::fuzzerop::insertValueDescriptor(unsigned Weight) {
auto buildInsert = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
// TODO: It's pretty inefficient to shuffle this all through constants.
unsigned Idx = cast<ConstantInt>(Srcs[2])->getZExtValue();
return InsertValueInst::Create(Srcs[0], Srcs[1], {Idx}, "I", Inst);
};
return {
Weight,
{anyAggregateType(), matchScalarInAggregate(), validInsertValueIndex()},
buildInsert};
}
OpDescriptor llvm::fuzzerop::extractElementDescriptor(unsigned Weight) {
auto buildExtract = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
return ExtractElementInst::Create(Srcs[0], Srcs[1], "E", Inst);
};
// TODO: Try to avoid undefined accesses.
return {Weight, {anyVectorType(), anyIntType()}, buildExtract};
}
OpDescriptor llvm::fuzzerop::insertElementDescriptor(unsigned Weight) {
auto buildInsert = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
return InsertElementInst::Create(Srcs[0], Srcs[1], Srcs[2], "I", Inst);
};
// TODO: Try to avoid undefined accesses.
return {Weight,
{anyVectorType(), matchScalarOfFirstType(), anyIntType()},
buildInsert};
}
static SourcePred validShuffleVectorIndex() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
return ShuffleVectorInst::isValidOperands(Cur[0], Cur[1], V);
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
auto *FirstTy = cast<VectorType>(Cur[0]->getType());
auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
// TODO: It's straighforward to make up reasonable values, but listing them
// exhaustively would be insane. Come up with a couple of sensible ones.
return std::vector<Constant *>{UndefValue::get(
FixedVectorType::get(Int32Ty, FirstTy->getNumElements()))};
};
return {Pred, Make};
}
OpDescriptor llvm::fuzzerop::shuffleVectorDescriptor(unsigned Weight) {
auto buildShuffle = [](ArrayRef<Value *> Srcs, Instruction *Inst) {
return new ShuffleVectorInst(Srcs[0], Srcs[1], Srcs[2], "S", Inst);
};
return {Weight,
{anyVectorType(), matchFirstType(), validShuffleVectorIndex()},
buildShuffle};
}