llvm-project/polly/lib/External/isl/isl_schedule_node.c

4696 lines
146 KiB
C

/*
* Copyright 2013-2014 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
* Copyright 2016 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege,
* Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include <isl/set.h>
#include <isl_schedule_band.h>
#include <isl_schedule_private.h>
#include <isl_schedule_node_private.h>
/* Create a new schedule node in the given schedule, point at the given
* tree with given ancestors and child positions.
* "child_pos" may be NULL if there are no ancestors.
*/
__isl_give isl_schedule_node *isl_schedule_node_alloc(
__isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree,
__isl_take isl_schedule_tree_list *ancestors, int *child_pos)
{
isl_ctx *ctx;
isl_schedule_node *node;
int i, n;
if (!schedule || !tree || !ancestors)
goto error;
n = isl_schedule_tree_list_n_schedule_tree(ancestors);
if (n > 0 && !child_pos)
goto error;
ctx = isl_schedule_get_ctx(schedule);
node = isl_calloc_type(ctx, isl_schedule_node);
if (!node)
goto error;
node->ref = 1;
node->schedule = schedule;
node->tree = tree;
node->ancestors = ancestors;
node->child_pos = isl_alloc_array(ctx, int, n);
if (n && !node->child_pos)
return isl_schedule_node_free(node);
for (i = 0; i < n; ++i)
node->child_pos[i] = child_pos[i];
return node;
error:
isl_schedule_free(schedule);
isl_schedule_tree_free(tree);
isl_schedule_tree_list_free(ancestors);
return NULL;
}
/* Return a pointer to the root of a schedule tree with as single
* node a domain node with the given domain.
*/
__isl_give isl_schedule_node *isl_schedule_node_from_domain(
__isl_take isl_union_set *domain)
{
isl_schedule *schedule;
isl_schedule_node *node;
schedule = isl_schedule_from_domain(domain);
node = isl_schedule_get_root(schedule);
isl_schedule_free(schedule);
return node;
}
/* Return a pointer to the root of a schedule tree with as single
* node a extension node with the given extension.
*/
__isl_give isl_schedule_node *isl_schedule_node_from_extension(
__isl_take isl_union_map *extension)
{
isl_ctx *ctx;
isl_schedule *schedule;
isl_schedule_tree *tree;
isl_schedule_node *node;
if (!extension)
return NULL;
ctx = isl_union_map_get_ctx(extension);
tree = isl_schedule_tree_from_extension(extension);
schedule = isl_schedule_from_schedule_tree(ctx, tree);
node = isl_schedule_get_root(schedule);
isl_schedule_free(schedule);
return node;
}
/* Return the isl_ctx to which "node" belongs.
*/
isl_ctx *isl_schedule_node_get_ctx(__isl_keep isl_schedule_node *node)
{
return node ? isl_schedule_get_ctx(node->schedule) : NULL;
}
/* Return a pointer to the leaf of the schedule into which "node" points.
*/
__isl_keep isl_schedule_tree *isl_schedule_node_peek_leaf(
__isl_keep isl_schedule_node *node)
{
return node ? isl_schedule_peek_leaf(node->schedule) : NULL;
}
/* Return a copy of the leaf of the schedule into which "node" points.
*/
__isl_give isl_schedule_tree *isl_schedule_node_get_leaf(
__isl_keep isl_schedule_node *node)
{
return isl_schedule_tree_copy(isl_schedule_node_peek_leaf(node));
}
/* Return the type of the node or isl_schedule_node_error on error.
*/
enum isl_schedule_node_type isl_schedule_node_get_type(
__isl_keep isl_schedule_node *node)
{
return node ? isl_schedule_tree_get_type(node->tree)
: isl_schedule_node_error;
}
/* Return the type of the parent of "node" or isl_schedule_node_error on error.
*/
enum isl_schedule_node_type isl_schedule_node_get_parent_type(
__isl_keep isl_schedule_node *node)
{
int pos;
int has_parent;
isl_schedule_tree *parent;
enum isl_schedule_node_type type;
if (!node)
return isl_schedule_node_error;
has_parent = isl_schedule_node_has_parent(node);
if (has_parent < 0)
return isl_schedule_node_error;
if (!has_parent)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"node has no parent", return isl_schedule_node_error);
pos = isl_schedule_tree_list_n_schedule_tree(node->ancestors) - 1;
parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, pos);
type = isl_schedule_tree_get_type(parent);
isl_schedule_tree_free(parent);
return type;
}
/* Return a copy of the subtree that this node points to.
*/
__isl_give isl_schedule_tree *isl_schedule_node_get_tree(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_copy(node->tree);
}
/* Return a copy of the schedule into which "node" points.
*/
__isl_give isl_schedule *isl_schedule_node_get_schedule(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_copy(node->schedule);
}
/* Return a fresh copy of "node".
*/
__isl_take isl_schedule_node *isl_schedule_node_dup(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_node_alloc(isl_schedule_copy(node->schedule),
isl_schedule_tree_copy(node->tree),
isl_schedule_tree_list_copy(node->ancestors),
node->child_pos);
}
/* Return an isl_schedule_node that is equal to "node" and that has only
* a single reference.
*/
__isl_give isl_schedule_node *isl_schedule_node_cow(
__isl_take isl_schedule_node *node)
{
if (!node)
return NULL;
if (node->ref == 1)
return node;
node->ref--;
return isl_schedule_node_dup(node);
}
/* Return a new reference to "node".
*/
__isl_give isl_schedule_node *isl_schedule_node_copy(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
node->ref++;
return node;
}
/* Free "node" and return NULL.
*/
__isl_null isl_schedule_node *isl_schedule_node_free(
__isl_take isl_schedule_node *node)
{
if (!node)
return NULL;
if (--node->ref > 0)
return NULL;
isl_schedule_tree_list_free(node->ancestors);
free(node->child_pos);
isl_schedule_tree_free(node->tree);
isl_schedule_free(node->schedule);
free(node);
return NULL;
}
/* Do "node1" and "node2" point to the same position in the same
* schedule?
*/
isl_bool isl_schedule_node_is_equal(__isl_keep isl_schedule_node *node1,
__isl_keep isl_schedule_node *node2)
{
int i, n1, n2;
if (!node1 || !node2)
return isl_bool_error;
if (node1 == node2)
return isl_bool_true;
if (node1->schedule != node2->schedule)
return isl_bool_false;
n1 = isl_schedule_node_get_tree_depth(node1);
n2 = isl_schedule_node_get_tree_depth(node2);
if (n1 != n2)
return isl_bool_false;
for (i = 0; i < n1; ++i)
if (node1->child_pos[i] != node2->child_pos[i])
return isl_bool_false;
return isl_bool_true;
}
/* Return the number of outer schedule dimensions of "node"
* in its schedule tree.
*
* Return -1 on error.
*/
int isl_schedule_node_get_schedule_depth(__isl_keep isl_schedule_node *node)
{
int i, n;
int depth = 0;
if (!node)
return -1;
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
for (i = n - 1; i >= 0; --i) {
isl_schedule_tree *tree;
tree = isl_schedule_tree_list_get_schedule_tree(
node->ancestors, i);
if (!tree)
return -1;
if (tree->type == isl_schedule_node_band)
depth += isl_schedule_tree_band_n_member(tree);
isl_schedule_tree_free(tree);
}
return depth;
}
/* Internal data structure for
* isl_schedule_node_get_prefix_schedule_union_pw_multi_aff
*
* "initialized" is set if the filter field has been initialized.
* If "universe_domain" is not set, then the collected filter is intersected
* with the the domain of the root domain node.
* "universe_filter" is set if we are only collecting the universes of filters
* "collect_prefix" is set if we are collecting prefixes.
* "filter" collects all outer filters and is NULL until "initialized" is set.
* "prefix" collects all outer band partial schedules (if "collect_prefix"
* is set). If it is used, then it is initialized by the caller
* of collect_filter_prefix to a zero-dimensional function.
*/
struct isl_schedule_node_get_filter_prefix_data {
int initialized;
int universe_domain;
int universe_filter;
int collect_prefix;
isl_union_set *filter;
isl_multi_union_pw_aff *prefix;
};
static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list,
int n, struct isl_schedule_node_get_filter_prefix_data *data);
/* Update the filter and prefix information in "data" based on the first "n"
* elements in "list" and the expansion tree root "tree".
*
* We first collect the information from the elements in "list",
* initializing the filter based on the domain of the expansion.
* Then we map the results to the expanded space and combined them
* with the results already in "data".
*/
static int collect_filter_prefix_expansion(__isl_take isl_schedule_tree *tree,
__isl_keep isl_schedule_tree_list *list, int n,
struct isl_schedule_node_get_filter_prefix_data *data)
{
struct isl_schedule_node_get_filter_prefix_data contracted;
isl_union_pw_multi_aff *c;
isl_union_map *exp, *universe;
isl_union_set *filter;
c = isl_schedule_tree_expansion_get_contraction(tree);
exp = isl_schedule_tree_expansion_get_expansion(tree);
contracted.initialized = 1;
contracted.universe_domain = data->universe_domain;
contracted.universe_filter = data->universe_filter;
contracted.collect_prefix = data->collect_prefix;
universe = isl_union_map_universe(isl_union_map_copy(exp));
filter = isl_union_map_domain(universe);
if (data->collect_prefix) {
isl_space *space = isl_union_set_get_space(filter);
space = isl_space_set_from_params(space);
contracted.prefix = isl_multi_union_pw_aff_zero(space);
}
contracted.filter = filter;
if (collect_filter_prefix(list, n, &contracted) < 0)
contracted.filter = isl_union_set_free(contracted.filter);
if (data->collect_prefix) {
isl_multi_union_pw_aff *prefix;
prefix = contracted.prefix;
prefix =
isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
isl_union_pw_multi_aff_copy(c));
data->prefix = isl_multi_union_pw_aff_flat_range_product(
prefix, data->prefix);
}
filter = contracted.filter;
if (data->universe_domain)
filter = isl_union_set_preimage_union_pw_multi_aff(filter,
isl_union_pw_multi_aff_copy(c));
else
filter = isl_union_set_apply(filter, isl_union_map_copy(exp));
if (!data->initialized)
data->filter = filter;
else
data->filter = isl_union_set_intersect(filter, data->filter);
data->initialized = 1;
isl_union_pw_multi_aff_free(c);
isl_union_map_free(exp);
isl_schedule_tree_free(tree);
return 0;
}
/* Update the filter information in "data" based on the first "n"
* elements in "list" and the extension tree root "tree", in case
* data->universe_domain is set and data->collect_prefix is not.
*
* We collect the universe domain of the elements in "list" and
* add it to the universe range of the extension (intersected
* with the already collected filter, if any).
*/
static int collect_universe_domain_extension(__isl_take isl_schedule_tree *tree,
__isl_keep isl_schedule_tree_list *list, int n,
struct isl_schedule_node_get_filter_prefix_data *data)
{
struct isl_schedule_node_get_filter_prefix_data data_outer;
isl_union_map *extension;
isl_union_set *filter;
data_outer.initialized = 0;
data_outer.universe_domain = 1;
data_outer.universe_filter = data->universe_filter;
data_outer.collect_prefix = 0;
data_outer.filter = NULL;
data_outer.prefix = NULL;
if (collect_filter_prefix(list, n, &data_outer) < 0)
data_outer.filter = isl_union_set_free(data_outer.filter);
extension = isl_schedule_tree_extension_get_extension(tree);
extension = isl_union_map_universe(extension);
filter = isl_union_map_range(extension);
if (data_outer.initialized)
filter = isl_union_set_union(filter, data_outer.filter);
if (data->initialized)
filter = isl_union_set_intersect(filter, data->filter);
data->filter = filter;
isl_schedule_tree_free(tree);
return 0;
}
/* Update "data" based on the tree node "tree" in case "data" has
* not been initialized yet.
*
* Return 0 on success and -1 on error.
*
* If "tree" is a filter, then we set data->filter to this filter
* (or its universe).
* If "tree" is a domain, then this means we have reached the root
* of the schedule tree without being able to extract any information.
* We therefore initialize data->filter to the universe of the domain,
* or the domain itself if data->universe_domain is not set.
* If "tree" is a band with at least one member, then we set data->filter
* to the universe of the schedule domain and replace the zero-dimensional
* data->prefix by the band schedule (if data->collect_prefix is set).
*/
static int collect_filter_prefix_init(__isl_keep isl_schedule_tree *tree,
struct isl_schedule_node_get_filter_prefix_data *data)
{
enum isl_schedule_node_type type;
isl_multi_union_pw_aff *mupa;
isl_union_set *filter;
type = isl_schedule_tree_get_type(tree);
switch (type) {
case isl_schedule_node_error:
return -1;
case isl_schedule_node_expansion:
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
"should be handled by caller", return -1);
case isl_schedule_node_extension:
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid,
"cannot handle extension nodes", return -1);
case isl_schedule_node_context:
case isl_schedule_node_leaf:
case isl_schedule_node_guard:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
return 0;
case isl_schedule_node_domain:
filter = isl_schedule_tree_domain_get_domain(tree);
if (data->universe_domain)
filter = isl_union_set_universe(filter);
data->filter = filter;
break;
case isl_schedule_node_band:
if (isl_schedule_tree_band_n_member(tree) == 0)
return 0;
mupa = isl_schedule_tree_band_get_partial_schedule(tree);
if (data->collect_prefix) {
isl_multi_union_pw_aff_free(data->prefix);
mupa = isl_multi_union_pw_aff_reset_tuple_id(mupa,
isl_dim_set);
data->prefix = isl_multi_union_pw_aff_copy(mupa);
}
filter = isl_multi_union_pw_aff_domain(mupa);
filter = isl_union_set_universe(filter);
data->filter = filter;
break;
case isl_schedule_node_filter:
filter = isl_schedule_tree_filter_get_filter(tree);
if (data->universe_filter)
filter = isl_union_set_universe(filter);
data->filter = filter;
break;
}
if ((data->collect_prefix && !data->prefix) || !data->filter)
return -1;
data->initialized = 1;
return 0;
}
/* Update "data" based on the tree node "tree" in case "data" has
* already been initialized.
*
* Return 0 on success and -1 on error.
*
* If "tree" is a domain and data->universe_domain is not set, then
* intersect data->filter with the domain.
* If "tree" is a filter, then we intersect data->filter with this filter
* (or its universe).
* If "tree" is a band with at least one member and data->collect_prefix
* is set, then we extend data->prefix with the band schedule.
* If "tree" is an extension, then we make sure that we are not collecting
* information on any extended domain elements.
*/
static int collect_filter_prefix_update(__isl_keep isl_schedule_tree *tree,
struct isl_schedule_node_get_filter_prefix_data *data)
{
enum isl_schedule_node_type type;
isl_multi_union_pw_aff *mupa;
isl_union_set *filter;
isl_union_map *extension;
int empty;
type = isl_schedule_tree_get_type(tree);
switch (type) {
case isl_schedule_node_error:
return -1;
case isl_schedule_node_expansion:
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
"should be handled by caller", return -1);
case isl_schedule_node_extension:
extension = isl_schedule_tree_extension_get_extension(tree);
extension = isl_union_map_intersect_range(extension,
isl_union_set_copy(data->filter));
empty = isl_union_map_is_empty(extension);
isl_union_map_free(extension);
if (empty < 0)
return -1;
if (empty)
break;
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid,
"cannot handle extension nodes", return -1);
case isl_schedule_node_context:
case isl_schedule_node_leaf:
case isl_schedule_node_guard:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
case isl_schedule_node_domain:
if (data->universe_domain)
break;
filter = isl_schedule_tree_domain_get_domain(tree);
data->filter = isl_union_set_intersect(data->filter, filter);
break;
case isl_schedule_node_band:
if (isl_schedule_tree_band_n_member(tree) == 0)
break;
if (!data->collect_prefix)
break;
mupa = isl_schedule_tree_band_get_partial_schedule(tree);
data->prefix = isl_multi_union_pw_aff_flat_range_product(mupa,
data->prefix);
if (!data->prefix)
return -1;
break;
case isl_schedule_node_filter:
filter = isl_schedule_tree_filter_get_filter(tree);
if (data->universe_filter)
filter = isl_union_set_universe(filter);
data->filter = isl_union_set_intersect(data->filter, filter);
if (!data->filter)
return -1;
break;
}
return 0;
}
/* Collect filter and/or prefix information from the first "n"
* elements in "list" (which represent the ancestors of a node).
* Store the results in "data".
*
* Extension nodes are only supported if they do not affect the outcome,
* i.e., if we are collecting information on non-extended domain elements,
* or if we are collecting the universe domain (without prefix).
*
* Return 0 on success and -1 on error.
*
* We traverse the list from innermost ancestor (last element)
* to outermost ancestor (first element), calling collect_filter_prefix_init
* on each node as long as we have not been able to extract any information
* yet and collect_filter_prefix_update afterwards.
* If we come across an expansion node, then we interrupt the traversal
* and call collect_filter_prefix_expansion to restart the traversal
* over the remaining ancestors and to combine the results with those
* that have already been collected.
* If we come across an extension node and we are only computing
* the universe domain, then we interrupt the traversal and call
* collect_universe_domain_extension to restart the traversal
* over the remaining ancestors and to combine the results with those
* that have already been collected.
* On successful return, data->initialized will be set since the outermost
* ancestor is a domain node, which always results in an initialization.
*/
static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list,
int n, struct isl_schedule_node_get_filter_prefix_data *data)
{
int i;
if (!list)
return -1;
for (i = n - 1; i >= 0; --i) {
isl_schedule_tree *tree;
enum isl_schedule_node_type type;
int r;
tree = isl_schedule_tree_list_get_schedule_tree(list, i);
if (!tree)
return -1;
type = isl_schedule_tree_get_type(tree);
if (type == isl_schedule_node_expansion)
return collect_filter_prefix_expansion(tree, list, i,
data);
if (type == isl_schedule_node_extension &&
data->universe_domain && !data->collect_prefix)
return collect_universe_domain_extension(tree, list, i,
data);
if (!data->initialized)
r = collect_filter_prefix_init(tree, data);
else
r = collect_filter_prefix_update(tree, data);
isl_schedule_tree_free(tree);
if (r < 0)
return -1;
}
return 0;
}
/* Return the concatenation of the partial schedules of all outer band
* nodes of "node" interesected with all outer filters
* as an isl_multi_union_pw_aff.
* None of the ancestors of "node" may be an extension node, unless
* there is also a filter ancestor that filters out all the extended
* domain elements.
*
* If "node" is pointing at the root of the schedule tree, then
* there are no domain elements reaching the current node, so
* we return an empty result.
*
* We collect all the filters and partial schedules in collect_filter_prefix
* and intersect the domain of the combined schedule with the combined filter.
*/
__isl_give isl_multi_union_pw_aff *
isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
__isl_keep isl_schedule_node *node)
{
int n;
isl_space *space;
struct isl_schedule_node_get_filter_prefix_data data;
if (!node)
return NULL;
space = isl_schedule_get_space(node->schedule);
space = isl_space_set_from_params(space);
if (node->tree == node->schedule->root)
return isl_multi_union_pw_aff_zero(space);
data.initialized = 0;
data.universe_domain = 1;
data.universe_filter = 0;
data.collect_prefix = 1;
data.filter = NULL;
data.prefix = isl_multi_union_pw_aff_zero(space);
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
if (collect_filter_prefix(node->ancestors, n, &data) < 0)
data.prefix = isl_multi_union_pw_aff_free(data.prefix);
data.prefix = isl_multi_union_pw_aff_intersect_domain(data.prefix,
data.filter);
return data.prefix;
}
/* Return the concatenation of the partial schedules of all outer band
* nodes of "node" interesected with all outer filters
* as an isl_union_pw_multi_aff.
* None of the ancestors of "node" may be an extension node, unless
* there is also a filter ancestor that filters out all the extended
* domain elements.
*
* If "node" is pointing at the root of the schedule tree, then
* there are no domain elements reaching the current node, so
* we return an empty result.
*
* We collect all the filters and partial schedules in collect_filter_prefix.
* The partial schedules are collected as an isl_multi_union_pw_aff.
* If this isl_multi_union_pw_aff is zero-dimensional, then it does not
* contain any domain information, so we construct the isl_union_pw_multi_aff
* result as a zero-dimensional function on the collected filter.
* Otherwise, we convert the isl_multi_union_pw_aff to
* an isl_multi_union_pw_aff and intersect the domain with the filter.
*/
__isl_give isl_union_pw_multi_aff *
isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
__isl_keep isl_schedule_node *node)
{
int n;
isl_space *space;
isl_union_pw_multi_aff *prefix;
struct isl_schedule_node_get_filter_prefix_data data;
if (!node)
return NULL;
space = isl_schedule_get_space(node->schedule);
if (node->tree == node->schedule->root)
return isl_union_pw_multi_aff_empty(space);
space = isl_space_set_from_params(space);
data.initialized = 0;
data.universe_domain = 1;
data.universe_filter = 0;
data.collect_prefix = 1;
data.filter = NULL;
data.prefix = isl_multi_union_pw_aff_zero(space);
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
if (collect_filter_prefix(node->ancestors, n, &data) < 0)
data.prefix = isl_multi_union_pw_aff_free(data.prefix);
if (data.prefix &&
isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) {
isl_multi_union_pw_aff_free(data.prefix);
prefix = isl_union_pw_multi_aff_from_domain(data.filter);
} else {
prefix =
isl_union_pw_multi_aff_from_multi_union_pw_aff(data.prefix);
prefix = isl_union_pw_multi_aff_intersect_domain(prefix,
data.filter);
}
return prefix;
}
/* Return the concatenation of the partial schedules of all outer band
* nodes of "node" interesected with all outer filters
* as an isl_union_map.
*/
__isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_union_map(
__isl_keep isl_schedule_node *node)
{
isl_union_pw_multi_aff *upma;
upma = isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
return isl_union_map_from_union_pw_multi_aff(upma);
}
/* Return the concatenation of the partial schedules of all outer band
* nodes of "node" intersected with all outer domain constraints.
* None of the ancestors of "node" may be an extension node, unless
* there is also a filter ancestor that filters out all the extended
* domain elements.
*
* Essentially, this function intersects the domain of the output
* of isl_schedule_node_get_prefix_schedule_union_map with the output
* of isl_schedule_node_get_domain, except that it only traverses
* the ancestors of "node" once.
*/
__isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_relation(
__isl_keep isl_schedule_node *node)
{
int n;
isl_space *space;
isl_union_map *prefix;
struct isl_schedule_node_get_filter_prefix_data data;
if (!node)
return NULL;
space = isl_schedule_get_space(node->schedule);
if (node->tree == node->schedule->root)
return isl_union_map_empty(space);
space = isl_space_set_from_params(space);
data.initialized = 0;
data.universe_domain = 0;
data.universe_filter = 0;
data.collect_prefix = 1;
data.filter = NULL;
data.prefix = isl_multi_union_pw_aff_zero(space);
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
if (collect_filter_prefix(node->ancestors, n, &data) < 0)
data.prefix = isl_multi_union_pw_aff_free(data.prefix);
if (data.prefix &&
isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) {
isl_multi_union_pw_aff_free(data.prefix);
prefix = isl_union_map_from_domain(data.filter);
} else {
prefix = isl_union_map_from_multi_union_pw_aff(data.prefix);
prefix = isl_union_map_intersect_domain(prefix, data.filter);
}
return prefix;
}
/* Return the domain elements that reach "node".
*
* If "node" is pointing at the root of the schedule tree, then
* there are no domain elements reaching the current node, so
* we return an empty result.
* None of the ancestors of "node" may be an extension node, unless
* there is also a filter ancestor that filters out all the extended
* domain elements.
*
* Otherwise, we collect all filters reaching the node,
* intersected with the root domain in collect_filter_prefix.
*/
__isl_give isl_union_set *isl_schedule_node_get_domain(
__isl_keep isl_schedule_node *node)
{
int n;
struct isl_schedule_node_get_filter_prefix_data data;
if (!node)
return NULL;
if (node->tree == node->schedule->root) {
isl_space *space;
space = isl_schedule_get_space(node->schedule);
return isl_union_set_empty(space);
}
data.initialized = 0;
data.universe_domain = 0;
data.universe_filter = 0;
data.collect_prefix = 0;
data.filter = NULL;
data.prefix = NULL;
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
if (collect_filter_prefix(node->ancestors, n, &data) < 0)
data.filter = isl_union_set_free(data.filter);
return data.filter;
}
/* Return the union of universe sets of the domain elements that reach "node".
*
* If "node" is pointing at the root of the schedule tree, then
* there are no domain elements reaching the current node, so
* we return an empty result.
*
* Otherwise, we collect the universes of all filters reaching the node
* in collect_filter_prefix.
*/
__isl_give isl_union_set *isl_schedule_node_get_universe_domain(
__isl_keep isl_schedule_node *node)
{
int n;
struct isl_schedule_node_get_filter_prefix_data data;
if (!node)
return NULL;
if (node->tree == node->schedule->root) {
isl_space *space;
space = isl_schedule_get_space(node->schedule);
return isl_union_set_empty(space);
}
data.initialized = 0;
data.universe_domain = 1;
data.universe_filter = 1;
data.collect_prefix = 0;
data.filter = NULL;
data.prefix = NULL;
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
if (collect_filter_prefix(node->ancestors, n, &data) < 0)
data.filter = isl_union_set_free(data.filter);
return data.filter;
}
/* Return the subtree schedule of "node".
*
* Since isl_schedule_tree_get_subtree_schedule_union_map does not handle
* trees that do not contain any schedule information, we first
* move down to the first relevant descendant and handle leaves ourselves.
*
* If the subtree rooted at "node" contains any expansion nodes, then
* the returned subtree schedule is formulated in terms of the expanded
* domains.
* The subtree is not allowed to contain any extension nodes.
*/
__isl_give isl_union_map *isl_schedule_node_get_subtree_schedule_union_map(
__isl_keep isl_schedule_node *node)
{
isl_schedule_tree *tree, *leaf;
isl_union_map *umap;
tree = isl_schedule_node_get_tree(node);
leaf = isl_schedule_node_peek_leaf(node);
tree = isl_schedule_tree_first_schedule_descendant(tree, leaf);
if (!tree)
return NULL;
if (tree == leaf) {
isl_union_set *domain;
domain = isl_schedule_node_get_universe_domain(node);
isl_schedule_tree_free(tree);
return isl_union_map_from_domain(domain);
}
umap = isl_schedule_tree_get_subtree_schedule_union_map(tree);
isl_schedule_tree_free(tree);
return umap;
}
/* Return the number of ancestors of "node" in its schedule tree.
*/
int isl_schedule_node_get_tree_depth(__isl_keep isl_schedule_node *node)
{
if (!node)
return -1;
return isl_schedule_tree_list_n_schedule_tree(node->ancestors);
}
/* Does "node" have a parent?
*
* That is, does it point to any node of the schedule other than the root?
*/
isl_bool isl_schedule_node_has_parent(__isl_keep isl_schedule_node *node)
{
if (!node)
return isl_bool_error;
if (!node->ancestors)
return isl_bool_error;
return isl_schedule_tree_list_n_schedule_tree(node->ancestors) != 0;
}
/* Return the position of "node" among the children of its parent.
*/
int isl_schedule_node_get_child_position(__isl_keep isl_schedule_node *node)
{
int n;
int has_parent;
if (!node)
return -1;
has_parent = isl_schedule_node_has_parent(node);
if (has_parent < 0)
return -1;
if (!has_parent)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"node has no parent", return -1);
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
return node->child_pos[n - 1];
}
/* Does the parent (if any) of "node" have any children with a smaller child
* position than this one?
*/
isl_bool isl_schedule_node_has_previous_sibling(
__isl_keep isl_schedule_node *node)
{
int n;
isl_bool has_parent;
if (!node)
return isl_bool_error;
has_parent = isl_schedule_node_has_parent(node);
if (has_parent < 0 || !has_parent)
return has_parent;
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
return node->child_pos[n - 1] > 0;
}
/* Does the parent (if any) of "node" have any children with a greater child
* position than this one?
*/
isl_bool isl_schedule_node_has_next_sibling(__isl_keep isl_schedule_node *node)
{
int n, n_child;
isl_bool has_parent;
isl_schedule_tree *tree;
if (!node)
return isl_bool_error;
has_parent = isl_schedule_node_has_parent(node);
if (has_parent < 0 || !has_parent)
return has_parent;
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1);
if (!tree)
return isl_bool_error;
n_child = isl_schedule_tree_list_n_schedule_tree(tree->children);
isl_schedule_tree_free(tree);
return node->child_pos[n - 1] + 1 < n_child;
}
/* Does "node" have any children?
*
* Any node other than the leaf nodes is considered to have at least
* one child, even if the corresponding isl_schedule_tree does not
* have any children.
*/
isl_bool isl_schedule_node_has_children(__isl_keep isl_schedule_node *node)
{
if (!node)
return isl_bool_error;
return !isl_schedule_tree_is_leaf(node->tree);
}
/* Return the number of children of "node"?
*
* Any node other than the leaf nodes is considered to have at least
* one child, even if the corresponding isl_schedule_tree does not
* have any children. That is, the number of children of "node" is
* only zero if its tree is the explicit empty tree. Otherwise,
* if the isl_schedule_tree has any children, then it is equal
* to the number of children of "node". If it has zero children,
* then "node" still has a leaf node as child.
*/
int isl_schedule_node_n_children(__isl_keep isl_schedule_node *node)
{
int n;
if (!node)
return -1;
if (isl_schedule_tree_is_leaf(node->tree))
return 0;
n = isl_schedule_tree_n_children(node->tree);
if (n == 0)
return 1;
return n;
}
/* Move the "node" pointer to the ancestor of the given generation
* of the node it currently points to, where generation 0 is the node
* itself and generation 1 is its parent.
*/
__isl_give isl_schedule_node *isl_schedule_node_ancestor(
__isl_take isl_schedule_node *node, int generation)
{
int n;
isl_schedule_tree *tree;
if (!node)
return NULL;
if (generation == 0)
return node;
n = isl_schedule_node_get_tree_depth(node);
if (n < 0)
return isl_schedule_node_free(node);
if (generation < 0 || generation > n)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"generation out of bounds",
return isl_schedule_node_free(node));
node = isl_schedule_node_cow(node);
if (!node)
return NULL;
tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
n - generation);
isl_schedule_tree_free(node->tree);
node->tree = tree;
node->ancestors = isl_schedule_tree_list_drop(node->ancestors,
n - generation, generation);
if (!node->ancestors || !node->tree)
return isl_schedule_node_free(node);
return node;
}
/* Move the "node" pointer to the parent of the node it currently points to.
*/
__isl_give isl_schedule_node *isl_schedule_node_parent(
__isl_take isl_schedule_node *node)
{
if (!node)
return NULL;
if (!isl_schedule_node_has_parent(node))
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"node has no parent",
return isl_schedule_node_free(node));
return isl_schedule_node_ancestor(node, 1);
}
/* Move the "node" pointer to the root of its schedule tree.
*/
__isl_give isl_schedule_node *isl_schedule_node_root(
__isl_take isl_schedule_node *node)
{
int n;
if (!node)
return NULL;
n = isl_schedule_node_get_tree_depth(node);
if (n < 0)
return isl_schedule_node_free(node);
return isl_schedule_node_ancestor(node, n);
}
/* Move the "node" pointer to the child at position "pos" of the node
* it currently points to.
*/
__isl_give isl_schedule_node *isl_schedule_node_child(
__isl_take isl_schedule_node *node, int pos)
{
int n;
isl_ctx *ctx;
isl_schedule_tree *tree;
int *child_pos;
node = isl_schedule_node_cow(node);
if (!node)
return NULL;
if (!isl_schedule_node_has_children(node))
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"node has no children",
return isl_schedule_node_free(node));
ctx = isl_schedule_node_get_ctx(node);
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
child_pos = isl_realloc_array(ctx, node->child_pos, int, n + 1);
if (!child_pos)
return isl_schedule_node_free(node);
node->child_pos = child_pos;
node->child_pos[n] = pos;
node->ancestors = isl_schedule_tree_list_add(node->ancestors,
isl_schedule_tree_copy(node->tree));
tree = node->tree;
if (isl_schedule_tree_has_children(tree))
tree = isl_schedule_tree_get_child(tree, pos);
else
tree = isl_schedule_node_get_leaf(node);
isl_schedule_tree_free(node->tree);
node->tree = tree;
if (!node->tree || !node->ancestors)
return isl_schedule_node_free(node);
return node;
}
/* Move the "node" pointer to the first child of the node
* it currently points to.
*/
__isl_give isl_schedule_node *isl_schedule_node_first_child(
__isl_take isl_schedule_node *node)
{
return isl_schedule_node_child(node, 0);
}
/* Move the "node" pointer to the child of this node's parent in
* the previous child position.
*/
__isl_give isl_schedule_node *isl_schedule_node_previous_sibling(
__isl_take isl_schedule_node *node)
{
int n;
isl_schedule_tree *parent, *tree;
node = isl_schedule_node_cow(node);
if (!node)
return NULL;
if (!isl_schedule_node_has_previous_sibling(node))
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"node has no previous sibling",
return isl_schedule_node_free(node));
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
n - 1);
if (!parent)
return isl_schedule_node_free(node);
node->child_pos[n - 1]--;
tree = isl_schedule_tree_list_get_schedule_tree(parent->children,
node->child_pos[n - 1]);
isl_schedule_tree_free(parent);
if (!tree)
return isl_schedule_node_free(node);
isl_schedule_tree_free(node->tree);
node->tree = tree;
return node;
}
/* Move the "node" pointer to the child of this node's parent in
* the next child position.
*/
__isl_give isl_schedule_node *isl_schedule_node_next_sibling(
__isl_take isl_schedule_node *node)
{
int n;
isl_schedule_tree *parent, *tree;
node = isl_schedule_node_cow(node);
if (!node)
return NULL;
if (!isl_schedule_node_has_next_sibling(node))
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"node has no next sibling",
return isl_schedule_node_free(node));
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
n - 1);
if (!parent)
return isl_schedule_node_free(node);
node->child_pos[n - 1]++;
tree = isl_schedule_tree_list_get_schedule_tree(parent->children,
node->child_pos[n - 1]);
isl_schedule_tree_free(parent);
if (!tree)
return isl_schedule_node_free(node);
isl_schedule_tree_free(node->tree);
node->tree = tree;
return node;
}
/* Return a copy to the child at position "pos" of "node".
*/
__isl_give isl_schedule_node *isl_schedule_node_get_child(
__isl_keep isl_schedule_node *node, int pos)
{
return isl_schedule_node_child(isl_schedule_node_copy(node), pos);
}
/* Traverse the descendant of "node" in depth-first order, including
* "node" itself. Call "enter" whenever a node is entered and "leave"
* whenever a node is left. The callback "enter" is responsible
* for moving to the deepest initial subtree of its argument that
* should be traversed.
*/
static __isl_give isl_schedule_node *traverse(
__isl_take isl_schedule_node *node,
__isl_give isl_schedule_node *(*enter)(
__isl_take isl_schedule_node *node, void *user),
__isl_give isl_schedule_node *(*leave)(
__isl_take isl_schedule_node *node, void *user),
void *user)
{
int depth;
if (!node)
return NULL;
depth = isl_schedule_node_get_tree_depth(node);
do {
node = enter(node, user);
node = leave(node, user);
while (node && isl_schedule_node_get_tree_depth(node) > depth &&
!isl_schedule_node_has_next_sibling(node)) {
node = isl_schedule_node_parent(node);
node = leave(node, user);
}
if (node && isl_schedule_node_get_tree_depth(node) > depth)
node = isl_schedule_node_next_sibling(node);
} while (node && isl_schedule_node_get_tree_depth(node) > depth);
return node;
}
/* Internal data structure for isl_schedule_node_foreach_descendant_top_down.
*
* "fn" is the user-specified callback function.
* "user" is the user-specified argument for the callback.
*/
struct isl_schedule_node_preorder_data {
isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user);
void *user;
};
/* Callback for "traverse" to enter a node and to move
* to the deepest initial subtree that should be traversed
* for use in a preorder visit.
*
* If the user callback returns a negative value, then we abort
* the traversal. If this callback returns zero, then we skip
* the subtree rooted at the current node. Otherwise, we move
* down to the first child and repeat the process until a leaf
* is reached.
*/
static __isl_give isl_schedule_node *preorder_enter(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_schedule_node_preorder_data *data = user;
if (!node)
return NULL;
do {
isl_bool r;
r = data->fn(node, data->user);
if (r < 0)
return isl_schedule_node_free(node);
if (r == isl_bool_false)
return node;
} while (isl_schedule_node_has_children(node) &&
(node = isl_schedule_node_first_child(node)) != NULL);
return node;
}
/* Callback for "traverse" to leave a node
* for use in a preorder visit.
* Since we already visited the node when we entered it,
* we do not need to do anything here.
*/
static __isl_give isl_schedule_node *preorder_leave(
__isl_take isl_schedule_node *node, void *user)
{
return node;
}
/* Traverse the descendants of "node" (including the node itself)
* in depth first preorder.
*
* If "fn" returns -1 on any of the nodes, then the traversal is aborted.
* If "fn" returns 0 on any of the nodes, then the subtree rooted
* at that node is skipped.
*
* Return 0 on success and -1 on failure.
*/
isl_stat isl_schedule_node_foreach_descendant_top_down(
__isl_keep isl_schedule_node *node,
isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user),
void *user)
{
struct isl_schedule_node_preorder_data data = { fn, user };
node = isl_schedule_node_copy(node);
node = traverse(node, &preorder_enter, &preorder_leave, &data);
isl_schedule_node_free(node);
return node ? isl_stat_ok : isl_stat_error;
}
/* Internal data structure for isl_schedule_node_map_descendant_bottom_up.
*
* "fn" is the user-specified callback function.
* "user" is the user-specified argument for the callback.
*/
struct isl_schedule_node_postorder_data {
__isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
void *user);
void *user;
};
/* Callback for "traverse" to enter a node and to move
* to the deepest initial subtree that should be traversed
* for use in a postorder visit.
*
* Since we are performing a postorder visit, we only need
* to move to the deepest initial leaf here.
*/
static __isl_give isl_schedule_node *postorder_enter(
__isl_take isl_schedule_node *node, void *user)
{
while (node && isl_schedule_node_has_children(node))
node = isl_schedule_node_first_child(node);
return node;
}
/* Callback for "traverse" to leave a node
* for use in a postorder visit.
*
* Since we are performing a postorder visit, we need
* to call the user callback here.
*/
static __isl_give isl_schedule_node *postorder_leave(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_schedule_node_postorder_data *data = user;
return data->fn(node, data->user);
}
/* Traverse the descendants of "node" (including the node itself)
* in depth first postorder, allowing the user to modify the visited node.
* The traversal continues from the node returned by the callback function.
* It is the responsibility of the user to ensure that this does not
* lead to an infinite loop. It is safest to always return a pointer
* to the same position (same ancestors and child positions) as the input node.
*/
__isl_give isl_schedule_node *isl_schedule_node_map_descendant_bottom_up(
__isl_take isl_schedule_node *node,
__isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
void *user), void *user)
{
struct isl_schedule_node_postorder_data data = { fn, user };
return traverse(node, &postorder_enter, &postorder_leave, &data);
}
/* Traverse the ancestors of "node" from the root down to and including
* the parent of "node", calling "fn" on each of them.
*
* If "fn" returns -1 on any of the nodes, then the traversal is aborted.
*
* Return 0 on success and -1 on failure.
*/
isl_stat isl_schedule_node_foreach_ancestor_top_down(
__isl_keep isl_schedule_node *node,
isl_stat (*fn)(__isl_keep isl_schedule_node *node, void *user),
void *user)
{
int i, n;
if (!node)
return isl_stat_error;
n = isl_schedule_node_get_tree_depth(node);
for (i = 0; i < n; ++i) {
isl_schedule_node *ancestor;
isl_stat r;
ancestor = isl_schedule_node_copy(node);
ancestor = isl_schedule_node_ancestor(ancestor, n - i);
r = fn(ancestor, user);
isl_schedule_node_free(ancestor);
if (r < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Is any node in the subtree rooted at "node" anchored?
* That is, do any of these nodes reference the outer band nodes?
*/
isl_bool isl_schedule_node_is_subtree_anchored(
__isl_keep isl_schedule_node *node)
{
if (!node)
return isl_bool_error;
return isl_schedule_tree_is_subtree_anchored(node->tree);
}
/* Return the number of members in the given band node.
*/
unsigned isl_schedule_node_band_n_member(__isl_keep isl_schedule_node *node)
{
return node ? isl_schedule_tree_band_n_member(node->tree) : 0;
}
/* Is the band member at position "pos" of the band node "node"
* marked coincident?
*/
isl_bool isl_schedule_node_band_member_get_coincident(
__isl_keep isl_schedule_node *node, int pos)
{
if (!node)
return isl_bool_error;
return isl_schedule_tree_band_member_get_coincident(node->tree, pos);
}
/* Mark the band member at position "pos" the band node "node"
* as being coincident or not according to "coincident".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_member_set_coincident(
__isl_take isl_schedule_node *node, int pos, int coincident)
{
int c;
isl_schedule_tree *tree;
if (!node)
return NULL;
c = isl_schedule_node_band_member_get_coincident(node, pos);
if (c == coincident)
return node;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_band_member_set_coincident(tree, pos,
coincident);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Is the band node "node" marked permutable?
*/
isl_bool isl_schedule_node_band_get_permutable(
__isl_keep isl_schedule_node *node)
{
if (!node)
return isl_bool_error;
return isl_schedule_tree_band_get_permutable(node->tree);
}
/* Mark the band node "node" permutable or not according to "permutable"?
*/
__isl_give isl_schedule_node *isl_schedule_node_band_set_permutable(
__isl_take isl_schedule_node *node, int permutable)
{
isl_schedule_tree *tree;
if (!node)
return NULL;
if (isl_schedule_node_band_get_permutable(node) == permutable)
return node;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_band_set_permutable(tree, permutable);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Return the schedule space of the band node.
*/
__isl_give isl_space *isl_schedule_node_band_get_space(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_band_get_space(node->tree);
}
/* Return the schedule of the band node in isolation.
*/
__isl_give isl_multi_union_pw_aff *isl_schedule_node_band_get_partial_schedule(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_band_get_partial_schedule(node->tree);
}
/* Return the schedule of the band node in isolation in the form of
* an isl_union_map.
*
* If the band does not have any members, then we construct a universe map
* with the universe of the domain elements reaching the node as domain.
* Otherwise, we extract an isl_multi_union_pw_aff representation and
* convert that to an isl_union_map.
*/
__isl_give isl_union_map *isl_schedule_node_band_get_partial_schedule_union_map(
__isl_keep isl_schedule_node *node)
{
isl_multi_union_pw_aff *mupa;
if (!node)
return NULL;
if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a band node", return NULL);
if (isl_schedule_node_band_n_member(node) == 0) {
isl_union_set *domain;
domain = isl_schedule_node_get_universe_domain(node);
return isl_union_map_from_domain(domain);
}
mupa = isl_schedule_node_band_get_partial_schedule(node);
return isl_union_map_from_multi_union_pw_aff(mupa);
}
/* Return the loop AST generation type for the band member of band node "node"
* at position "pos".
*/
enum isl_ast_loop_type isl_schedule_node_band_member_get_ast_loop_type(
__isl_keep isl_schedule_node *node, int pos)
{
if (!node)
return isl_ast_loop_error;
return isl_schedule_tree_band_member_get_ast_loop_type(node->tree, pos);
}
/* Set the loop AST generation type for the band member of band node "node"
* at position "pos" to "type".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_member_set_ast_loop_type(
__isl_take isl_schedule_node *node, int pos,
enum isl_ast_loop_type type)
{
isl_schedule_tree *tree;
if (!node)
return NULL;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_band_member_set_ast_loop_type(tree, pos, type);
return isl_schedule_node_graft_tree(node, tree);
}
/* Return the loop AST generation type for the band member of band node "node"
* at position "pos" for the isolated part.
*/
enum isl_ast_loop_type isl_schedule_node_band_member_get_isolate_ast_loop_type(
__isl_keep isl_schedule_node *node, int pos)
{
if (!node)
return isl_ast_loop_error;
return isl_schedule_tree_band_member_get_isolate_ast_loop_type(
node->tree, pos);
}
/* Set the loop AST generation type for the band member of band node "node"
* at position "pos" for the isolated part to "type".
*/
__isl_give isl_schedule_node *
isl_schedule_node_band_member_set_isolate_ast_loop_type(
__isl_take isl_schedule_node *node, int pos,
enum isl_ast_loop_type type)
{
isl_schedule_tree *tree;
if (!node)
return NULL;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_band_member_set_isolate_ast_loop_type(tree,
pos, type);
return isl_schedule_node_graft_tree(node, tree);
}
/* Return the AST build options associated to band node "node".
*/
__isl_give isl_union_set *isl_schedule_node_band_get_ast_build_options(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_band_get_ast_build_options(node->tree);
}
/* Replace the AST build options associated to band node "node" by "options".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_set_ast_build_options(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *options)
{
isl_schedule_tree *tree;
if (!node || !options)
goto error;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_band_set_ast_build_options(tree, options);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_schedule_node_free(node);
isl_union_set_free(options);
return NULL;
}
/* Make sure that that spaces of "node" and "mv" are the same.
* Return -1 on error, reporting the error to the user.
*/
static int check_space_multi_val(__isl_keep isl_schedule_node *node,
__isl_keep isl_multi_val *mv)
{
isl_space *node_space, *mv_space;
int equal;
node_space = isl_schedule_node_band_get_space(node);
mv_space = isl_multi_val_get_space(mv);
equal = isl_space_tuple_is_equal(node_space, isl_dim_set,
mv_space, isl_dim_set);
isl_space_free(mv_space);
isl_space_free(node_space);
if (equal < 0)
return -1;
if (!equal)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"spaces don't match", return -1);
return 0;
}
/* Multiply the partial schedule of the band node "node"
* with the factors in "mv".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_scale(
__isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv)
{
isl_schedule_tree *tree;
int anchored;
if (!node || !mv)
goto error;
if (check_space_multi_val(node, mv) < 0)
goto error;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
goto error;
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot scale band node with anchored subtree",
goto error);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_scale(tree, mv);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_multi_val_free(mv);
isl_schedule_node_free(node);
return NULL;
}
/* Divide the partial schedule of the band node "node"
* by the factors in "mv".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_scale_down(
__isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv)
{
isl_schedule_tree *tree;
int anchored;
if (!node || !mv)
goto error;
if (check_space_multi_val(node, mv) < 0)
goto error;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
goto error;
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot scale down band node with anchored subtree",
goto error);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_scale_down(tree, mv);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_multi_val_free(mv);
isl_schedule_node_free(node);
return NULL;
}
/* Reduce the partial schedule of the band node "node"
* modulo the factors in "mv".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_mod(
__isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv)
{
isl_schedule_tree *tree;
isl_bool anchored;
if (!node || !mv)
goto error;
if (check_space_multi_val(node, mv) < 0)
goto error;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
goto error;
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot perform mod on band node with anchored subtree",
goto error);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_mod(tree, mv);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_multi_val_free(mv);
isl_schedule_node_free(node);
return NULL;
}
/* Make sure that that spaces of "node" and "mupa" are the same.
* Return isl_stat_error on error, reporting the error to the user.
*/
static isl_stat check_space_multi_union_pw_aff(
__isl_keep isl_schedule_node *node,
__isl_keep isl_multi_union_pw_aff *mupa)
{
isl_space *node_space, *mupa_space;
isl_bool equal;
node_space = isl_schedule_node_band_get_space(node);
mupa_space = isl_multi_union_pw_aff_get_space(mupa);
equal = isl_space_tuple_is_equal(node_space, isl_dim_set,
mupa_space, isl_dim_set);
isl_space_free(mupa_space);
isl_space_free(node_space);
if (equal < 0)
return isl_stat_error;
if (!equal)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"spaces don't match", return isl_stat_error);
return isl_stat_ok;
}
/* Shift the partial schedule of the band node "node" by "shift".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_shift(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_union_pw_aff *shift)
{
isl_schedule_tree *tree;
int anchored;
if (!node || !shift)
goto error;
if (check_space_multi_union_pw_aff(node, shift) < 0)
goto error;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
goto error;
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot shift band node with anchored subtree",
goto error);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_shift(tree, shift);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_multi_union_pw_aff_free(shift);
isl_schedule_node_free(node);
return NULL;
}
/* Tile "node" with tile sizes "sizes".
*
* The current node is replaced by two nested nodes corresponding
* to the tile dimensions and the point dimensions.
*
* Return a pointer to the outer (tile) node.
*
* If any of the descendants of "node" depend on the set of outer band nodes,
* then we refuse to tile the node.
*
* If the scale tile loops option is set, then the tile loops
* are scaled by the tile sizes. If the shift point loops option is set,
* then the point loops are shifted to start at zero.
* In particular, these options affect the tile and point loop schedules
* as follows
*
* scale shift original tile point
*
* 0 0 i floor(i/s) i
* 1 0 i s * floor(i/s) i
* 0 1 i floor(i/s) i - s * floor(i/s)
* 1 1 i s * floor(i/s) i - s * floor(i/s)
*/
__isl_give isl_schedule_node *isl_schedule_node_band_tile(
__isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
{
isl_schedule_tree *tree;
int anchored;
if (!node || !sizes)
goto error;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
goto error;
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot tile band node with anchored subtree",
goto error);
if (check_space_multi_val(node, sizes) < 0)
goto error;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_tile(tree, sizes);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_multi_val_free(sizes);
isl_schedule_node_free(node);
return NULL;
}
/* Move the band node "node" down to all the leaves in the subtree
* rooted at "node".
* Return a pointer to the node in the resulting tree that is in the same
* position as the node pointed to by "node" in the original tree.
*
* If the node only has a leaf child, then nothing needs to be done.
* Otherwise, the child of the node is removed and the result is
* appended to all the leaves in the subtree rooted at the original child.
* Since the node is moved to the leaves, it needs to be expanded
* according to the expansion, if any, defined by that subtree.
* In the end, the original node is replaced by the result of
* attaching copies of the expanded node to the leaves.
*
* If any of the nodes in the subtree rooted at "node" depend on
* the set of outer band nodes then we refuse to sink the band node.
*/
__isl_give isl_schedule_node *isl_schedule_node_band_sink(
__isl_take isl_schedule_node *node)
{
enum isl_schedule_node_type type;
isl_schedule_tree *tree, *child;
isl_union_pw_multi_aff *contraction;
int anchored;
if (!node)
return NULL;
type = isl_schedule_node_get_type(node);
if (type != isl_schedule_node_band)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a band node", isl_schedule_node_free(node));
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
return isl_schedule_node_free(node);
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot sink band node in anchored subtree",
isl_schedule_node_free(node));
if (isl_schedule_tree_n_children(node->tree) == 0)
return node;
contraction = isl_schedule_node_get_subtree_contraction(node);
tree = isl_schedule_node_get_tree(node);
child = isl_schedule_tree_get_child(tree, 0);
tree = isl_schedule_tree_reset_children(tree);
tree = isl_schedule_tree_pullback_union_pw_multi_aff(tree, contraction);
tree = isl_schedule_tree_append_to_leaves(child, tree);
return isl_schedule_node_graft_tree(node, tree);
}
/* Split "node" into two nested band nodes, one with the first "pos"
* dimensions and one with the remaining dimensions.
* The schedules of the two band nodes live in anonymous spaces.
*/
__isl_give isl_schedule_node *isl_schedule_node_band_split(
__isl_take isl_schedule_node *node, int pos)
{
isl_schedule_tree *tree;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_split(tree, pos);
return isl_schedule_node_graft_tree(node, tree);
}
/* Return the context of the context node "node".
*/
__isl_give isl_set *isl_schedule_node_context_get_context(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_context_get_context(node->tree);
}
/* Return the domain of the domain node "node".
*/
__isl_give isl_union_set *isl_schedule_node_domain_get_domain(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_domain_get_domain(node->tree);
}
/* Return the expansion map of expansion node "node".
*/
__isl_give isl_union_map *isl_schedule_node_expansion_get_expansion(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_expansion_get_expansion(node->tree);
}
/* Return the contraction of expansion node "node".
*/
__isl_give isl_union_pw_multi_aff *isl_schedule_node_expansion_get_contraction(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_expansion_get_contraction(node->tree);
}
/* Replace the contraction and the expansion of the expansion node "node"
* by "contraction" and "expansion".
*/
__isl_give isl_schedule_node *
isl_schedule_node_expansion_set_contraction_and_expansion(
__isl_take isl_schedule_node *node,
__isl_take isl_union_pw_multi_aff *contraction,
__isl_take isl_union_map *expansion)
{
isl_schedule_tree *tree;
if (!node || !contraction || !expansion)
goto error;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree,
contraction, expansion);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_schedule_node_free(node);
isl_union_pw_multi_aff_free(contraction);
isl_union_map_free(expansion);
return NULL;
}
/* Return the extension of the extension node "node".
*/
__isl_give isl_union_map *isl_schedule_node_extension_get_extension(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_extension_get_extension(node->tree);
}
/* Replace the extension of extension node "node" by "extension".
*/
__isl_give isl_schedule_node *isl_schedule_node_extension_set_extension(
__isl_take isl_schedule_node *node, __isl_take isl_union_map *extension)
{
isl_schedule_tree *tree;
if (!node || !extension)
goto error;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_extension_set_extension(tree, extension);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_schedule_node_free(node);
isl_union_map_free(extension);
return NULL;
}
/* Return the filter of the filter node "node".
*/
__isl_give isl_union_set *isl_schedule_node_filter_get_filter(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_filter_get_filter(node->tree);
}
/* Replace the filter of filter node "node" by "filter".
*/
__isl_give isl_schedule_node *isl_schedule_node_filter_set_filter(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
{
isl_schedule_tree *tree;
if (!node || !filter)
goto error;
tree = isl_schedule_tree_copy(node->tree);
tree = isl_schedule_tree_filter_set_filter(tree, filter);
return isl_schedule_node_graft_tree(node, tree);
error:
isl_schedule_node_free(node);
isl_union_set_free(filter);
return NULL;
}
/* Intersect the filter of filter node "node" with "filter".
*
* If the filter of the node is already a subset of "filter",
* then leave the node unchanged.
*/
__isl_give isl_schedule_node *isl_schedule_node_filter_intersect_filter(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
{
isl_union_set *node_filter = NULL;
isl_bool subset;
if (!node || !filter)
goto error;
node_filter = isl_schedule_node_filter_get_filter(node);
subset = isl_union_set_is_subset(node_filter, filter);
if (subset < 0)
goto error;
if (subset) {
isl_union_set_free(node_filter);
isl_union_set_free(filter);
return node;
}
node_filter = isl_union_set_intersect(node_filter, filter);
node = isl_schedule_node_filter_set_filter(node, node_filter);
return node;
error:
isl_schedule_node_free(node);
isl_union_set_free(node_filter);
isl_union_set_free(filter);
return NULL;
}
/* Return the guard of the guard node "node".
*/
__isl_give isl_set *isl_schedule_node_guard_get_guard(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_guard_get_guard(node->tree);
}
/* Return the mark identifier of the mark node "node".
*/
__isl_give isl_id *isl_schedule_node_mark_get_id(
__isl_keep isl_schedule_node *node)
{
if (!node)
return NULL;
return isl_schedule_tree_mark_get_id(node->tree);
}
/* Replace the child at position "pos" of the sequence node "node"
* by the children of sequence root node of "tree".
*/
__isl_give isl_schedule_node *isl_schedule_node_sequence_splice(
__isl_take isl_schedule_node *node, int pos,
__isl_take isl_schedule_tree *tree)
{
isl_schedule_tree *node_tree;
if (!node || !tree)
goto error;
if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a sequence node", goto error);
if (isl_schedule_tree_get_type(tree) != isl_schedule_node_sequence)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a sequence node", goto error);
node_tree = isl_schedule_node_get_tree(node);
node_tree = isl_schedule_tree_sequence_splice(node_tree, pos, tree);
node = isl_schedule_node_graft_tree(node, node_tree);
return node;
error:
isl_schedule_node_free(node);
isl_schedule_tree_free(tree);
return NULL;
}
/* Given a sequence node "node", with a child at position "pos" that
* is also a sequence node, attach the children of that node directly
* as children of "node" at that position, replacing the original child.
*
* The filters of these children are intersected with the filter
* of the child at position "pos".
*/
__isl_give isl_schedule_node *isl_schedule_node_sequence_splice_child(
__isl_take isl_schedule_node *node, int pos)
{
int i, n;
isl_union_set *filter;
isl_schedule_node *child;
isl_schedule_tree *tree;
if (!node)
return NULL;
if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a sequence node", isl_schedule_node_free(node));
node = isl_schedule_node_child(node, pos);
node = isl_schedule_node_child(node, 0);
if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a sequence node", isl_schedule_node_free(node));
child = isl_schedule_node_copy(node);
node = isl_schedule_node_parent(node);
filter = isl_schedule_node_filter_get_filter(node);
n = isl_schedule_node_n_children(child);
for (i = 0; i < n; ++i) {
child = isl_schedule_node_child(child, i);
child = isl_schedule_node_filter_intersect_filter(child,
isl_union_set_copy(filter));
child = isl_schedule_node_parent(child);
}
isl_union_set_free(filter);
tree = isl_schedule_node_get_tree(child);
isl_schedule_node_free(child);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_sequence_splice(node, pos, tree);
return node;
}
/* Update the ancestors of "node" to point to the tree that "node"
* now points to.
* That is, replace the child in the original parent that corresponds
* to the current tree position by node->tree and continue updating
* the ancestors in the same way until the root is reached.
*
* If "fn" is not NULL, then it is called on each ancestor as we move up
* the tree so that it can modify the ancestor before it is added
* to the list of ancestors of the modified node.
* The additional "pos" argument records the position
* of the "tree" argument in the original schedule tree.
*
* If "node" originally points to a leaf of the schedule tree, then make sure
* that in the end it points to a leaf in the updated schedule tree.
*/
static __isl_give isl_schedule_node *update_ancestors(
__isl_take isl_schedule_node *node,
__isl_give isl_schedule_tree *(*fn)(__isl_take isl_schedule_tree *tree,
__isl_keep isl_schedule_node *pos, void *user), void *user)
{
int i, n;
int is_leaf;
isl_ctx *ctx;
isl_schedule_tree *tree;
isl_schedule_node *pos = NULL;
if (fn)
pos = isl_schedule_node_copy(node);
node = isl_schedule_node_cow(node);
if (!node)
return isl_schedule_node_free(pos);
ctx = isl_schedule_node_get_ctx(node);
n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
tree = isl_schedule_tree_copy(node->tree);
for (i = n - 1; i >= 0; --i) {
isl_schedule_tree *parent;
parent = isl_schedule_tree_list_get_schedule_tree(
node->ancestors, i);
parent = isl_schedule_tree_replace_child(parent,
node->child_pos[i], tree);
if (fn) {
pos = isl_schedule_node_parent(pos);
parent = fn(parent, pos, user);
}
node->ancestors = isl_schedule_tree_list_set_schedule_tree(
node->ancestors, i, isl_schedule_tree_copy(parent));
tree = parent;
}
if (fn)
isl_schedule_node_free(pos);
is_leaf = isl_schedule_tree_is_leaf(node->tree);
node->schedule = isl_schedule_set_root(node->schedule, tree);
if (is_leaf) {
isl_schedule_tree_free(node->tree);
node->tree = isl_schedule_node_get_leaf(node);
}
if (!node->schedule || !node->ancestors)
return isl_schedule_node_free(node);
return node;
}
/* Replace the subtree that "pos" points to by "tree", updating
* the ancestors to maintain a consistent state.
*/
__isl_give isl_schedule_node *isl_schedule_node_graft_tree(
__isl_take isl_schedule_node *pos, __isl_take isl_schedule_tree *tree)
{
if (!tree || !pos)
goto error;
if (pos->tree == tree) {
isl_schedule_tree_free(tree);
return pos;
}
pos = isl_schedule_node_cow(pos);
if (!pos)
goto error;
isl_schedule_tree_free(pos->tree);
pos->tree = tree;
return update_ancestors(pos, NULL, NULL);
error:
isl_schedule_node_free(pos);
isl_schedule_tree_free(tree);
return NULL;
}
/* Make sure we can insert a node between "node" and its parent.
* Return -1 on error, reporting the reason why we cannot insert a node.
*/
static int check_insert(__isl_keep isl_schedule_node *node)
{
int has_parent;
enum isl_schedule_node_type type;
has_parent = isl_schedule_node_has_parent(node);
if (has_parent < 0)
return -1;
if (!has_parent)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot insert node outside of root", return -1);
type = isl_schedule_node_get_parent_type(node);
if (type == isl_schedule_node_error)
return -1;
if (type == isl_schedule_node_set || type == isl_schedule_node_sequence)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot insert node between set or sequence node "
"and its filter children", return -1);
return 0;
}
/* Insert a band node with partial schedule "mupa" between "node" and
* its parent.
* Return a pointer to the new band node.
*
* If any of the nodes in the subtree rooted at "node" depend on
* the set of outer band nodes then we refuse to insert the band node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_partial_schedule(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_union_pw_aff *mupa)
{
int anchored;
isl_schedule_band *band;
isl_schedule_tree *tree;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
goto error;
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot insert band node in anchored subtree",
goto error);
tree = isl_schedule_node_get_tree(node);
band = isl_schedule_band_from_multi_union_pw_aff(mupa);
tree = isl_schedule_tree_insert_band(tree, band);
node = isl_schedule_node_graft_tree(node, tree);
return node;
error:
isl_schedule_node_free(node);
isl_multi_union_pw_aff_free(mupa);
return NULL;
}
/* Insert a context node with context "context" between "node" and its parent.
* Return a pointer to the new context node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_context(
__isl_take isl_schedule_node *node, __isl_take isl_set *context)
{
isl_schedule_tree *tree;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_insert_context(tree, context);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Insert an expansion node with the given "contraction" and "expansion"
* between "node" and its parent.
* Return a pointer to the new expansion node.
*
* Typically the domain and range spaces of the expansion are different.
* This means that only one of them can refer to the current domain space
* in a consistent tree. It is up to the caller to ensure that the tree
* returns to a consistent state.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_expansion(
__isl_take isl_schedule_node *node,
__isl_take isl_union_pw_multi_aff *contraction,
__isl_take isl_union_map *expansion)
{
isl_schedule_tree *tree;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_insert_expansion(tree, contraction, expansion);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Insert an extension node with extension "extension" between "node" and
* its parent.
* Return a pointer to the new extension node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_extension(
__isl_take isl_schedule_node *node,
__isl_take isl_union_map *extension)
{
isl_schedule_tree *tree;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_insert_extension(tree, extension);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Insert a filter node with filter "filter" between "node" and its parent.
* Return a pointer to the new filter node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_filter(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
{
isl_schedule_tree *tree;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_insert_filter(tree, filter);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Insert a guard node with guard "guard" between "node" and its parent.
* Return a pointer to the new guard node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_guard(
__isl_take isl_schedule_node *node, __isl_take isl_set *guard)
{
isl_schedule_tree *tree;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_insert_guard(tree, guard);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Insert a mark node with mark identifier "mark" between "node" and
* its parent.
* Return a pointer to the new mark node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_mark(
__isl_take isl_schedule_node *node, __isl_take isl_id *mark)
{
isl_schedule_tree *tree;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_insert_mark(tree, mark);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Attach the current subtree of "node" to a sequence of filter tree nodes
* with filters described by "filters", attach this sequence
* of filter tree nodes as children to a new tree of type "type" and
* replace the original subtree of "node" by this new tree.
* Each copy of the original subtree is simplified with respect
* to the corresponding filter.
*/
static __isl_give isl_schedule_node *isl_schedule_node_insert_children(
__isl_take isl_schedule_node *node,
enum isl_schedule_node_type type,
__isl_take isl_union_set_list *filters)
{
int i, n;
isl_ctx *ctx;
isl_schedule_tree *tree;
isl_schedule_tree_list *list;
if (check_insert(node) < 0)
node = isl_schedule_node_free(node);
if (!node || !filters)
goto error;
ctx = isl_schedule_node_get_ctx(node);
n = isl_union_set_list_n_union_set(filters);
list = isl_schedule_tree_list_alloc(ctx, n);
for (i = 0; i < n; ++i) {
isl_schedule_node *node_i;
isl_schedule_tree *tree;
isl_union_set *filter;
filter = isl_union_set_list_get_union_set(filters, i);
node_i = isl_schedule_node_copy(node);
node_i = isl_schedule_node_gist(node_i,
isl_union_set_copy(filter));
tree = isl_schedule_node_get_tree(node_i);
isl_schedule_node_free(node_i);
tree = isl_schedule_tree_insert_filter(tree, filter);
list = isl_schedule_tree_list_add(list, tree);
}
tree = isl_schedule_tree_from_children(type, list);
node = isl_schedule_node_graft_tree(node, tree);
isl_union_set_list_free(filters);
return node;
error:
isl_union_set_list_free(filters);
isl_schedule_node_free(node);
return NULL;
}
/* Insert a sequence node with child filters "filters" between "node" and
* its parent. That is, the tree that "node" points to is attached
* to each of the child nodes of the filter nodes.
* Return a pointer to the new sequence node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_sequence(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set_list *filters)
{
return isl_schedule_node_insert_children(node,
isl_schedule_node_sequence, filters);
}
/* Insert a set node with child filters "filters" between "node" and
* its parent. That is, the tree that "node" points to is attached
* to each of the child nodes of the filter nodes.
* Return a pointer to the new set node.
*/
__isl_give isl_schedule_node *isl_schedule_node_insert_set(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set_list *filters)
{
return isl_schedule_node_insert_children(node,
isl_schedule_node_set, filters);
}
/* Remove "node" from its schedule tree and return a pointer
* to the leaf at the same position in the updated schedule tree.
*
* It is not allowed to remove the root of a schedule tree or
* a child of a set or sequence node.
*/
__isl_give isl_schedule_node *isl_schedule_node_cut(
__isl_take isl_schedule_node *node)
{
isl_schedule_tree *leaf;
enum isl_schedule_node_type parent_type;
if (!node)
return NULL;
if (!isl_schedule_node_has_parent(node))
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot cut root", return isl_schedule_node_free(node));
parent_type = isl_schedule_node_get_parent_type(node);
if (parent_type == isl_schedule_node_set ||
parent_type == isl_schedule_node_sequence)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot cut child of set or sequence",
return isl_schedule_node_free(node));
leaf = isl_schedule_node_get_leaf(node);
return isl_schedule_node_graft_tree(node, leaf);
}
/* Remove a single node from the schedule tree, attaching the child
* of "node" directly to its parent.
* Return a pointer to this former child or to the leaf the position
* of the original node if there was no child.
* It is not allowed to remove the root of a schedule tree,
* a set or sequence node, a child of a set or sequence node or
* a band node with an anchored subtree.
*/
__isl_give isl_schedule_node *isl_schedule_node_delete(
__isl_take isl_schedule_node *node)
{
int n;
isl_schedule_tree *tree;
enum isl_schedule_node_type type;
if (!node)
return NULL;
if (isl_schedule_node_get_tree_depth(node) == 0)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot delete root node",
return isl_schedule_node_free(node));
n = isl_schedule_node_n_children(node);
if (n != 1)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"can only delete node with a single child",
return isl_schedule_node_free(node));
type = isl_schedule_node_get_parent_type(node);
if (type == isl_schedule_node_sequence || type == isl_schedule_node_set)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"cannot delete child of set or sequence",
return isl_schedule_node_free(node));
if (isl_schedule_node_get_type(node) == isl_schedule_node_band) {
int anchored;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
return isl_schedule_node_free(node);
if (anchored)
isl_die(isl_schedule_node_get_ctx(node),
isl_error_invalid,
"cannot delete band node with anchored subtree",
return isl_schedule_node_free(node));
}
tree = isl_schedule_node_get_tree(node);
if (!tree || isl_schedule_tree_has_children(tree)) {
tree = isl_schedule_tree_child(tree, 0);
} else {
isl_schedule_tree_free(tree);
tree = isl_schedule_node_get_leaf(node);
}
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Internal data structure for the group_ancestor callback.
*
* If "finished" is set, then we no longer need to modify
* any further ancestors.
*
* "contraction" and "expansion" represent the expansion
* that reflects the grouping.
*
* "domain" contains the domain elements that reach the position
* where the grouping is performed. That is, it is the range
* of the resulting expansion.
* "domain_universe" is the universe of "domain".
* "group" is the set of group elements, i.e., the domain
* of the resulting expansion.
* "group_universe" is the universe of "group".
*
* "sched" is the schedule for the group elements, in pratice
* an identity mapping on "group_universe".
* "dim" is the dimension of "sched".
*/
struct isl_schedule_group_data {
int finished;
isl_union_map *expansion;
isl_union_pw_multi_aff *contraction;
isl_union_set *domain;
isl_union_set *domain_universe;
isl_union_set *group;
isl_union_set *group_universe;
int dim;
isl_multi_aff *sched;
};
/* Is domain covered by data->domain within data->domain_universe?
*/
static int locally_covered_by_domain(__isl_keep isl_union_set *domain,
struct isl_schedule_group_data *data)
{
int is_subset;
isl_union_set *test;
test = isl_union_set_copy(domain);
test = isl_union_set_intersect(test,
isl_union_set_copy(data->domain_universe));
is_subset = isl_union_set_is_subset(test, data->domain);
isl_union_set_free(test);
return is_subset;
}
/* Update the band tree root "tree" to refer to the group instances
* in data->group rather than the original domain elements in data->domain.
* "pos" is the position in the original schedule tree where the modified
* "tree" will be attached.
*
* Add the part of the identity schedule on the group instances data->sched
* that corresponds to this band node to the band schedule.
* If the domain elements that reach the node and that are part
* of data->domain_universe are all elements of data->domain (and therefore
* replaced by the group instances) then this data->domain_universe
* is removed from the domain of the band schedule.
*/
static __isl_give isl_schedule_tree *group_band(
__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
struct isl_schedule_group_data *data)
{
isl_union_set *domain;
isl_multi_aff *ma;
isl_multi_union_pw_aff *mupa, *partial;
int is_covered;
int depth, n, has_id;
domain = isl_schedule_node_get_domain(pos);
is_covered = locally_covered_by_domain(domain, data);
if (is_covered >= 0 && is_covered) {
domain = isl_union_set_universe(domain);
domain = isl_union_set_subtract(domain,
isl_union_set_copy(data->domain_universe));
tree = isl_schedule_tree_band_intersect_domain(tree, domain);
} else
isl_union_set_free(domain);
if (is_covered < 0)
return isl_schedule_tree_free(tree);
depth = isl_schedule_node_get_schedule_depth(pos);
n = isl_schedule_tree_band_n_member(tree);
ma = isl_multi_aff_copy(data->sched);
ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, depth);
ma = isl_multi_aff_drop_dims(ma, isl_dim_out, n, data->dim - depth - n);
mupa = isl_multi_union_pw_aff_from_multi_aff(ma);
partial = isl_schedule_tree_band_get_partial_schedule(tree);
has_id = isl_multi_union_pw_aff_has_tuple_id(partial, isl_dim_set);
if (has_id < 0) {
partial = isl_multi_union_pw_aff_free(partial);
} else if (has_id) {
isl_id *id;
id = isl_multi_union_pw_aff_get_tuple_id(partial, isl_dim_set);
mupa = isl_multi_union_pw_aff_set_tuple_id(mupa,
isl_dim_set, id);
}
partial = isl_multi_union_pw_aff_union_add(partial, mupa);
tree = isl_schedule_tree_band_set_partial_schedule(tree, partial);
return tree;
}
/* Drop the parameters in "uset" that are not also in "space".
* "n" is the number of parameters in "space".
*/
static __isl_give isl_union_set *union_set_drop_extra_params(
__isl_take isl_union_set *uset, __isl_keep isl_space *space, int n)
{
int n2;
uset = isl_union_set_align_params(uset, isl_space_copy(space));
n2 = isl_union_set_dim(uset, isl_dim_param);
uset = isl_union_set_project_out(uset, isl_dim_param, n, n2 - n);
return uset;
}
/* Update the context tree root "tree" to refer to the group instances
* in data->group rather than the original domain elements in data->domain.
* "pos" is the position in the original schedule tree where the modified
* "tree" will be attached.
*
* We do not actually need to update "tree" since a context node only
* refers to the schedule space. However, we may need to update "data"
* to not refer to any parameters introduced by the context node.
*/
static __isl_give isl_schedule_tree *group_context(
__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
struct isl_schedule_group_data *data)
{
isl_space *space;
isl_union_set *domain;
int n1, n2;
int involves;
if (isl_schedule_node_get_tree_depth(pos) == 1)
return tree;
domain = isl_schedule_node_get_universe_domain(pos);
space = isl_union_set_get_space(domain);
isl_union_set_free(domain);
n1 = isl_space_dim(space, isl_dim_param);
data->expansion = isl_union_map_align_params(data->expansion, space);
n2 = isl_union_map_dim(data->expansion, isl_dim_param);
if (!data->expansion)
return isl_schedule_tree_free(tree);
if (n1 == n2)
return tree;
involves = isl_union_map_involves_dims(data->expansion,
isl_dim_param, n1, n2 - n1);
if (involves < 0)
return isl_schedule_tree_free(tree);
if (involves)
isl_die(isl_schedule_node_get_ctx(pos), isl_error_invalid,
"grouping cannot only refer to global parameters",
return isl_schedule_tree_free(tree));
data->expansion = isl_union_map_project_out(data->expansion,
isl_dim_param, n1, n2 - n1);
space = isl_union_map_get_space(data->expansion);
data->contraction = isl_union_pw_multi_aff_align_params(
data->contraction, isl_space_copy(space));
n2 = isl_union_pw_multi_aff_dim(data->contraction, isl_dim_param);
data->contraction = isl_union_pw_multi_aff_drop_dims(data->contraction,
isl_dim_param, n1, n2 - n1);
data->domain = union_set_drop_extra_params(data->domain, space, n1);
data->domain_universe =
union_set_drop_extra_params(data->domain_universe, space, n1);
data->group = union_set_drop_extra_params(data->group, space, n1);
data->group_universe =
union_set_drop_extra_params(data->group_universe, space, n1);
data->sched = isl_multi_aff_align_params(data->sched,
isl_space_copy(space));
n2 = isl_multi_aff_dim(data->sched, isl_dim_param);
data->sched = isl_multi_aff_drop_dims(data->sched,
isl_dim_param, n1, n2 - n1);
isl_space_free(space);
return tree;
}
/* Update the domain tree root "tree" to refer to the group instances
* in data->group rather than the original domain elements in data->domain.
* "pos" is the position in the original schedule tree where the modified
* "tree" will be attached.
*
* We first double-check that all grouped domain elements are actually
* part of the root domain and then replace those elements by the group
* instances.
*/
static __isl_give isl_schedule_tree *group_domain(
__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
struct isl_schedule_group_data *data)
{
isl_union_set *domain;
int is_subset;
domain = isl_schedule_tree_domain_get_domain(tree);
is_subset = isl_union_set_is_subset(data->domain, domain);
isl_union_set_free(domain);
if (is_subset < 0)
return isl_schedule_tree_free(tree);
if (!is_subset)
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
"grouped domain should be part of outer domain",
return isl_schedule_tree_free(tree));
domain = isl_schedule_tree_domain_get_domain(tree);
domain = isl_union_set_subtract(domain,
isl_union_set_copy(data->domain));
domain = isl_union_set_union(domain, isl_union_set_copy(data->group));
tree = isl_schedule_tree_domain_set_domain(tree, domain);
return tree;
}
/* Update the expansion tree root "tree" to refer to the group instances
* in data->group rather than the original domain elements in data->domain.
* "pos" is the position in the original schedule tree where the modified
* "tree" will be attached.
*
* Let G_1 -> D_1 be the expansion of "tree" and G_2 -> D_2 the newly
* introduced expansion in a descendant of "tree".
* We first double-check that D_2 is a subset of D_1.
* Then we remove D_2 from the range of G_1 -> D_1 and add the mapping
* G_1 -> D_1 . D_2 -> G_2.
* Simmilarly, we restrict the domain of the contraction to the universe
* of the range of the updated expansion and add G_2 -> D_2 . D_1 -> G_1,
* attempting to remove the domain constraints of this additional part.
*/
static __isl_give isl_schedule_tree *group_expansion(
__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
struct isl_schedule_group_data *data)
{
isl_union_set *domain;
isl_union_map *expansion, *umap;
isl_union_pw_multi_aff *contraction, *upma;
int is_subset;
expansion = isl_schedule_tree_expansion_get_expansion(tree);
domain = isl_union_map_range(expansion);
is_subset = isl_union_set_is_subset(data->domain, domain);
isl_union_set_free(domain);
if (is_subset < 0)
return isl_schedule_tree_free(tree);
if (!is_subset)
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
"grouped domain should be part "
"of outer expansion domain",
return isl_schedule_tree_free(tree));
expansion = isl_schedule_tree_expansion_get_expansion(tree);
umap = isl_union_map_from_union_pw_multi_aff(
isl_union_pw_multi_aff_copy(data->contraction));
umap = isl_union_map_apply_range(expansion, umap);
expansion = isl_schedule_tree_expansion_get_expansion(tree);
expansion = isl_union_map_subtract_range(expansion,
isl_union_set_copy(data->domain));
expansion = isl_union_map_union(expansion, umap);
umap = isl_union_map_universe(isl_union_map_copy(expansion));
domain = isl_union_map_range(umap);
contraction = isl_schedule_tree_expansion_get_contraction(tree);
umap = isl_union_map_from_union_pw_multi_aff(contraction);
umap = isl_union_map_apply_range(isl_union_map_copy(data->expansion),
umap);
upma = isl_union_pw_multi_aff_from_union_map(umap);
contraction = isl_schedule_tree_expansion_get_contraction(tree);
contraction = isl_union_pw_multi_aff_intersect_domain(contraction,
domain);
domain = isl_union_pw_multi_aff_domain(
isl_union_pw_multi_aff_copy(upma));
upma = isl_union_pw_multi_aff_gist(upma, domain);
contraction = isl_union_pw_multi_aff_union_add(contraction, upma);
tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree,
contraction, expansion);
return tree;
}
/* Update the tree root "tree" to refer to the group instances
* in data->group rather than the original domain elements in data->domain.
* "pos" is the position in the original schedule tree where the modified
* "tree" will be attached.
*
* If we have come across a domain or expansion node before (data->finished
* is set), then we no longer need perform any modifications.
*
* If "tree" is a filter, then we add data->group_universe to the filter.
* We also remove data->domain_universe from the filter if all the domain
* elements in this universe that reach the filter node are part of
* the elements that are being grouped by data->expansion.
* If "tree" is a band, domain or expansion, then it is handled
* in a separate function.
*/
static __isl_give isl_schedule_tree *group_ancestor(
__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
void *user)
{
struct isl_schedule_group_data *data = user;
isl_union_set *domain;
int is_covered;
if (!tree || !pos)
return isl_schedule_tree_free(tree);
if (data->finished)
return tree;
switch (isl_schedule_tree_get_type(tree)) {
case isl_schedule_node_error:
return isl_schedule_tree_free(tree);
case isl_schedule_node_extension:
isl_die(isl_schedule_tree_get_ctx(tree), isl_error_unsupported,
"grouping not allowed in extended tree",
return isl_schedule_tree_free(tree));
case isl_schedule_node_band:
tree = group_band(tree, pos, data);
break;
case isl_schedule_node_context:
tree = group_context(tree, pos, data);
break;
case isl_schedule_node_domain:
tree = group_domain(tree, pos, data);
data->finished = 1;
break;
case isl_schedule_node_filter:
domain = isl_schedule_node_get_domain(pos);
is_covered = locally_covered_by_domain(domain, data);
isl_union_set_free(domain);
if (is_covered < 0)
return isl_schedule_tree_free(tree);
domain = isl_schedule_tree_filter_get_filter(tree);
if (is_covered)
domain = isl_union_set_subtract(domain,
isl_union_set_copy(data->domain_universe));
domain = isl_union_set_union(domain,
isl_union_set_copy(data->group_universe));
tree = isl_schedule_tree_filter_set_filter(tree, domain);
break;
case isl_schedule_node_expansion:
tree = group_expansion(tree, pos, data);
data->finished = 1;
break;
case isl_schedule_node_leaf:
case isl_schedule_node_guard:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
}
return tree;
}
/* Group the domain elements that reach "node" into instances
* of a single statement with identifier "group_id".
* In particular, group the domain elements according to their
* prefix schedule.
*
* That is, introduce an expansion node with as contraction
* the prefix schedule (with the target space replaced by "group_id")
* and as expansion the inverse of this contraction (with its range
* intersected with the domain elements that reach "node").
* The outer nodes are then modified to refer to the group instances
* instead of the original domain elements.
*
* No instance of "group_id" is allowed to reach "node" prior
* to the grouping.
* No ancestor of "node" is allowed to be an extension node.
*
* Return a pointer to original node in tree, i.e., the child
* of the newly introduced expansion node.
*/
__isl_give isl_schedule_node *isl_schedule_node_group(
__isl_take isl_schedule_node *node, __isl_take isl_id *group_id)
{
struct isl_schedule_group_data data = { 0 };
isl_space *space;
isl_union_set *domain;
isl_union_pw_multi_aff *contraction;
isl_union_map *expansion;
int disjoint;
if (!node || !group_id)
goto error;
if (check_insert(node) < 0)
goto error;
domain = isl_schedule_node_get_domain(node);
data.domain = isl_union_set_copy(domain);
data.domain_universe = isl_union_set_copy(domain);
data.domain_universe = isl_union_set_universe(data.domain_universe);
data.dim = isl_schedule_node_get_schedule_depth(node);
if (data.dim == 0) {
isl_ctx *ctx;
isl_set *set;
isl_union_set *group;
isl_union_map *univ;
ctx = isl_schedule_node_get_ctx(node);
space = isl_space_set_alloc(ctx, 0, 0);
space = isl_space_set_tuple_id(space, isl_dim_set, group_id);
set = isl_set_universe(isl_space_copy(space));
group = isl_union_set_from_set(set);
expansion = isl_union_map_from_domain_and_range(domain, group);
univ = isl_union_map_universe(isl_union_map_copy(expansion));
contraction = isl_union_pw_multi_aff_from_union_map(univ);
expansion = isl_union_map_reverse(expansion);
} else {
isl_multi_union_pw_aff *prefix;
isl_union_set *univ;
prefix =
isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
prefix = isl_multi_union_pw_aff_set_tuple_id(prefix,
isl_dim_set, group_id);
space = isl_multi_union_pw_aff_get_space(prefix);
contraction = isl_union_pw_multi_aff_from_multi_union_pw_aff(
prefix);
univ = isl_union_set_universe(isl_union_set_copy(domain));
contraction =
isl_union_pw_multi_aff_intersect_domain(contraction, univ);
expansion = isl_union_map_from_union_pw_multi_aff(
isl_union_pw_multi_aff_copy(contraction));
expansion = isl_union_map_reverse(expansion);
expansion = isl_union_map_intersect_range(expansion, domain);
}
space = isl_space_map_from_set(space);
data.sched = isl_multi_aff_identity(space);
data.group = isl_union_map_domain(isl_union_map_copy(expansion));
data.group = isl_union_set_coalesce(data.group);
data.group_universe = isl_union_set_copy(data.group);
data.group_universe = isl_union_set_universe(data.group_universe);
data.expansion = isl_union_map_copy(expansion);
data.contraction = isl_union_pw_multi_aff_copy(contraction);
node = isl_schedule_node_insert_expansion(node, contraction, expansion);
disjoint = isl_union_set_is_disjoint(data.domain_universe,
data.group_universe);
node = update_ancestors(node, &group_ancestor, &data);
isl_union_set_free(data.domain);
isl_union_set_free(data.domain_universe);
isl_union_set_free(data.group);
isl_union_set_free(data.group_universe);
isl_multi_aff_free(data.sched);
isl_union_map_free(data.expansion);
isl_union_pw_multi_aff_free(data.contraction);
node = isl_schedule_node_child(node, 0);
if (!node || disjoint < 0)
return isl_schedule_node_free(node);
if (!disjoint)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"group instances already reach node",
isl_schedule_node_free(node));
return node;
error:
isl_schedule_node_free(node);
isl_id_free(group_id);
return NULL;
}
/* Compute the gist of the given band node with respect to "context".
*/
__isl_give isl_schedule_node *isl_schedule_node_band_gist(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *context)
{
isl_schedule_tree *tree;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_band_gist(tree, context);
return isl_schedule_node_graft_tree(node, tree);
}
/* Internal data structure for isl_schedule_node_gist.
* "n_expansion" is the number of outer expansion nodes
* with respect to the current position
* "filters" contains an element for each outer filter, expansion or
* extension node with respect to the current position, each representing
* the intersection of the previous element and the filter on the filter node
* or the expansion/extension of the previous element.
* The first element in the original context passed to isl_schedule_node_gist.
*/
struct isl_node_gist_data {
int n_expansion;
isl_union_set_list *filters;
};
/* Enter the expansion node "node" during a isl_schedule_node_gist traversal.
*
* In particular, add an extra element to data->filters containing
* the expansion of the previous element and replace the expansion
* and contraction on "node" by the gist with respect to these filters.
* Also keep track of the fact that we have entered another expansion.
*/
static __isl_give isl_schedule_node *gist_enter_expansion(
__isl_take isl_schedule_node *node, struct isl_node_gist_data *data)
{
int n;
isl_union_set *inner;
isl_union_map *expansion;
isl_union_pw_multi_aff *contraction;
data->n_expansion++;
n = isl_union_set_list_n_union_set(data->filters);
inner = isl_union_set_list_get_union_set(data->filters, n - 1);
expansion = isl_schedule_node_expansion_get_expansion(node);
inner = isl_union_set_apply(inner, expansion);
contraction = isl_schedule_node_expansion_get_contraction(node);
contraction = isl_union_pw_multi_aff_gist(contraction,
isl_union_set_copy(inner));
data->filters = isl_union_set_list_add(data->filters, inner);
inner = isl_union_set_list_get_union_set(data->filters, n - 1);
expansion = isl_schedule_node_expansion_get_expansion(node);
expansion = isl_union_map_gist_domain(expansion, inner);
node = isl_schedule_node_expansion_set_contraction_and_expansion(node,
contraction, expansion);
return node;
}
/* Leave the expansion node "node" during a isl_schedule_node_gist traversal.
*
* In particular, remove the element in data->filters that was added by
* gist_enter_expansion and decrement the number of outer expansions.
*
* The expansion has already been simplified in gist_enter_expansion.
* If this simplification results in an identity expansion, then
* it is removed here.
*/
static __isl_give isl_schedule_node *gist_leave_expansion(
__isl_take isl_schedule_node *node, struct isl_node_gist_data *data)
{
int n;
isl_bool identity;
isl_union_map *expansion;
expansion = isl_schedule_node_expansion_get_expansion(node);
identity = isl_union_map_is_identity(expansion);
isl_union_map_free(expansion);
if (identity < 0)
node = isl_schedule_node_free(node);
else if (identity)
node = isl_schedule_node_delete(node);
n = isl_union_set_list_n_union_set(data->filters);
data->filters = isl_union_set_list_drop(data->filters, n - 1, 1);
data->n_expansion--;
return node;
}
/* Enter the extension node "node" during a isl_schedule_node_gist traversal.
*
* In particular, add an extra element to data->filters containing
* the union of the previous element with the additional domain elements
* introduced by the extension.
*/
static __isl_give isl_schedule_node *gist_enter_extension(
__isl_take isl_schedule_node *node, struct isl_node_gist_data *data)
{
int n;
isl_union_set *inner, *extra;
isl_union_map *extension;
n = isl_union_set_list_n_union_set(data->filters);
inner = isl_union_set_list_get_union_set(data->filters, n - 1);
extension = isl_schedule_node_extension_get_extension(node);
extra = isl_union_map_range(extension);
inner = isl_union_set_union(inner, extra);
data->filters = isl_union_set_list_add(data->filters, inner);
return node;
}
/* Can we finish gisting at this node?
* That is, is the filter on the current filter node a subset of
* the original context passed to isl_schedule_node_gist?
* If we have gone through any expansions, then we cannot perform
* this test since the current domain elements are incomparable
* to the domain elements in the original context.
*/
static int gist_done(__isl_keep isl_schedule_node *node,
struct isl_node_gist_data *data)
{
isl_union_set *filter, *outer;
int subset;
if (data->n_expansion != 0)
return 0;
filter = isl_schedule_node_filter_get_filter(node);
outer = isl_union_set_list_get_union_set(data->filters, 0);
subset = isl_union_set_is_subset(filter, outer);
isl_union_set_free(outer);
isl_union_set_free(filter);
return subset;
}
/* Callback for "traverse" to enter a node and to move
* to the deepest initial subtree that should be traversed
* by isl_schedule_node_gist.
*
* The "filters" list is extended by one element each time
* we come across a filter node by the result of intersecting
* the last element in the list with the filter on the filter node.
*
* If the filter on the current filter node is a subset of
* the original context passed to isl_schedule_node_gist,
* then there is no need to go into its subtree since it cannot
* be further simplified by the context. The "filters" list is
* still extended for consistency, but the actual value of the
* added element is immaterial since it will not be used.
*
* Otherwise, the filter on the current filter node is replaced by
* the gist of the original filter with respect to the intersection
* of the original context with the intermediate filters.
*
* If the new element in the "filters" list is empty, then no elements
* can reach the descendants of the current filter node. The subtree
* underneath the filter node is therefore removed.
*
* Each expansion node we come across is handled by
* gist_enter_expansion.
*
* Each extension node we come across is handled by
* gist_enter_extension.
*/
static __isl_give isl_schedule_node *gist_enter(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_node_gist_data *data = user;
do {
isl_union_set *filter, *inner;
int done, empty;
int n;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_schedule_node_free(node);
case isl_schedule_node_expansion:
node = gist_enter_expansion(node, data);
continue;
case isl_schedule_node_extension:
node = gist_enter_extension(node, data);
continue;
case isl_schedule_node_band:
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_guard:
case isl_schedule_node_leaf:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
continue;
case isl_schedule_node_filter:
break;
}
done = gist_done(node, data);
filter = isl_schedule_node_filter_get_filter(node);
if (done < 0 || done) {
data->filters = isl_union_set_list_add(data->filters,
filter);
if (done < 0)
return isl_schedule_node_free(node);
return node;
}
n = isl_union_set_list_n_union_set(data->filters);
inner = isl_union_set_list_get_union_set(data->filters, n - 1);
filter = isl_union_set_gist(filter, isl_union_set_copy(inner));
node = isl_schedule_node_filter_set_filter(node,
isl_union_set_copy(filter));
filter = isl_union_set_intersect(filter, inner);
empty = isl_union_set_is_empty(filter);
data->filters = isl_union_set_list_add(data->filters, filter);
if (empty < 0)
return isl_schedule_node_free(node);
if (!empty)
continue;
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_cut(node);
node = isl_schedule_node_parent(node);
return node;
} while (isl_schedule_node_has_children(node) &&
(node = isl_schedule_node_first_child(node)) != NULL);
return node;
}
/* Callback for "traverse" to leave a node for isl_schedule_node_gist.
*
* In particular, if the current node is a filter node, then we remove
* the element on the "filters" list that was added when we entered
* the node. There is no need to compute any gist here, since we
* already did that when we entered the node.
*
* Expansion nodes are handled by gist_leave_expansion.
*
* If the current node is an extension, then remove the element
* in data->filters that was added by gist_enter_extension.
*
* If the current node is a band node, then we compute the gist of
* the band node with respect to the intersection of the original context
* and the intermediate filters.
*
* If the current node is a sequence or set node, then some of
* the filter children may have become empty and so they are removed.
* If only one child is left, then the set or sequence node along with
* the single remaining child filter is removed. The filter can be
* removed because the filters on a sequence or set node are supposed
* to partition the incoming domain instances.
* In principle, it should then be impossible for there to be zero
* remaining children, but should this happen, we replace the entire
* subtree with an empty filter.
*/
static __isl_give isl_schedule_node *gist_leave(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_node_gist_data *data = user;
isl_schedule_tree *tree;
int i, n;
isl_union_set *filter;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_schedule_node_free(node);
case isl_schedule_node_expansion:
node = gist_leave_expansion(node, data);
break;
case isl_schedule_node_extension:
case isl_schedule_node_filter:
n = isl_union_set_list_n_union_set(data->filters);
data->filters = isl_union_set_list_drop(data->filters,
n - 1, 1);
break;
case isl_schedule_node_band:
n = isl_union_set_list_n_union_set(data->filters);
filter = isl_union_set_list_get_union_set(data->filters, n - 1);
node = isl_schedule_node_band_gist(node, filter);
break;
case isl_schedule_node_set:
case isl_schedule_node_sequence:
tree = isl_schedule_node_get_tree(node);
n = isl_schedule_tree_n_children(tree);
for (i = n - 1; i >= 0; --i) {
isl_schedule_tree *child;
isl_union_set *filter;
int empty;
child = isl_schedule_tree_get_child(tree, i);
filter = isl_schedule_tree_filter_get_filter(child);
empty = isl_union_set_is_empty(filter);
isl_union_set_free(filter);
isl_schedule_tree_free(child);
if (empty < 0)
tree = isl_schedule_tree_free(tree);
else if (empty)
tree = isl_schedule_tree_drop_child(tree, i);
}
n = isl_schedule_tree_n_children(tree);
node = isl_schedule_node_graft_tree(node, tree);
if (n == 1) {
node = isl_schedule_node_delete(node);
node = isl_schedule_node_delete(node);
} else if (n == 0) {
isl_space *space;
filter =
isl_union_set_list_get_union_set(data->filters, 0);
space = isl_union_set_get_space(filter);
isl_union_set_free(filter);
filter = isl_union_set_empty(space);
node = isl_schedule_node_cut(node);
node = isl_schedule_node_insert_filter(node, filter);
}
break;
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_guard:
case isl_schedule_node_leaf:
case isl_schedule_node_mark:
break;
}
return node;
}
/* Compute the gist of the subtree at "node" with respect to
* the reaching domain elements in "context".
* In particular, compute the gist of all band and filter nodes
* in the subtree with respect to "context". Children of set or sequence
* nodes that end up with an empty filter are removed completely.
*
* We keep track of the intersection of "context" with all outer filters
* of the current node within the subtree in the final element of "filters".
* Initially, this list contains the single element "context" and it is
* extended or shortened each time we enter or leave a filter node.
*/
__isl_give isl_schedule_node *isl_schedule_node_gist(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *context)
{
struct isl_node_gist_data data;
data.n_expansion = 0;
data.filters = isl_union_set_list_from_union_set(context);
node = traverse(node, &gist_enter, &gist_leave, &data);
isl_union_set_list_free(data.filters);
return node;
}
/* Intersect the domain of domain node "node" with "domain".
*
* If the domain of "node" is already a subset of "domain",
* then nothing needs to be changed.
*
* Otherwise, we replace the domain of the domain node by the intersection
* and simplify the subtree rooted at "node" with respect to this intersection.
*/
__isl_give isl_schedule_node *isl_schedule_node_domain_intersect_domain(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *domain)
{
isl_schedule_tree *tree;
isl_union_set *uset;
int is_subset;
if (!node || !domain)
goto error;
uset = isl_schedule_tree_domain_get_domain(node->tree);
is_subset = isl_union_set_is_subset(uset, domain);
isl_union_set_free(uset);
if (is_subset < 0)
goto error;
if (is_subset) {
isl_union_set_free(domain);
return node;
}
tree = isl_schedule_tree_copy(node->tree);
uset = isl_schedule_tree_domain_get_domain(tree);
uset = isl_union_set_intersect(uset, domain);
tree = isl_schedule_tree_domain_set_domain(tree,
isl_union_set_copy(uset));
node = isl_schedule_node_graft_tree(node, tree);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_gist(node, uset);
node = isl_schedule_node_parent(node);
return node;
error:
isl_schedule_node_free(node);
isl_union_set_free(domain);
return NULL;
}
/* Replace the domain of domain node "node" with the gist
* of the original domain with respect to the parameter domain "context".
*/
__isl_give isl_schedule_node *isl_schedule_node_domain_gist_params(
__isl_take isl_schedule_node *node, __isl_take isl_set *context)
{
isl_union_set *domain;
isl_schedule_tree *tree;
if (!node || !context)
goto error;
tree = isl_schedule_tree_copy(node->tree);
domain = isl_schedule_tree_domain_get_domain(node->tree);
domain = isl_union_set_gist_params(domain, context);
tree = isl_schedule_tree_domain_set_domain(tree, domain);
node = isl_schedule_node_graft_tree(node, tree);
return node;
error:
isl_schedule_node_free(node);
isl_set_free(context);
return NULL;
}
/* Internal data structure for isl_schedule_node_get_subtree_expansion.
* "expansions" contains a list of accumulated expansions
* for each outer expansion, set or sequence node. The first element
* in the list is an identity mapping on the reaching domain elements.
* "res" collects the results.
*/
struct isl_subtree_expansion_data {
isl_union_map_list *expansions;
isl_union_map *res;
};
/* Callback for "traverse" to enter a node and to move
* to the deepest initial subtree that should be traversed
* by isl_schedule_node_get_subtree_expansion.
*
* Whenever we come across an expansion node, the last element
* of data->expansions is combined with the expansion
* on the expansion node.
*
* Whenever we come across a filter node that is the child
* of a set or sequence node, data->expansions is extended
* with a new element that restricts the previous element
* to the elements selected by the filter.
* The previous element can then be reused while backtracking.
*/
static __isl_give isl_schedule_node *subtree_expansion_enter(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_subtree_expansion_data *data = user;
do {
enum isl_schedule_node_type type;
isl_union_set *filter;
isl_union_map *inner, *expansion;
int n;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_schedule_node_free(node);
case isl_schedule_node_filter:
type = isl_schedule_node_get_parent_type(node);
if (type != isl_schedule_node_set &&
type != isl_schedule_node_sequence)
break;
filter = isl_schedule_node_filter_get_filter(node);
n = isl_union_map_list_n_union_map(data->expansions);
inner =
isl_union_map_list_get_union_map(data->expansions,
n - 1);
inner = isl_union_map_intersect_range(inner, filter);
data->expansions =
isl_union_map_list_add(data->expansions, inner);
break;
case isl_schedule_node_expansion:
n = isl_union_map_list_n_union_map(data->expansions);
expansion =
isl_schedule_node_expansion_get_expansion(node);
inner =
isl_union_map_list_get_union_map(data->expansions,
n - 1);
inner = isl_union_map_apply_range(inner, expansion);
data->expansions =
isl_union_map_list_set_union_map(data->expansions,
n - 1, inner);
break;
case isl_schedule_node_band:
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_extension:
case isl_schedule_node_guard:
case isl_schedule_node_leaf:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
}
} while (isl_schedule_node_has_children(node) &&
(node = isl_schedule_node_first_child(node)) != NULL);
return node;
}
/* Callback for "traverse" to leave a node for
* isl_schedule_node_get_subtree_expansion.
*
* If we come across a filter node that is the child
* of a set or sequence node, then we remove the element
* of data->expansions that was added in subtree_expansion_enter.
*
* If we reach a leaf node, then the accumulated expansion is
* added to data->res.
*/
static __isl_give isl_schedule_node *subtree_expansion_leave(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_subtree_expansion_data *data = user;
int n;
isl_union_map *inner;
enum isl_schedule_node_type type;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_schedule_node_free(node);
case isl_schedule_node_filter:
type = isl_schedule_node_get_parent_type(node);
if (type != isl_schedule_node_set &&
type != isl_schedule_node_sequence)
break;
n = isl_union_map_list_n_union_map(data->expansions);
data->expansions = isl_union_map_list_drop(data->expansions,
n - 1, 1);
break;
case isl_schedule_node_leaf:
n = isl_union_map_list_n_union_map(data->expansions);
inner = isl_union_map_list_get_union_map(data->expansions,
n - 1);
data->res = isl_union_map_union(data->res, inner);
break;
case isl_schedule_node_band:
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_expansion:
case isl_schedule_node_extension:
case isl_schedule_node_guard:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
}
return node;
}
/* Return a mapping from the domain elements that reach "node"
* to the corresponding domain elements in the leaves of the subtree
* rooted at "node" obtained by composing the intermediate expansions.
*
* We start out with an identity mapping between the domain elements
* that reach "node" and compose it with all the expansions
* on a path from "node" to a leaf while traversing the subtree.
* Within the children of an a sequence or set node, the
* accumulated expansion is restricted to the elements selected
* by the filter child.
*/
__isl_give isl_union_map *isl_schedule_node_get_subtree_expansion(
__isl_keep isl_schedule_node *node)
{
struct isl_subtree_expansion_data data;
isl_space *space;
isl_union_set *domain;
isl_union_map *expansion;
if (!node)
return NULL;
domain = isl_schedule_node_get_universe_domain(node);
space = isl_union_set_get_space(domain);
expansion = isl_union_set_identity(domain);
data.res = isl_union_map_empty(space);
data.expansions = isl_union_map_list_from_union_map(expansion);
node = isl_schedule_node_copy(node);
node = traverse(node, &subtree_expansion_enter,
&subtree_expansion_leave, &data);
if (!node)
data.res = isl_union_map_free(data.res);
isl_schedule_node_free(node);
isl_union_map_list_free(data.expansions);
return data.res;
}
/* Internal data structure for isl_schedule_node_get_subtree_contraction.
* "contractions" contains a list of accumulated contractions
* for each outer expansion, set or sequence node. The first element
* in the list is an identity mapping on the reaching domain elements.
* "res" collects the results.
*/
struct isl_subtree_contraction_data {
isl_union_pw_multi_aff_list *contractions;
isl_union_pw_multi_aff *res;
};
/* Callback for "traverse" to enter a node and to move
* to the deepest initial subtree that should be traversed
* by isl_schedule_node_get_subtree_contraction.
*
* Whenever we come across an expansion node, the last element
* of data->contractions is combined with the contraction
* on the expansion node.
*
* Whenever we come across a filter node that is the child
* of a set or sequence node, data->contractions is extended
* with a new element that restricts the previous element
* to the elements selected by the filter.
* The previous element can then be reused while backtracking.
*/
static __isl_give isl_schedule_node *subtree_contraction_enter(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_subtree_contraction_data *data = user;
do {
enum isl_schedule_node_type type;
isl_union_set *filter;
isl_union_pw_multi_aff *inner, *contraction;
int n;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_schedule_node_free(node);
case isl_schedule_node_filter:
type = isl_schedule_node_get_parent_type(node);
if (type != isl_schedule_node_set &&
type != isl_schedule_node_sequence)
break;
filter = isl_schedule_node_filter_get_filter(node);
n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
data->contractions);
inner =
isl_union_pw_multi_aff_list_get_union_pw_multi_aff(
data->contractions, n - 1);
inner = isl_union_pw_multi_aff_intersect_domain(inner,
filter);
data->contractions =
isl_union_pw_multi_aff_list_add(data->contractions,
inner);
break;
case isl_schedule_node_expansion:
n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
data->contractions);
contraction =
isl_schedule_node_expansion_get_contraction(node);
inner =
isl_union_pw_multi_aff_list_get_union_pw_multi_aff(
data->contractions, n - 1);
inner =
isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
inner, contraction);
data->contractions =
isl_union_pw_multi_aff_list_set_union_pw_multi_aff(
data->contractions, n - 1, inner);
break;
case isl_schedule_node_band:
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_extension:
case isl_schedule_node_guard:
case isl_schedule_node_leaf:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
}
} while (isl_schedule_node_has_children(node) &&
(node = isl_schedule_node_first_child(node)) != NULL);
return node;
}
/* Callback for "traverse" to leave a node for
* isl_schedule_node_get_subtree_contraction.
*
* If we come across a filter node that is the child
* of a set or sequence node, then we remove the element
* of data->contractions that was added in subtree_contraction_enter.
*
* If we reach a leaf node, then the accumulated contraction is
* added to data->res.
*/
static __isl_give isl_schedule_node *subtree_contraction_leave(
__isl_take isl_schedule_node *node, void *user)
{
struct isl_subtree_contraction_data *data = user;
int n;
isl_union_pw_multi_aff *inner;
enum isl_schedule_node_type type;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_schedule_node_free(node);
case isl_schedule_node_filter:
type = isl_schedule_node_get_parent_type(node);
if (type != isl_schedule_node_set &&
type != isl_schedule_node_sequence)
break;
n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
data->contractions);
data->contractions =
isl_union_pw_multi_aff_list_drop(data->contractions,
n - 1, 1);
break;
case isl_schedule_node_leaf:
n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
data->contractions);
inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff(
data->contractions, n - 1);
data->res = isl_union_pw_multi_aff_union_add(data->res, inner);
break;
case isl_schedule_node_band:
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_expansion:
case isl_schedule_node_extension:
case isl_schedule_node_guard:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
}
return node;
}
/* Return a mapping from the domain elements in the leaves of the subtree
* rooted at "node" to the corresponding domain elements that reach "node"
* obtained by composing the intermediate contractions.
*
* We start out with an identity mapping between the domain elements
* that reach "node" and compose it with all the contractions
* on a path from "node" to a leaf while traversing the subtree.
* Within the children of an a sequence or set node, the
* accumulated contraction is restricted to the elements selected
* by the filter child.
*/
__isl_give isl_union_pw_multi_aff *isl_schedule_node_get_subtree_contraction(
__isl_keep isl_schedule_node *node)
{
struct isl_subtree_contraction_data data;
isl_space *space;
isl_union_set *domain;
isl_union_pw_multi_aff *contraction;
if (!node)
return NULL;
domain = isl_schedule_node_get_universe_domain(node);
space = isl_union_set_get_space(domain);
contraction = isl_union_set_identity_union_pw_multi_aff(domain);
data.res = isl_union_pw_multi_aff_empty(space);
data.contractions =
isl_union_pw_multi_aff_list_from_union_pw_multi_aff(contraction);
node = isl_schedule_node_copy(node);
node = traverse(node, &subtree_contraction_enter,
&subtree_contraction_leave, &data);
if (!node)
data.res = isl_union_pw_multi_aff_free(data.res);
isl_schedule_node_free(node);
isl_union_pw_multi_aff_list_free(data.contractions);
return data.res;
}
/* Do the nearest "n" ancestors of "node" have the types given in "types"
* (starting at the parent of "node")?
*/
static int has_ancestors(__isl_keep isl_schedule_node *node,
int n, enum isl_schedule_node_type *types)
{
int i, n_ancestor;
if (!node)
return -1;
n_ancestor = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
if (n_ancestor < n)
return 0;
for (i = 0; i < n; ++i) {
isl_schedule_tree *tree;
int correct_type;
tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
n_ancestor - 1 - i);
if (!tree)
return -1;
correct_type = isl_schedule_tree_get_type(tree) == types[i];
isl_schedule_tree_free(tree);
if (!correct_type)
return 0;
}
return 1;
}
/* Given a node "node" that appears in an extension (i.e., it is the child
* of a filter in a sequence inside an extension node), are the spaces
* of the extension specified by "extension" disjoint from those
* of both the original extension and the domain elements that reach
* that original extension?
*/
static int is_disjoint_extension(__isl_keep isl_schedule_node *node,
__isl_keep isl_union_map *extension)
{
isl_union_map *old;
isl_union_set *domain;
int empty;
node = isl_schedule_node_copy(node);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
old = isl_schedule_node_extension_get_extension(node);
domain = isl_schedule_node_get_universe_domain(node);
isl_schedule_node_free(node);
old = isl_union_map_universe(old);
domain = isl_union_set_union(domain, isl_union_map_range(old));
extension = isl_union_map_copy(extension);
extension = isl_union_map_intersect_range(extension, domain);
empty = isl_union_map_is_empty(extension);
isl_union_map_free(extension);
return empty;
}
/* Given a node "node" that is governed by an extension node, extend
* that extension node with "extension".
*
* In particular, "node" is the child of a filter in a sequence that
* is in turn a child of an extension node. Extend that extension node
* with "extension".
*
* Return a pointer to the parent of the original node (i.e., a filter).
*/
static __isl_give isl_schedule_node *extend_extension(
__isl_take isl_schedule_node *node, __isl_take isl_union_map *extension)
{
int pos;
int disjoint;
isl_union_map *node_extension;
node = isl_schedule_node_parent(node);
pos = isl_schedule_node_get_child_position(node);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
node_extension = isl_schedule_node_extension_get_extension(node);
disjoint = isl_union_map_is_disjoint(extension, node_extension);
extension = isl_union_map_union(extension, node_extension);
node = isl_schedule_node_extension_set_extension(node, extension);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, pos);
if (disjoint < 0)
return isl_schedule_node_free(node);
if (!node)
return NULL;
if (!disjoint)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"extension domain should be disjoint from earlier "
"extensions", return isl_schedule_node_free(node));
return node;
}
/* Return the universe of "uset" if this universe is disjoint from "ref".
* Otherwise, return "uset".
*
* Also check if "uset" itself is disjoint from "ref", reporting
* an error if it is not.
*/
static __isl_give isl_union_set *replace_by_universe_if_disjoint(
__isl_take isl_union_set *uset, __isl_keep isl_union_set *ref)
{
int disjoint;
isl_union_set *universe;
disjoint = isl_union_set_is_disjoint(uset, ref);
if (disjoint < 0)
return isl_union_set_free(uset);
if (!disjoint)
isl_die(isl_union_set_get_ctx(uset), isl_error_invalid,
"extension domain should be disjoint from "
"current domain", return isl_union_set_free(uset));
universe = isl_union_set_universe(isl_union_set_copy(uset));
disjoint = isl_union_set_is_disjoint(universe, ref);
if (disjoint >= 0 && disjoint) {
isl_union_set_free(uset);
return universe;
}
isl_union_set_free(universe);
if (disjoint < 0)
return isl_union_set_free(uset);
return uset;
}
/* Insert an extension node on top of "node" with extension "extension".
* In addition, insert a filter that separates node from the extension
* between the extension node and "node".
* Return a pointer to the inserted filter node.
*
* If "node" already appears in an extension (i.e., if it is the child
* of a filter in a sequence inside an extension node), then extend that
* extension with "extension" instead.
* In this case, a pointer to the original filter node is returned.
* Note that if some of the elements in the new extension live in the
* same space as those of the original extension or the domain elements
* reaching the original extension, then we insert a new extension anyway.
* Otherwise, we would have to adjust the filters in the sequence child
* of the extension to ensure that the elements in the new extension
* are filtered out.
*/
static __isl_give isl_schedule_node *insert_extension(
__isl_take isl_schedule_node *node, __isl_take isl_union_map *extension)
{
enum isl_schedule_node_type ancestors[] =
{ isl_schedule_node_filter, isl_schedule_node_sequence,
isl_schedule_node_extension };
isl_union_set *domain;
isl_union_set *filter;
int in_ext;
in_ext = has_ancestors(node, 3, ancestors);
if (in_ext < 0)
goto error;
if (in_ext) {
int disjoint;
disjoint = is_disjoint_extension(node, extension);
if (disjoint < 0)
goto error;
if (disjoint)
return extend_extension(node, extension);
}
filter = isl_schedule_node_get_domain(node);
domain = isl_union_map_range(isl_union_map_copy(extension));
filter = replace_by_universe_if_disjoint(filter, domain);
isl_union_set_free(domain);
node = isl_schedule_node_insert_filter(node, filter);
node = isl_schedule_node_insert_extension(node, extension);
node = isl_schedule_node_child(node, 0);
return node;
error:
isl_schedule_node_free(node);
isl_union_map_free(extension);
return NULL;
}
/* Replace the subtree that "node" points to by "tree" (which has
* a sequence root with two children), except if the parent of "node"
* is a sequence as well, in which case "tree" is spliced at the position
* of "node" in its parent.
* Return a pointer to the child of the "tree_pos" (filter) child of "tree"
* in the updated schedule tree.
*/
static __isl_give isl_schedule_node *graft_or_splice(
__isl_take isl_schedule_node *node, __isl_take isl_schedule_tree *tree,
int tree_pos)
{
int pos;
if (isl_schedule_node_get_parent_type(node) ==
isl_schedule_node_sequence) {
pos = isl_schedule_node_get_child_position(node);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_sequence_splice(node, pos, tree);
} else {
pos = 0;
node = isl_schedule_node_graft_tree(node, tree);
}
node = isl_schedule_node_child(node, pos + tree_pos);
node = isl_schedule_node_child(node, 0);
return node;
}
/* Insert a node "graft" into the schedule tree of "node" such that it
* is executed before (if "before" is set) or after (if "before" is not set)
* the node that "node" points to.
* The root of "graft" is an extension node.
* Return a pointer to the node that "node" pointed to.
*
* We first insert an extension node on top of "node" (or extend
* the extension node if there already is one), with a filter on "node"
* separating it from the extension.
* We then insert a filter in the graft to separate it from the original
* domain elements and combine the original and new tree in a sequence.
* If we have extended an extension node, then the children of this
* sequence are spliced in the sequence of the extended extension
* at the position where "node" appears in the original extension.
* Otherwise, the sequence pair is attached to the new extension node.
*/
static __isl_give isl_schedule_node *graft_extension(
__isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft,
int before)
{
isl_union_map *extension;
isl_union_set *graft_domain;
isl_union_set *node_domain;
isl_schedule_tree *tree, *tree_graft;
extension = isl_schedule_node_extension_get_extension(graft);
graft_domain = isl_union_map_range(isl_union_map_copy(extension));
node_domain = isl_schedule_node_get_universe_domain(node);
node = insert_extension(node, extension);
graft_domain = replace_by_universe_if_disjoint(graft_domain,
node_domain);
isl_union_set_free(node_domain);
tree = isl_schedule_node_get_tree(node);
if (!isl_schedule_node_has_children(graft)) {
tree_graft = isl_schedule_tree_from_filter(graft_domain);
} else {
graft = isl_schedule_node_child(graft, 0);
tree_graft = isl_schedule_node_get_tree(graft);
tree_graft = isl_schedule_tree_insert_filter(tree_graft,
graft_domain);
}
if (before)
tree = isl_schedule_tree_sequence_pair(tree_graft, tree);
else
tree = isl_schedule_tree_sequence_pair(tree, tree_graft);
node = graft_or_splice(node, tree, before);
isl_schedule_node_free(graft);
return node;
}
/* Replace the root domain node of "node" by an extension node suitable
* for insertion at "pos".
* That is, create an extension node that maps the outer band nodes
* at "pos" to the domain of the root node of "node" and attach
* the child of this root node to the extension node.
*/
static __isl_give isl_schedule_node *extension_from_domain(
__isl_take isl_schedule_node *node, __isl_keep isl_schedule_node *pos)
{
isl_union_set *universe;
isl_union_set *domain;
isl_union_map *ext;
int depth;
int anchored;
isl_space *space;
isl_schedule_node *res;
isl_schedule_tree *tree;
anchored = isl_schedule_node_is_subtree_anchored(node);
if (anchored < 0)
return isl_schedule_node_free(node);
if (anchored)
isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported,
"cannot graft anchored tree with domain root",
return isl_schedule_node_free(node));
depth = isl_schedule_node_get_schedule_depth(pos);
domain = isl_schedule_node_domain_get_domain(node);
space = isl_union_set_get_space(domain);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, depth);
universe = isl_union_set_from_set(isl_set_universe(space));
ext = isl_union_map_from_domain_and_range(universe, domain);
res = isl_schedule_node_from_extension(ext);
node = isl_schedule_node_child(node, 0);
if (!node)
return isl_schedule_node_free(res);
if (!isl_schedule_tree_is_leaf(node->tree)) {
tree = isl_schedule_node_get_tree(node);
res = isl_schedule_node_child(res, 0);
res = isl_schedule_node_graft_tree(res, tree);
res = isl_schedule_node_parent(res);
}
isl_schedule_node_free(node);
return res;
}
/* Insert a node "graft" into the schedule tree of "node" such that it
* is executed before (if "before" is set) or after (if "before" is not set)
* the node that "node" points to.
* The root of "graft" may be either a domain or an extension node.
* In the latter case, the domain of the extension needs to correspond
* to the outer band nodes of "node".
* The elements of the domain or the range of the extension may not
* intersect with the domain elements that reach "node".
* The schedule tree of "graft" may not be anchored.
*
* The schedule tree of "node" is modified to include an extension node
* corresponding to the root node of "graft" as a child of the original
* parent of "node". The original node that "node" points to and the
* child of the root node of "graft" are attached to this extension node
* through a sequence, with appropriate filters and with the child
* of "graft" appearing before or after the original "node".
*
* If "node" already appears inside a sequence that is the child of
* an extension node and if the spaces of the new domain elements
* do not overlap with those of the original domain elements,
* then that extension node is extended with the new extension
* rather than introducing a new segment of extension and sequence nodes.
*
* Return a pointer to the same node in the modified tree that
* "node" pointed to in the original tree.
*/
static __isl_give isl_schedule_node *isl_schedule_node_graft_before_or_after(
__isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft,
int before)
{
if (!node || !graft)
goto error;
if (check_insert(node) < 0)
goto error;
if (isl_schedule_node_get_type(graft) == isl_schedule_node_domain)
graft = extension_from_domain(graft, node);
if (isl_schedule_node_get_type(graft) != isl_schedule_node_extension)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"expecting domain or extension as root of graft",
goto error);
return graft_extension(node, graft, before);
error:
isl_schedule_node_free(node);
isl_schedule_node_free(graft);
return NULL;
}
/* Insert a node "graft" into the schedule tree of "node" such that it
* is executed before the node that "node" points to.
* The root of "graft" may be either a domain or an extension node.
* In the latter case, the domain of the extension needs to correspond
* to the outer band nodes of "node".
* The elements of the domain or the range of the extension may not
* intersect with the domain elements that reach "node".
* The schedule tree of "graft" may not be anchored.
*
* Return a pointer to the same node in the modified tree that
* "node" pointed to in the original tree.
*/
__isl_give isl_schedule_node *isl_schedule_node_graft_before(
__isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft)
{
return isl_schedule_node_graft_before_or_after(node, graft, 1);
}
/* Insert a node "graft" into the schedule tree of "node" such that it
* is executed after the node that "node" points to.
* The root of "graft" may be either a domain or an extension node.
* In the latter case, the domain of the extension needs to correspond
* to the outer band nodes of "node".
* The elements of the domain or the range of the extension may not
* intersect with the domain elements that reach "node".
* The schedule tree of "graft" may not be anchored.
*
* Return a pointer to the same node in the modified tree that
* "node" pointed to in the original tree.
*/
__isl_give isl_schedule_node *isl_schedule_node_graft_after(
__isl_take isl_schedule_node *node,
__isl_take isl_schedule_node *graft)
{
return isl_schedule_node_graft_before_or_after(node, graft, 0);
}
/* Split the domain elements that reach "node" into those that satisfy
* "filter" and those that do not. Arrange for the first subset to be
* executed before or after the second subset, depending on the value
* of "before".
* Return a pointer to the tree corresponding to the second subset,
* except when this subset is empty in which case the original pointer
* is returned.
* If both subsets are non-empty, then a sequence node is introduced
* to impose the order. If the grandparent of the original node was
* itself a sequence, then the original child is replaced by two children
* in this sequence instead.
* The children in the sequence are copies of the original subtree,
* simplified with respect to their filters.
*/
static __isl_give isl_schedule_node *isl_schedule_node_order_before_or_after(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *filter,
int before)
{
enum isl_schedule_node_type ancestors[] =
{ isl_schedule_node_filter, isl_schedule_node_sequence };
isl_union_set *node_domain, *node_filter = NULL, *parent_filter;
isl_schedule_node *node2;
isl_schedule_tree *tree1, *tree2;
int empty1, empty2;
int in_seq;
if (!node || !filter)
goto error;
if (check_insert(node) < 0)
goto error;
in_seq = has_ancestors(node, 2, ancestors);
if (in_seq < 0)
goto error;
node_domain = isl_schedule_node_get_domain(node);
filter = isl_union_set_gist(filter, isl_union_set_copy(node_domain));
node_filter = isl_union_set_copy(node_domain);
node_filter = isl_union_set_subtract(node_filter,
isl_union_set_copy(filter));
node_filter = isl_union_set_gist(node_filter, node_domain);
empty1 = isl_union_set_is_empty(filter);
empty2 = isl_union_set_is_empty(node_filter);
if (empty1 < 0 || empty2 < 0)
goto error;
if (empty1 || empty2) {
isl_union_set_free(filter);
isl_union_set_free(node_filter);
return node;
}
if (in_seq) {
node = isl_schedule_node_parent(node);
parent_filter = isl_schedule_node_filter_get_filter(node);
node_filter = isl_union_set_intersect(node_filter,
isl_union_set_copy(parent_filter));
filter = isl_union_set_intersect(filter, parent_filter);
}
node2 = isl_schedule_node_copy(node);
node = isl_schedule_node_gist(node, isl_union_set_copy(node_filter));
node2 = isl_schedule_node_gist(node2, isl_union_set_copy(filter));
tree1 = isl_schedule_node_get_tree(node);
tree2 = isl_schedule_node_get_tree(node2);
tree1 = isl_schedule_tree_insert_filter(tree1, node_filter);
tree2 = isl_schedule_tree_insert_filter(tree2, filter);
isl_schedule_node_free(node2);
if (before) {
tree1 = isl_schedule_tree_sequence_pair(tree2, tree1);
node = graft_or_splice(node, tree1, 1);
} else {
tree1 = isl_schedule_tree_sequence_pair(tree1, tree2);
node = graft_or_splice(node, tree1, 0);
}
return node;
error:
isl_schedule_node_free(node);
isl_union_set_free(filter);
isl_union_set_free(node_filter);
return NULL;
}
/* Split the domain elements that reach "node" into those that satisfy
* "filter" and those that do not. Arrange for the first subset to be
* executed before the second subset.
* Return a pointer to the tree corresponding to the second subset,
* except when this subset is empty in which case the original pointer
* is returned.
*/
__isl_give isl_schedule_node *isl_schedule_node_order_before(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
{
return isl_schedule_node_order_before_or_after(node, filter, 1);
}
/* Split the domain elements that reach "node" into those that satisfy
* "filter" and those that do not. Arrange for the first subset to be
* executed after the second subset.
* Return a pointer to the tree corresponding to the second subset,
* except when this subset is empty in which case the original pointer
* is returned.
*/
__isl_give isl_schedule_node *isl_schedule_node_order_after(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
{
return isl_schedule_node_order_before_or_after(node, filter, 0);
}
/* Reset the user pointer on all identifiers of parameters and tuples
* in the schedule node "node".
*/
__isl_give isl_schedule_node *isl_schedule_node_reset_user(
__isl_take isl_schedule_node *node)
{
isl_schedule_tree *tree;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_reset_user(tree);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Align the parameters of the schedule node "node" to those of "space".
*/
__isl_give isl_schedule_node *isl_schedule_node_align_params(
__isl_take isl_schedule_node *node, __isl_take isl_space *space)
{
isl_schedule_tree *tree;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_align_params(tree, space);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Compute the pullback of schedule node "node"
* by the function represented by "upma".
* In other words, plug in "upma" in the iteration domains
* of schedule node "node".
* We currently do not handle expansion nodes.
*
* Note that this is only a helper function for
* isl_schedule_pullback_union_pw_multi_aff. In order to maintain consistency,
* this function should not be called on a single node without also
* calling it on all the other nodes.
*/
__isl_give isl_schedule_node *isl_schedule_node_pullback_union_pw_multi_aff(
__isl_take isl_schedule_node *node,
__isl_take isl_union_pw_multi_aff *upma)
{
isl_schedule_tree *tree;
tree = isl_schedule_node_get_tree(node);
tree = isl_schedule_tree_pullback_union_pw_multi_aff(tree, upma);
node = isl_schedule_node_graft_tree(node, tree);
return node;
}
/* Internal data structure for isl_schedule_node_expand.
* "tree" is the tree that needs to be plugged in in all the leaves.
* "domain" is the set of domain elements in the original leaves
* to which the tree applies.
*/
struct isl_schedule_expand_data {
isl_schedule_tree *tree;
isl_union_set *domain;
};
/* If "node" is a leaf, then plug in data->tree, simplifying it
* within its new context.
*
* If there are any domain elements at the leaf where the tree
* should not be plugged in (i.e., there are elements not in data->domain)
* then first extend the tree to only apply to the elements in data->domain
* by constructing a set node that selects data->tree for elements
* in data->domain and a leaf for the other elements.
*/
static __isl_give isl_schedule_node *expand(__isl_take isl_schedule_node *node,
void *user)
{
struct isl_schedule_expand_data *data = user;
isl_schedule_tree *tree, *leaf;
isl_union_set *domain, *left;
isl_bool empty;
if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
return node;
domain = isl_schedule_node_get_domain(node);
tree = isl_schedule_tree_copy(data->tree);
left = isl_union_set_copy(domain);
left = isl_union_set_subtract(left, isl_union_set_copy(data->domain));
empty = isl_union_set_is_empty(left);
if (empty >= 0 && !empty) {
leaf = isl_schedule_node_get_leaf(node);
leaf = isl_schedule_tree_insert_filter(leaf, left);
left = isl_union_set_copy(data->domain);
tree = isl_schedule_tree_insert_filter(tree, left);
tree = isl_schedule_tree_set_pair(tree, leaf);
} else {
if (empty < 0)
node = isl_schedule_node_free(node);
isl_union_set_free(left);
}
node = isl_schedule_node_graft_tree(node, tree);
node = isl_schedule_node_gist(node, domain);
return node;
}
/* Expand the tree rooted at "node" by extending all leaves
* with an expansion node with as child "tree".
* The expansion is determined by "contraction" and "domain".
* That is, the elements of "domain" are contracted according
* to "contraction". The expansion relation is then the inverse
* of "contraction" with its range intersected with "domain".
*
* Insert the appropriate expansion node on top of "tree" and
* then plug in the result in all leaves of "node".
*/
__isl_give isl_schedule_node *isl_schedule_node_expand(
__isl_take isl_schedule_node *node,
__isl_take isl_union_pw_multi_aff *contraction,
__isl_take isl_union_set *domain,
__isl_take isl_schedule_tree *tree)
{
struct isl_schedule_expand_data data;
isl_union_map *expansion;
isl_union_pw_multi_aff *copy;
if (!node || !contraction || !tree)
node = isl_schedule_node_free(node);
copy = isl_union_pw_multi_aff_copy(contraction);
expansion = isl_union_map_from_union_pw_multi_aff(copy);
expansion = isl_union_map_reverse(expansion);
expansion = isl_union_map_intersect_range(expansion, domain);
data.domain = isl_union_map_domain(isl_union_map_copy(expansion));
tree = isl_schedule_tree_insert_expansion(tree, contraction, expansion);
data.tree = tree;
node = isl_schedule_node_map_descendant_bottom_up(node, &expand, &data);
isl_union_set_free(data.domain);
isl_schedule_tree_free(data.tree);
return node;
}
/* Return the position of the subtree containing "node" among the children
* of "ancestor". "node" is assumed to be a descendant of "ancestor".
* In particular, both nodes should point to the same schedule tree.
*
* Return -1 on error.
*/
int isl_schedule_node_get_ancestor_child_position(
__isl_keep isl_schedule_node *node,
__isl_keep isl_schedule_node *ancestor)
{
int n1, n2;
isl_schedule_tree *tree;
if (!node || !ancestor)
return -1;
if (node->schedule != ancestor->schedule)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a descendant", return -1);
n1 = isl_schedule_node_get_tree_depth(ancestor);
n2 = isl_schedule_node_get_tree_depth(node);
if (n1 >= n2)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a descendant", return -1);
tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n1);
isl_schedule_tree_free(tree);
if (tree != ancestor->tree)
isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
"not a descendant", return -1);
return node->child_pos[n1];
}
/* Given two nodes that point to the same schedule tree, return their
* closest shared ancestor.
*
* Since the two nodes point to the same schedule, they share at least
* one ancestor, the root of the schedule. We move down from the root
* to the first ancestor where the respective children have a different
* child position. This is the requested ancestor.
* If there is no ancestor where the children have a different position,
* then one node is an ancestor of the other and then this node is
* the requested ancestor.
*/
__isl_give isl_schedule_node *isl_schedule_node_get_shared_ancestor(
__isl_keep isl_schedule_node *node1,
__isl_keep isl_schedule_node *node2)
{
int i, n1, n2;
if (!node1 || !node2)
return NULL;
if (node1->schedule != node2->schedule)
isl_die(isl_schedule_node_get_ctx(node1), isl_error_invalid,
"not part of same schedule", return NULL);
n1 = isl_schedule_node_get_tree_depth(node1);
n2 = isl_schedule_node_get_tree_depth(node2);
if (n2 < n1)
return isl_schedule_node_get_shared_ancestor(node2, node1);
if (n1 == 0)
return isl_schedule_node_copy(node1);
if (isl_schedule_node_is_equal(node1, node2))
return isl_schedule_node_copy(node1);
for (i = 0; i < n1; ++i)
if (node1->child_pos[i] != node2->child_pos[i])
break;
node1 = isl_schedule_node_copy(node1);
return isl_schedule_node_ancestor(node1, n1 - i);
}
/* Print "node" to "p".
*/
__isl_give isl_printer *isl_printer_print_schedule_node(
__isl_take isl_printer *p, __isl_keep isl_schedule_node *node)
{
if (!node)
return isl_printer_free(p);
return isl_printer_print_schedule_tree_mark(p, node->schedule->root,
isl_schedule_tree_list_n_schedule_tree(node->ancestors),
node->child_pos);
}
void isl_schedule_node_dump(__isl_keep isl_schedule_node *node)
{
isl_ctx *ctx;
isl_printer *printer;
if (!node)
return;
ctx = isl_schedule_node_get_ctx(node);
printer = isl_printer_to_file(ctx, stderr);
printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK);
printer = isl_printer_print_schedule_node(printer, node);
isl_printer_free(printer);
}
/* Return a string representation of "node".
* Print the schedule node in block format as it would otherwise
* look identical to the entire schedule.
*/
__isl_give char *isl_schedule_node_to_str(__isl_keep isl_schedule_node *node)
{
isl_printer *printer;
char *s;
if (!node)
return NULL;
printer = isl_printer_to_str(isl_schedule_node_get_ctx(node));
printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK);
printer = isl_printer_print_schedule_node(printer, node);
s = isl_printer_get_str(printer);
isl_printer_free(printer);
return s;
}