llvm-project/mlir/test/Transforms/cse.mlir

268 lines
7.7 KiB
MLIR

// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.func(cse)' | FileCheck %s
// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 mod 2)>
#map0 = affine_map<(d0) -> (d0 mod 2)>
// CHECK-LABEL: @simple_constant
func @simple_constant() -> (i32, i32) {
// CHECK-NEXT: %c1_i32 = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: return %c1_i32, %c1_i32 : i32, i32
%1 = arith.constant 1 : i32
return %0, %1 : i32, i32
}
// CHECK-LABEL: @basic
func @basic() -> (index, index) {
// CHECK: %c0 = arith.constant 0 : index
%c0 = arith.constant 0 : index
%c1 = arith.constant 0 : index
// CHECK-NEXT: %0 = affine.apply #[[$MAP]](%c0)
%0 = affine.apply #map0(%c0)
%1 = affine.apply #map0(%c1)
// CHECK-NEXT: return %0, %0 : index, index
return %0, %1 : index, index
}
// CHECK-LABEL: @many
func @many(f32, f32) -> (f32) {
^bb0(%a : f32, %b : f32):
// CHECK-NEXT: %0 = arith.addf %arg0, %arg1 : f32
%c = arith.addf %a, %b : f32
%d = arith.addf %a, %b : f32
%e = arith.addf %a, %b : f32
%f = arith.addf %a, %b : f32
// CHECK-NEXT: %1 = arith.addf %0, %0 : f32
%g = arith.addf %c, %d : f32
%h = arith.addf %e, %f : f32
%i = arith.addf %c, %e : f32
// CHECK-NEXT: %2 = arith.addf %1, %1 : f32
%j = arith.addf %g, %h : f32
%k = arith.addf %h, %i : f32
// CHECK-NEXT: %3 = arith.addf %2, %2 : f32
%l = arith.addf %j, %k : f32
// CHECK-NEXT: return %3 : f32
return %l : f32
}
/// Check that operations are not eliminated if they have different operands.
// CHECK-LABEL: @different_ops
func @different_ops() -> (i32, i32) {
// CHECK: %c0_i32 = arith.constant 0 : i32
// CHECK: %c1_i32 = arith.constant 1 : i32
%0 = arith.constant 0 : i32
%1 = arith.constant 1 : i32
// CHECK-NEXT: return %c0_i32, %c1_i32 : i32, i32
return %0, %1 : i32, i32
}
/// Check that operations are not eliminated if they have different result
/// types.
// CHECK-LABEL: @different_results
func @different_results(%arg0: tensor<*xf32>) -> (tensor<?x?xf32>, tensor<4x?xf32>) {
// CHECK: %0 = tensor.cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
// CHECK-NEXT: %1 = tensor.cast %arg0 : tensor<*xf32> to tensor<4x?xf32>
%0 = tensor.cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
%1 = tensor.cast %arg0 : tensor<*xf32> to tensor<4x?xf32>
// CHECK-NEXT: return %0, %1 : tensor<?x?xf32>, tensor<4x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<4x?xf32>
}
/// Check that operations are not eliminated if they have different attributes.
// CHECK-LABEL: @different_attributes
func @different_attributes(index, index) -> (i1, i1, i1) {
^bb0(%a : index, %b : index):
// CHECK: %0 = arith.cmpi slt, %arg0, %arg1 : index
%0 = arith.cmpi slt, %a, %b : index
// CHECK-NEXT: %1 = arith.cmpi ne, %arg0, %arg1 : index
/// Predicate 1 means inequality comparison.
%1 = arith.cmpi ne, %a, %b : index
%2 = "arith.cmpi"(%a, %b) {predicate = 1} : (index, index) -> i1
// CHECK-NEXT: return %0, %1, %1 : i1, i1, i1
return %0, %1, %2 : i1, i1, i1
}
/// Check that operations with side effects are not eliminated.
// CHECK-LABEL: @side_effect
func @side_effect() -> (memref<2x1xf32>, memref<2x1xf32>) {
// CHECK: %0 = memref.alloc() : memref<2x1xf32>
%0 = memref.alloc() : memref<2x1xf32>
// CHECK-NEXT: %1 = memref.alloc() : memref<2x1xf32>
%1 = memref.alloc() : memref<2x1xf32>
// CHECK-NEXT: return %0, %1 : memref<2x1xf32>, memref<2x1xf32>
return %0, %1 : memref<2x1xf32>, memref<2x1xf32>
}
/// Check that operation definitions are properly propagated down the dominance
/// tree.
// CHECK-LABEL: @down_propagate_for
func @down_propagate_for() {
// CHECK: %c1_i32 = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: affine.for {{.*}} = 0 to 4 {
affine.for %i = 0 to 4 {
// CHECK-NEXT: "foo"(%c1_i32, %c1_i32) : (i32, i32) -> ()
%1 = arith.constant 1 : i32
"foo"(%0, %1) : (i32, i32) -> ()
}
return
}
// CHECK-LABEL: @down_propagate
func @down_propagate() -> i32 {
// CHECK-NEXT: %c1_i32 = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: %true = arith.constant true
%cond = arith.constant true
// CHECK-NEXT: cf.cond_br %true, ^bb1, ^bb2(%c1_i32 : i32)
cf.cond_br %cond, ^bb1, ^bb2(%0 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: cf.br ^bb2(%c1_i32 : i32)
%1 = arith.constant 1 : i32
cf.br ^bb2(%1 : i32)
^bb2(%arg : i32):
return %arg : i32
}
/// Check that operation definitions are NOT propagated up the dominance tree.
// CHECK-LABEL: @up_propagate_for
func @up_propagate_for() -> i32 {
// CHECK: affine.for {{.*}} = 0 to 4 {
affine.for %i = 0 to 4 {
// CHECK-NEXT: %c1_i32_0 = arith.constant 1 : i32
// CHECK-NEXT: "foo"(%c1_i32_0) : (i32) -> ()
%0 = arith.constant 1 : i32
"foo"(%0) : (i32) -> ()
}
// CHECK: %c1_i32 = arith.constant 1 : i32
// CHECK-NEXT: return %c1_i32 : i32
%1 = arith.constant 1 : i32
return %1 : i32
}
// CHECK-LABEL: func @up_propagate
func @up_propagate() -> i32 {
// CHECK-NEXT: %c0_i32 = arith.constant 0 : i32
%0 = arith.constant 0 : i32
// CHECK-NEXT: %true = arith.constant true
%cond = arith.constant true
// CHECK-NEXT: cf.cond_br %true, ^bb1, ^bb2(%c0_i32 : i32)
cf.cond_br %cond, ^bb1, ^bb2(%0 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: %c1_i32 = arith.constant 1 : i32
%1 = arith.constant 1 : i32
// CHECK-NEXT: cf.br ^bb2(%c1_i32 : i32)
cf.br ^bb2(%1 : i32)
^bb2(%arg : i32): // CHECK: ^bb2
// CHECK-NEXT: %c1_i32_0 = arith.constant 1 : i32
%2 = arith.constant 1 : i32
// CHECK-NEXT: %1 = arith.addi %0, %c1_i32_0 : i32
%add = arith.addi %arg, %2 : i32
// CHECK-NEXT: return %1 : i32
return %add : i32
}
/// The same test as above except that we are testing on a cfg embedded within
/// an operation region.
// CHECK-LABEL: func @up_propagate_region
func @up_propagate_region() -> i32 {
// CHECK-NEXT: %0 = "foo.region"
%0 = "foo.region"() ({
// CHECK-NEXT: %c0_i32 = arith.constant 0 : i32
// CHECK-NEXT: %true = arith.constant true
// CHECK-NEXT: cf.cond_br
%1 = arith.constant 0 : i32
%true = arith.constant true
cf.cond_br %true, ^bb1, ^bb2(%1 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: %c1_i32 = arith.constant 1 : i32
// CHECK-NEXT: cf.br
%c1_i32 = arith.constant 1 : i32
cf.br ^bb2(%c1_i32 : i32)
^bb2(%arg : i32): // CHECK: ^bb2(%1: i32):
// CHECK-NEXT: %c1_i32_0 = arith.constant 1 : i32
// CHECK-NEXT: %2 = arith.addi %1, %c1_i32_0 : i32
// CHECK-NEXT: "foo.yield"(%2) : (i32) -> ()
%c1_i32_0 = arith.constant 1 : i32
%2 = arith.addi %arg, %c1_i32_0 : i32
"foo.yield" (%2) : (i32) -> ()
}) : () -> (i32)
return %0 : i32
}
/// This test checks that nested regions that are isolated from above are
/// properly handled.
// CHECK-LABEL: @nested_isolated
func @nested_isolated() -> i32 {
// CHECK-NEXT: arith.constant 1
%0 = arith.constant 1 : i32
// CHECK-NEXT: @nested_func
builtin.func @nested_func() {
// CHECK-NEXT: arith.constant 1
%foo = arith.constant 1 : i32
"foo.yield"(%foo) : (i32) -> ()
}
// CHECK: "foo.region"
"foo.region"() ({
// CHECK-NEXT: arith.constant 1
%foo = arith.constant 1 : i32
"foo.yield"(%foo) : (i32) -> ()
}) : () -> ()
return %0 : i32
}
/// This test is checking that CSE gracefully handles values in graph regions
/// where the use occurs before the def, and one of the defs could be CSE'd with
/// the other.
// CHECK-LABEL: @use_before_def
func @use_before_def() {
// CHECK-NEXT: test.graph_region
test.graph_region {
// CHECK-NEXT: arith.addi %c1_i32, %c1_i32_0
%0 = arith.addi %1, %2 : i32
// CHECK-NEXT: arith.constant 1
// CHECK-NEXT: arith.constant 1
%1 = arith.constant 1 : i32
%2 = arith.constant 1 : i32
// CHECK-NEXT: "foo.yield"(%0) : (i32) -> ()
"foo.yield"(%0) : (i32) -> ()
}
return
}