llvm-project/polly/lib/External/isl/isl_coalesce.c

2670 lines
79 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include "isl_map_private.h"
#include <isl_seq.h>
#include <isl/options.h>
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_local_space_private.h>
#include <isl_vec_private.h>
#include <isl_aff_private.h>
#define STATUS_ERROR -1
#define STATUS_REDUNDANT 1
#define STATUS_VALID 2
#define STATUS_SEPARATE 3
#define STATUS_CUT 4
#define STATUS_ADJ_EQ 5
#define STATUS_ADJ_INEQ 6
static int status_in(isl_int *ineq, struct isl_tab *tab)
{
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
switch (type) {
default:
case isl_ineq_error: return STATUS_ERROR;
case isl_ineq_redundant: return STATUS_VALID;
case isl_ineq_separate: return STATUS_SEPARATE;
case isl_ineq_cut: return STATUS_CUT;
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
}
}
/* Compute the position of the equalities of basic map "bmap_i"
* with respect to the basic map represented by "tab_j".
* The resulting array has twice as many entries as the number
* of equalities corresponding to the two inequalties to which
* each equality corresponds.
*/
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_j)
{
int k, l;
int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
unsigned dim;
if (!eq)
return NULL;
dim = isl_basic_map_total_dim(bmap_i);
for (k = 0; k < bmap_i->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
if (eq[2 * k + l] == STATUS_ERROR)
goto error;
}
if (eq[2 * k] == STATUS_SEPARATE ||
eq[2 * k + 1] == STATUS_SEPARATE)
break;
}
return eq;
error:
free(eq);
return NULL;
}
/* Compute the position of the inequalities of basic map "bmap_i"
* (also represented by "tab_i", if not NULL) with respect to the basic map
* represented by "tab_j".
*/
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_i, struct isl_tab *tab_j)
{
int k;
unsigned n_eq = bmap_i->n_eq;
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
if (!ineq)
return NULL;
for (k = 0; k < bmap_i->n_ineq; ++k) {
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
ineq[k] = STATUS_REDUNDANT;
continue;
}
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
if (ineq[k] == STATUS_ERROR)
goto error;
if (ineq[k] == STATUS_SEPARATE)
break;
}
return ineq;
error:
free(ineq);
return NULL;
}
static int any(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i)
if (con[i] == status)
return 1;
return 0;
}
static int count(int *con, unsigned len, int status)
{
int i;
int c = 0;
for (i = 0; i < len ; ++i)
if (con[i] == status)
c++;
return c;
}
static int all(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i) {
if (con[i] == STATUS_REDUNDANT)
continue;
if (con[i] != status)
return 0;
}
return 1;
}
/* Internal information associated to a basic map in a map
* that is to be coalesced by isl_map_coalesce.
*
* "bmap" is the basic map itself (or NULL if "removed" is set)
* "tab" is the corresponding tableau (or NULL if "removed" is set)
* "hull_hash" identifies the affine space in which "bmap" lives.
* "removed" is set if this basic map has been removed from the map
* "simplify" is set if this basic map may have some unknown integer
* divisions that were not present in the input basic maps. The basic
* map should then be simplified such that we may be able to find
* a definition among the constraints.
*
* "eq" and "ineq" are only set if we are currently trying to coalesce
* this basic map with another basic map, in which case they represent
* the position of the inequalities of this basic map with respect to
* the other basic map. The number of elements in the "eq" array
* is twice the number of equalities in the "bmap", corresponding
* to the two inequalities that make up each equality.
*/
struct isl_coalesce_info {
isl_basic_map *bmap;
struct isl_tab *tab;
uint32_t hull_hash;
int removed;
int simplify;
int *eq;
int *ineq;
};
/* Compute the hash of the (apparent) affine hull of info->bmap (with
* the existentially quantified variables removed) and store it
* in info->hash.
*/
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
{
isl_basic_map *hull;
unsigned n_div;
hull = isl_basic_map_copy(info->bmap);
hull = isl_basic_map_plain_affine_hull(hull);
n_div = isl_basic_map_dim(hull, isl_dim_div);
hull = isl_basic_map_drop_constraints_involving_dims(hull,
isl_dim_div, 0, n_div);
info->hull_hash = isl_basic_map_get_hash(hull);
isl_basic_map_free(hull);
return hull ? 0 : -1;
}
/* Free all the allocated memory in an array
* of "n" isl_coalesce_info elements.
*/
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
{
int i;
if (!info)
return;
for (i = 0; i < n; ++i) {
isl_basic_map_free(info[i].bmap);
isl_tab_free(info[i].tab);
}
free(info);
}
/* Drop the basic map represented by "info".
* That is, clear the memory associated to the entry and
* mark it as having been removed.
*/
static void drop(struct isl_coalesce_info *info)
{
info->bmap = isl_basic_map_free(info->bmap);
isl_tab_free(info->tab);
info->tab = NULL;
info->removed = 1;
}
/* Exchange the information in "info1" with that in "info2".
*/
static void exchange(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
struct isl_coalesce_info info;
info = *info1;
*info1 = *info2;
*info2 = info;
}
/* This type represents the kind of change that has been performed
* while trying to coalesce two basic maps.
*
* isl_change_none: nothing was changed
* isl_change_drop_first: the first basic map was removed
* isl_change_drop_second: the second basic map was removed
* isl_change_fuse: the two basic maps were replaced by a new basic map.
*/
enum isl_change {
isl_change_error = -1,
isl_change_none = 0,
isl_change_drop_first,
isl_change_drop_second,
isl_change_fuse,
};
/* Update "change" based on an interchange of the first and the second
* basic map. That is, interchange isl_change_drop_first and
* isl_change_drop_second.
*/
static enum isl_change invert_change(enum isl_change change)
{
switch (change) {
case isl_change_error:
return isl_change_error;
case isl_change_none:
return isl_change_none;
case isl_change_drop_first:
return isl_change_drop_second;
case isl_change_drop_second:
return isl_change_drop_first;
case isl_change_fuse:
return isl_change_fuse;
}
return isl_change_error;
}
/* Add the valid constraints of the basic map represented by "info"
* to "bmap". "len" is the size of the constraints.
* If only one of the pair of inequalities that make up an equality
* is valid, then add that inequality.
*/
static __isl_give isl_basic_map *add_valid_constraints(
__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
unsigned len)
{
int k, l;
if (!bmap)
return NULL;
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_equality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
}
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] != STATUS_VALID)
continue;
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
}
return bmap;
}
/* Is "bmap" defined by a number of (non-redundant) constraints that
* is greater than the number of constraints of basic maps i and j combined?
* Equalities are counted as two inequalities.
*/
static int number_of_constraints_increases(int i, int j,
struct isl_coalesce_info *info,
__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
{
int k, n_old, n_new;
n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
n_new = 2 * bmap->n_eq;
for (k = 0; k < bmap->n_ineq; ++k)
if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
++n_new;
return n_new > n_old;
}
/* Replace the pair of basic maps i and j by the basic map bounded
* by the valid constraints in both basic maps and the constraints
* in extra (if not NULL).
* Place the fused basic map in the position that is the smallest of i and j.
*
* If "detect_equalities" is set, then look for equalities encoded
* as pairs of inequalities.
* If "check_number" is set, then the original basic maps are only
* replaced if the total number of constraints does not increase.
* While the number of integer divisions in the two basic maps
* is assumed to be the same, the actual definitions may be different.
* We only copy the definition from one of the basic map if it is
* the same as that of the other basic map. Otherwise, we mark
* the integer division as unknown and schedule for the basic map
* to be simplified in an attempt to recover the integer division definition.
*/
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
__isl_keep isl_mat *extra, int detect_equalities, int check_number)
{
int k, l;
struct isl_basic_map *fused = NULL;
struct isl_tab *fused_tab = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
unsigned extra_rows = extra ? extra->n_row : 0;
unsigned n_eq, n_ineq;
if (j < i)
return fuse(j, i, info, extra, detect_equalities, check_number);
n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
fused = add_valid_constraints(fused, &info[i], 1 + total);
fused = add_valid_constraints(fused, &info[j], 1 + total);
if (!fused)
goto error;
for (k = 0; k < info[i].bmap->n_div; ++k) {
int l = isl_basic_map_alloc_div(fused);
if (l < 0)
goto error;
if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
1 + 1 + total)) {
isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
1 + 1 + total);
} else {
isl_int_set_si(fused->div[l][0], 0);
info[i].simplify = 1;
}
}
for (k = 0; k < extra_rows; ++k) {
l = isl_basic_map_alloc_inequality(fused);
if (l < 0)
goto error;
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
}
if (detect_equalities)
fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
fused = isl_basic_map_gauss(fused, NULL);
ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
fused_tab = isl_tab_from_basic_map(fused, 0);
if (isl_tab_detect_redundant(fused_tab) < 0)
goto error;
if (check_number &&
number_of_constraints_increases(i, j, info, fused, fused_tab)) {
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_none;
}
info[i].simplify |= info[j].simplify;
isl_basic_map_free(info[i].bmap);
info[i].bmap = fused;
isl_tab_free(info[i].tab);
info[i].tab = fused_tab;
drop(&info[j]);
return isl_change_fuse;
error:
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_error;
}
/* Given a pair of basic maps i and j such that all constraints are either
* "valid" or "cut", check if the facets corresponding to the "cut"
* constraints of i lie entirely within basic map j.
* If so, replace the pair by the basic map consisting of the valid
* constraints in both basic maps.
* Checking whether the facet lies entirely within basic map j
* is performed by checking whether the constraints of basic map j
* are valid for the facet. These tests are performed on a rational
* tableau to avoid the theoretical possibility that a constraint
* that was considered to be a cut constraint for the entire basic map i
* happens to be considered to be a valid constraint for the facet,
* even though it cuts off the same rational points.
*
* To see that we are not introducing any extra points, call the
* two basic maps A and B and the resulting map U and let x
* be an element of U \setminus ( A \cup B ).
* A line connecting x with an element of A \cup B meets a facet F
* of either A or B. Assume it is a facet of B and let c_1 be
* the corresponding facet constraint. We have c_1(x) < 0 and
* so c_1 is a cut constraint. This implies that there is some
* (possibly rational) point x' satisfying the constraints of A
* and the opposite of c_1 as otherwise c_1 would have been marked
* valid for A. The line connecting x and x' meets a facet of A
* in a (possibly rational) point that also violates c_1, but this
* is impossible since all cut constraints of B are valid for all
* cut facets of A.
* In case F is a facet of A rather than B, then we can apply the
* above reasoning to find a facet of B separating x from A \cup B first.
*/
static enum isl_change check_facets(int i, int j,
struct isl_coalesce_info *info)
{
int k, l;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_mark_rational(info[i].tab) < 0)
return isl_change_error;
snap2 = isl_tab_snap(info[i].tab);
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
if (info[i].ineq[k] != STATUS_CUT)
continue;
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
return isl_change_error;
for (l = 0; l < info[j].bmap->n_ineq; ++l) {
int stat;
if (info[j].ineq[l] != STATUS_CUT)
continue;
stat = status_in(info[j].bmap->ineq[l], info[i].tab);
if (stat < 0)
return isl_change_error;
if (stat != STATUS_VALID)
break;
}
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
if (l < info[j].bmap->n_ineq)
break;
}
if (k < info[i].bmap->n_ineq) {
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
return fuse(i, j, info, NULL, 0, 0);
}
/* Check if info->bmap contains the basic map represented
* by the tableau "tab".
* For each equality, we check both the constraint itself
* (as an inequality) and its negation. Make sure the
* equality is returned to its original state before returning.
*/
static int contains(struct isl_coalesce_info *info, struct isl_tab *tab)
{
int k;
unsigned dim;
isl_basic_map *bmap = info->bmap;
dim = isl_basic_map_total_dim(bmap);
for (k = 0; k < bmap->n_eq; ++k) {
int stat;
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
stat = status_in(bmap->eq[k], tab);
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
if (stat < 0)
return -1;
if (stat != STATUS_VALID)
return 0;
stat = status_in(bmap->eq[k], tab);
if (stat < 0)
return -1;
if (stat != STATUS_VALID)
return 0;
}
for (k = 0; k < bmap->n_ineq; ++k) {
int stat;
if (info->ineq[k] == STATUS_REDUNDANT)
continue;
stat = status_in(bmap->ineq[k], tab);
if (stat < 0)
return -1;
if (stat != STATUS_VALID)
return 0;
}
return 1;
}
/* Basic map "i" has an inequality (say "k") that is adjacent
* to some inequality of basic map "j". All the other inequalities
* are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* Note that this function is only called if some of the equalities or
* inequalities of basic map "j" do cut basic map "i". The function is
* correct even if there are no such cut constraints, but in that case
* the additional checks performed by this function are overkill.
*
* In particular, we replace constraint k, say f >= 0, by constraint
* f <= -1, add the inequalities of "j" that are valid for "i"
* and check if the result is a subset of basic map "j".
* If so, then we know that this result is exactly equal to basic map "j"
* since all its constraints are valid for basic map "j".
* By combining the valid constraints of "i" (all equalities and all
* inequalities except "k") and the valid constraints of "j" we therefore
* obtain a basic map that is equal to their union.
* In this case, there is no need to perform a rollback of the tableau
* since it is going to be destroyed in fuse().
*
*
* |\__ |\__
* | \__ | \__
* | \_ => | \__
* |_______| _ |_________\
*
*
* |\ |\
* | \ | \
* | \ | \
* | | | \
* | ||\ => | \
* | || \ | \
* | || | | |
* |__||_/ |_____/
*/
static enum isl_change is_adj_ineq_extension(int i, int j,
struct isl_coalesce_info *info)
{
int k;
struct isl_tab_undo *snap;
unsigned n_eq = info[i].bmap->n_eq;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
int r;
int super;
if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
return isl_change_error;
for (k = 0; k < info[i].bmap->n_ineq; ++k)
if (info[i].ineq[k] == STATUS_ADJ_INEQ)
break;
if (k >= info[i].bmap->n_ineq)
isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
return isl_change_error);
snap = isl_tab_snap(info[i].tab);
if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
return isl_change_error;
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
if (r < 0)
return isl_change_error;
for (k = 0; k < info[j].bmap->n_ineq; ++k) {
if (info[j].ineq[k] != STATUS_VALID)
continue;
if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
return isl_change_error;
}
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super)
return fuse(i, j, info, NULL, 0, 0);
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
/* Both basic maps have at least one inequality with and adjacent
* (but opposite) inequality in the other basic map.
* Check that there are no cut constraints and that there is only
* a single pair of adjacent inequalities.
* If so, we can replace the pair by a single basic map described
* by all but the pair of adjacent inequalities.
* Any additional points introduced lie strictly between the two
* adjacent hyperplanes and can therefore be integral.
*
* ____ _____
* / ||\ / \
* / || \ / \
* \ || \ => \ \
* \ || / \ /
* \___||_/ \_____/
*
* The test for a single pair of adjancent inequalities is important
* for avoiding the combination of two basic maps like the following
*
* /|
* / |
* /__|
* _____
* | |
* | |
* |___|
*
* If there are some cut constraints on one side, then we may
* still be able to fuse the two basic maps, but we need to perform
* some additional checks in is_adj_ineq_extension.
*/
static enum isl_change check_adj_ineq(int i, int j,
struct isl_coalesce_info *info)
{
int count_i, count_j;
int cut_i, cut_j;
count_i = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ);
count_j = count(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ);
if (count_i != 1 && count_j != 1)
return isl_change_none;
cut_i = any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) ||
any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
cut_j = any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_CUT);
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
return fuse(i, j, info, NULL, 0, 0);
if (count_i == 1 && !cut_i)
return is_adj_ineq_extension(i, j, info);
if (count_j == 1 && !cut_j)
return is_adj_ineq_extension(j, i, info);
return isl_change_none;
}
/* Basic map "i" has an inequality "k" that is adjacent to some equality
* of basic map "j". All the other inequalities are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* In particular, we relax constraint "k", compute the corresponding
* facet and check whether it is included in the other basic map.
* If so, we know that relaxing the constraint extends the basic
* map with exactly the other basic map (we already know that this
* other basic map is included in the extension, because there
* were no "cut" inequalities in "i") and we can replace the
* two basic maps by this extension.
* Each integer division that does not have exactly the same
* definition in "i" and "j" is marked unknown and the basic map
* is scheduled to be simplified in an attempt to recover
* the integer division definition.
* Place this extension in the position that is the smallest of i and j.
* ____ _____
* / || / |
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*/
static enum isl_change is_adj_eq_extension(int i, int j, int k,
struct isl_coalesce_info *info)
{
int change = isl_change_none;
int super;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
if (isl_tab_is_equality(info[i].tab, n_eq + k))
return isl_change_none;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_relax(info[i].tab, n_eq + k) < 0)
return isl_change_error;
snap2 = isl_tab_snap(info[i].tab);
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
return isl_change_error;
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super) {
int l;
unsigned total;
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
info[i].bmap = isl_basic_map_cow(info[i].bmap);
if (!info[i].bmap)
return isl_change_error;
total = isl_basic_map_total_dim(info[i].bmap);
for (l = 0; l < info[i].bmap->n_div; ++l)
if (!isl_seq_eq(info[i].bmap->div[l],
info[j].bmap->div[l], 1 + 1 + total)) {
isl_int_set_si(info[i].bmap->div[l][0], 0);
info[i].simplify = 1;
}
isl_int_add_ui(info[i].bmap->ineq[k][0],
info[i].bmap->ineq[k][0], 1);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
drop(&info[j]);
if (j < i)
exchange(&info[i], &info[j]);
change = isl_change_fuse;
} else
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return change;
}
/* Data structure that keeps track of the wrapping constraints
* and of information to bound the coefficients of those constraints.
*
* bound is set if we want to apply a bound on the coefficients
* mat contains the wrapping constraints
* max is the bound on the coefficients (if bound is set)
*/
struct isl_wraps {
int bound;
isl_mat *mat;
isl_int max;
};
/* Update wraps->max to be greater than or equal to the coefficients
* in the equalities and inequalities of info->bmap that can be removed
* if we end up applying wrapping.
*/
static void wraps_update_max(struct isl_wraps *wraps,
struct isl_coalesce_info *info)
{
int k;
isl_int max_k;
unsigned total = isl_basic_map_total_dim(info->bmap);
isl_int_init(max_k);
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID)
continue;
isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] == STATUS_VALID ||
info->ineq[k] == STATUS_REDUNDANT)
continue;
isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
isl_int_clear(max_k);
}
/* Initialize the isl_wraps data structure.
* If we want to bound the coefficients of the wrapping constraints,
* we set wraps->max to the largest coefficient
* in the equalities and inequalities that can be removed if we end up
* applying wrapping.
*/
static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
struct isl_coalesce_info *info, int i, int j)
{
isl_ctx *ctx;
wraps->bound = 0;
wraps->mat = mat;
if (!mat)
return;
ctx = isl_mat_get_ctx(mat);
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
if (!wraps->bound)
return;
isl_int_init(wraps->max);
isl_int_set_si(wraps->max, 0);
wraps_update_max(wraps, &info[i]);
wraps_update_max(wraps, &info[j]);
}
/* Free the contents of the isl_wraps data structure.
*/
static void wraps_free(struct isl_wraps *wraps)
{
isl_mat_free(wraps->mat);
if (wraps->bound)
isl_int_clear(wraps->max);
}
/* Is the wrapping constraint in row "row" allowed?
*
* If wraps->bound is set, we check that none of the coefficients
* is greater than wraps->max.
*/
static int allow_wrap(struct isl_wraps *wraps, int row)
{
int i;
if (!wraps->bound)
return 1;
for (i = 1; i < wraps->mat->n_col; ++i)
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
return 0;
return 1;
}
/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
* to include "set" and add the result in position "w" of "wraps".
* "len" is the total number of coefficients in "bound" and "ineq".
* Return 1 on success, 0 on failure and -1 on error.
* Wrapping can fail if the result of wrapping is equal to "bound"
* or if we want to bound the sizes of the coefficients and
* the wrapped constraint does not satisfy this bound.
*/
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
{
isl_seq_cpy(wraps->mat->row[w], bound, len);
if (negate) {
isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
ineq = wraps->mat->row[w + 1];
}
if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
return -1;
if (isl_seq_eq(wraps->mat->row[w], bound, len))
return 0;
if (!allow_wrap(wraps, w))
return 0;
return 1;
}
/* For each constraint in info->bmap that is not redundant (as determined
* by info->tab) and that is not a valid constraint for the other basic map,
* wrap the constraint around "bound" such that it includes the whole
* set "set" and append the resulting constraint to "wraps".
* Note that the constraints that are valid for the other basic map
* will be added to the combined basic map by default, so there is
* no need to wrap them.
* The caller wrap_in_facets even relies on this function not wrapping
* any constraints that are already valid.
* "wraps" is assumed to have been pre-allocated to the appropriate size.
* wraps->n_row is the number of actual wrapped constraints that have
* been added.
* If any of the wrapping problems results in a constraint that is
* identical to "bound", then this means that "set" is unbounded in such
* way that no wrapping is possible. If this happens then wraps->n_row
* is reset to zero.
* Similarly, if we want to bound the coefficients of the wrapping
* constraints and a newly added wrapping constraint does not
* satisfy the bound, then wraps->n_row is also reset to zero.
*/
static int add_wraps(struct isl_wraps *wraps, struct isl_coalesce_info *info,
isl_int *bound, __isl_keep isl_set *set)
{
int l, m;
int w;
int added;
isl_basic_map *bmap = info->bmap;
unsigned len = 1 + isl_basic_map_total_dim(bmap);
w = wraps->mat->n_row;
for (l = 0; l < bmap->n_ineq; ++l) {
if (info->ineq[l] == STATUS_VALID ||
info->ineq[l] == STATUS_REDUNDANT)
continue;
if (isl_seq_is_neg(bound, bmap->ineq[l], len))
continue;
if (isl_seq_eq(bound, bmap->ineq[l], len))
continue;
if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
continue;
added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
if (added < 0)
return -1;
if (!added)
goto unbounded;
++w;
}
for (l = 0; l < bmap->n_eq; ++l) {
if (isl_seq_is_neg(bound, bmap->eq[l], len))
continue;
if (isl_seq_eq(bound, bmap->eq[l], len))
continue;
for (m = 0; m < 2; ++m) {
if (info->eq[2 * l + m] == STATUS_VALID)
continue;
added = add_wrap(wraps, w, bound, bmap->eq[l], len,
set, !m);
if (added < 0)
return -1;
if (!added)
goto unbounded;
++w;
}
}
wraps->mat->n_row = w;
return 0;
unbounded:
wraps->mat->n_row = 0;
return 0;
}
/* Check if the constraints in "wraps" from "first" until the last
* are all valid for the basic set represented by "tab".
* If not, wraps->n_row is set to zero.
*/
static int check_wraps(__isl_keep isl_mat *wraps, int first,
struct isl_tab *tab)
{
int i;
for (i = first; i < wraps->n_row; ++i) {
enum isl_ineq_type type;
type = isl_tab_ineq_type(tab, wraps->row[i]);
if (type == isl_ineq_error)
return -1;
if (type == isl_ineq_redundant)
continue;
wraps->n_row = 0;
return 0;
}
return 0;
}
/* Return a set that corresponds to the non-redundant constraints
* (as recorded in tab) of bmap.
*
* It's important to remove the redundant constraints as some
* of the other constraints may have been modified after the
* constraints were marked redundant.
* In particular, a constraint may have been relaxed.
* Redundant constraints are ignored when a constraint is relaxed
* and should therefore continue to be ignored ever after.
* Otherwise, the relaxation might be thwarted by some of
* these constraints.
*
* Update the underlying set to ensure that the dimension doesn't change.
* Otherwise the integer divisions could get dropped if the tab
* turns out to be empty.
*/
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
struct isl_tab *tab)
{
isl_basic_set *bset;
bmap = isl_basic_map_copy(bmap);
bset = isl_basic_map_underlying_set(bmap);
bset = isl_basic_set_cow(bset);
bset = isl_basic_set_update_from_tab(bset, tab);
return isl_set_from_basic_set(bset);
}
/* Wrap the constraints of info->bmap that bound the facet defined
* by inequality "k" around (the opposite of) this inequality to
* include "set". "bound" may be used to store the negated inequality.
* Since the wrapped constraints are not guaranteed to contain the whole
* of info->bmap, we check them in check_wraps.
* If any of the wrapped constraints turn out to be invalid, then
* check_wraps will reset wrap->n_row to zero.
*/
static int add_wraps_around_facet(struct isl_wraps *wraps,
struct isl_coalesce_info *info, int k, isl_int *bound,
__isl_keep isl_set *set)
{
struct isl_tab_undo *snap;
int n;
unsigned total = isl_basic_map_total_dim(info->bmap);
snap = isl_tab_snap(info->tab);
if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
return -1;
if (isl_tab_detect_redundant(info->tab) < 0)
return -1;
isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
n = wraps->mat->n_row;
if (add_wraps(wraps, info, bound, set) < 0)
return -1;
if (isl_tab_rollback(info->tab, snap) < 0)
return -1;
if (check_wraps(wraps->mat, n, info->tab) < 0)
return -1;
return 0;
}
/* Given a basic set i with a constraint k that is adjacent to
* basic set j, check if we can wrap
* both the facet corresponding to k (if "wrap_facet" is set) and basic map j
* (always) around their ridges to include the other set.
* If so, replace the pair of basic sets by their union.
*
* All constraints of i (except k) are assumed to be valid or
* cut constraints for j.
* Wrapping the cut constraints to include basic map j may result
* in constraints that are no longer valid of basic map i
* we have to check that the resulting wrapping constraints are valid for i.
* If "wrap_facet" is not set, then all constraints of i (except k)
* are assumed to be valid for j.
* ____ _____
* / | / \
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*
*/
static enum isl_change can_wrap_in_facet(int i, int j, int k,
struct isl_coalesce_info *info, int wrap_facet)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
wraps_init(&wraps, mat, info, i, j);
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !wraps.mat || !bound)
goto error;
isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
if (wrap_facet) {
if (add_wraps_around_facet(&wraps, &info[i], k,
bound->el, set_j) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
}
change = fuse(i, j, info, wraps.mat, 0, 0);
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
error:
wraps_free(&wraps);
isl_vec_free(bound);
isl_set_free(set_i);
isl_set_free(set_j);
return isl_change_error;
}
/* Given a pair of basic maps i and j such that j sticks out
* of i at n cut constraints, each time by at most one,
* try to compute wrapping constraints and replace the two
* basic maps by a single basic map.
* The other constraints of i are assumed to be valid for j.
*
* For each cut constraint t(x) >= 0 of i, we add the relaxed version
* t(x) + 1 >= 0, along with wrapping constraints for all constraints
* of basic map j that bound the part of basic map j that sticks out
* of the cut constraint.
* In particular, we first intersect basic map j with t(x) + 1 = 0.
* If the result is empty, then t(x) >= 0 was actually a valid constraint
* (with respect to the integer points), so we add t(x) >= 0 instead.
* Otherwise, we wrap the constraints of basic map j that are not
* redundant in this intersection and that are not already valid
* for basic map i over basic map i.
* Note that it is sufficient to wrap the constraints to include
* basic map i, because we will only wrap the constraints that do
* not include basic map i already. The wrapped constraint will
* therefore be more relaxed compared to the original constraint.
* Since the original constraint is valid for basic map j, so is
* the wrapped constraint.
*
* If any wrapping fails, i.e., if we cannot wrap to touch
* the union, then we give up.
* Otherwise, the pair of basic maps is replaced by their union.
*/
static enum isl_change wrap_in_facets(int i, int j, int *cuts, int n,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
isl_set *set_i = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
int max_wrap;
int k, w;
struct isl_tab_undo *snap;
if (isl_tab_extend_cons(info[j].tab, 1) < 0)
goto error;
max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
max_wrap *= n;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
wraps_init(&wraps, mat, info, i, j);
if (!set_i || !wraps.mat)
goto error;
snap = isl_tab_snap(info[j].tab);
wraps.mat->n_row = 0;
for (k = 0; k < n; ++k) {
w = wraps.mat->n_row++;
isl_seq_cpy(wraps.mat->row[w],
info[i].bmap->ineq[cuts[k]], 1 + total);
isl_int_add_ui(wraps.mat->row[w][0], wraps.mat->row[w][0], 1);
if (isl_tab_add_eq(info[j].tab, wraps.mat->row[w]) < 0)
goto error;
if (isl_tab_detect_redundant(info[j].tab) < 0)
goto error;
if (info[j].tab->empty)
isl_int_sub_ui(wraps.mat->row[w][0],
wraps.mat->row[w][0], 1);
else if (add_wraps(&wraps, &info[j],
wraps.mat->row[w], set_i) < 0)
goto error;
if (isl_tab_rollback(info[j].tab, snap) < 0)
goto error;
if (!wraps.mat->n_row)
break;
}
if (k == n)
change = fuse(i, j, info, wraps.mat, 0, 1);
wraps_free(&wraps);
isl_set_free(set_i);
return change;
error:
wraps_free(&wraps);
isl_set_free(set_i);
return isl_change_error;
}
/* Given two basic sets i and j such that i has no cut equalities,
* check if relaxing all the cut inequalities of i by one turns
* them into valid constraint for j and check if we can wrap in
* the bits that are sticking out.
* If so, replace the pair by their union.
*
* We first check if all relaxed cut inequalities of i are valid for j
* and then try to wrap in the intersections of the relaxed cut inequalities
* with j.
*
* During this wrapping, we consider the points of j that lie at a distance
* of exactly 1 from i. In particular, we ignore the points that lie in
* between this lower-dimensional space and the basic map i.
* We can therefore only apply this to integer maps.
* ____ _____
* / ___|_ / \
* / | | / |
* \ | | => \ |
* \|____| \ |
* \___| \____/
*
* _____ ______
* | ____|_ | \
* | | | | |
* | | | => | |
* |_| | | |
* |_____| \______|
*
* _______
* | |
* | |\ |
* | | \ |
* | | \ |
* | | \|
* | | \
* | |_____\
* | |
* |_______|
*
* Wrapping can fail if the result of wrapping one of the facets
* around its edges does not produce any new facet constraint.
* In particular, this happens when we try to wrap in unbounded sets.
*
* _______________________________________________________________________
* |
* | ___
* | | |
* |_| |_________________________________________________________________
* |___|
*
* The following is not an acceptable result of coalescing the above two
* sets as it includes extra integer points.
* _______________________________________________________________________
* |
* |
* |
* |
* \______________________________________________________________________
*/
static enum isl_change can_wrap_in_set(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
int k, m;
int n;
int *cuts = NULL;
isl_ctx *ctx;
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
return isl_change_none;
n = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
if (n == 0)
return isl_change_none;
ctx = isl_basic_map_get_ctx(info[i].bmap);
cuts = isl_alloc_array(ctx, int, n);
if (!cuts)
return isl_change_error;
for (k = 0, m = 0; m < n; ++k) {
enum isl_ineq_type type;
if (info[i].ineq[k] != STATUS_CUT)
continue;
isl_int_add_ui(info[i].bmap->ineq[k][0],
info[i].bmap->ineq[k][0], 1);
type = isl_tab_ineq_type(info[j].tab, info[i].bmap->ineq[k]);
isl_int_sub_ui(info[i].bmap->ineq[k][0],
info[i].bmap->ineq[k][0], 1);
if (type == isl_ineq_error)
goto error;
if (type != isl_ineq_redundant)
break;
cuts[m] = k;
++m;
}
if (m == n)
change = wrap_in_facets(i, j, cuts, n, info);
free(cuts);
return change;
error:
free(cuts);
return isl_change_error;
}
/* Check if either i or j has only cut inequalities that can
* be used to wrap in (a facet of) the other basic set.
* if so, replace the pair by their union.
*/
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
change = can_wrap_in_set(i, j, info);
if (change != isl_change_none)
return change;
if (!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
change = can_wrap_in_set(j, i, info);
return change;
}
/* At least one of the basic maps has an equality that is adjacent
* to inequality. Make sure that only one of the basic maps has
* such an equality and that the other basic map has exactly one
* inequality adjacent to an equality.
* We call the basic map that has the inequality "i" and the basic
* map that has the equality "j".
* If "i" has any "cut" (in)equality, then relaxing the inequality
* by one would not result in a basic map that contains the other
* basic map. However, it may still be possible to wrap in the other
* basic map.
*/
static enum isl_change check_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
int k;
int any_cut;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) &&
any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ))
return check_adj_eq(j, i, info);
/* j has an equality adjacent to an inequality in i */
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
return isl_change_none;
any_cut = any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
if (count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) != 1 ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ) ||
any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
for (k = 0; k < info[i].bmap->n_ineq; ++k)
if (info[i].ineq[k] == STATUS_ADJ_EQ)
break;
if (!any_cut) {
change = is_adj_eq_extension(i, j, k, info);
if (change != isl_change_none)
return change;
}
change = can_wrap_in_facet(i, j, k, info, any_cut);
return change;
}
/* The two basic maps lie on adjacent hyperplanes. In particular,
* basic map "i" has an equality that lies parallel to basic map "j".
* Check if we can wrap the facets around the parallel hyperplanes
* to include the other set.
*
* We perform basically the same operations as can_wrap_in_facet,
* except that we don't need to select a facet of one of the sets.
* _
* \\ \\
* \\ => \\
* \ \|
*
* If there is more than one equality of "i" adjacent to an equality of "j",
* then the result will satisfy one or more equalities that are a linear
* combination of these equalities. These will be encoded as pairs
* of inequalities in the wrapping constraints and need to be made
* explicit.
*/
static enum isl_change check_eq_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
int k;
enum isl_change change = isl_change_none;
int detect_equalities = 0;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
if (count(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ) != 1)
detect_equalities = 1;
for (k = 0; k < 2 * info[i].bmap->n_eq ; ++k)
if (info[i].eq[k] == STATUS_ADJ_EQ)
break;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
wraps_init(&wraps, mat, info, i, j);
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !wraps.mat || !bound)
goto error;
if (k % 2 == 0)
isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
else
isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
isl_seq_neg(bound->el, bound->el, 1 + total);
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
wraps.mat->n_row++;
if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
if (0) {
error: change = isl_change_error;
}
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
* The two basic maps are assumed to live in the same local space.
*
* We first check the effect of each constraint of one basic map
* on the other basic map.
* The constraint may be
* redundant the constraint is redundant in its own
* basic map and should be ignore and removed
* in the end
* valid all (integer) points of the other basic map
* satisfy the constraint
* separate no (integer) point of the other basic map
* satisfies the constraint
* cut some but not all points of the other basic map
* satisfy the constraint
* adj_eq the given constraint is adjacent (on the outside)
* to an equality of the other basic map
* adj_ineq the given constraint is adjacent (on the outside)
* to an inequality of the other basic map
*
* We consider seven cases in which we can replace the pair by a single
* basic map. We ignore all "redundant" constraints.
*
* 1. all constraints of one basic map are valid
* => the other basic map is a subset and can be removed
*
* 2. all constraints of both basic maps are either "valid" or "cut"
* and the facets corresponding to the "cut" constraints
* of one of the basic maps lies entirely inside the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 3. there is a single pair of adjacent inequalities
* (all other constraints are "valid")
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 4. one basic map has a single adjacent inequality, while the other
* constraints are "valid". The other basic map has some
* "cut" constraints, but replacing the adjacent inequality by
* its opposite and adding the valid constraints of the other
* basic map results in a subset of the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 5. there is a single adjacent pair of an inequality and an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, if the inequality the basic map is relaxed
* and then turned into an equality, then resulting facet lies
* entirely inside the other basic map
* => the pair can be replaced by the basic map containing
* the inequality, with the inequality relaxed.
*
* 6. there is a single adjacent pair of an inequality and an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, the facets corresponding to both
* the inequality and the equality can be wrapped around their
* ridges to include the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 7. one of the basic maps extends beyond the other by at most one.
* Moreover, the facets corresponding to the cut constraints and
* the pieces of the other basic map at offset one from these cut
* constraints can be wrapped around their ridges to include
* the union of the two basic maps
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 8. the two basic maps live in adjacent hyperplanes. In principle
* such sets can always be combined through wrapping, but we impose
* that there is only one such pair, to avoid overeager coalescing.
*
* Throughout the computation, we maintain a collection of tableaus
* corresponding to the basic maps. When the basic maps are dropped
* or combined, the tableaus are modified accordingly.
*/
static enum isl_change coalesce_local_pair(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
info[i].eq = info[i].ineq = NULL;
info[j].eq = info[j].ineq = NULL;
info[i].eq = eq_status_in(info[i].bmap, info[j].tab);
if (info[i].bmap->n_eq && !info[i].eq)
goto error;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ERROR))
goto error;
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_SEPARATE))
goto done;
info[j].eq = eq_status_in(info[j].bmap, info[i].tab);
if (info[j].bmap->n_eq && !info[j].eq)
goto error;
if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ERROR))
goto error;
if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_SEPARATE))
goto done;
info[i].ineq = ineq_status_in(info[i].bmap, info[i].tab, info[j].tab);
if (info[i].bmap->n_ineq && !info[i].ineq)
goto error;
if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ERROR))
goto error;
if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_SEPARATE))
goto done;
info[j].ineq = ineq_status_in(info[j].bmap, info[j].tab, info[i].tab);
if (info[j].bmap->n_ineq && !info[j].ineq)
goto error;
if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ERROR))
goto error;
if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_SEPARATE))
goto done;
if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
drop(&info[j]);
change = isl_change_drop_second;
} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
drop(&info[i]);
change = isl_change_drop_first;
} else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(i, j, info);
} else if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(j, i, info);
} else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) ||
any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ)) {
change = check_adj_eq(i, j, info);
} else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ)) {
/* Can't happen */
/* BAD ADJ INEQ */
} else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ)) {
change = check_adj_ineq(i, j, info);
} else {
if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) &&
!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
change = check_facets(i, j, info);
if (change == isl_change_none)
change = check_wrap(i, j, info);
}
done:
free(info[i].eq);
free(info[j].eq);
free(info[i].ineq);
free(info[j].ineq);
return change;
error:
free(info[i].eq);
free(info[j].eq);
free(info[i].ineq);
free(info[j].ineq);
return isl_change_error;
}
/* Shift the integer division at position "div" of the basic map
* represented by "info" by "shift".
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
static int shift_div(struct isl_coalesce_info *info, int div, isl_int shift)
{
unsigned total;
info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
if (!info->bmap)
return -1;
total = isl_basic_map_dim(info->bmap, isl_dim_all);
total -= isl_basic_map_dim(info->bmap, isl_dim_div);
if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
return -1;
return 0;
}
/* Check if some of the divs in the basic map represented by "info1"
* are shifts of the corresponding divs in the basic map represented
* by "info2". If so, align them with those of "info2".
* Only do this if "info1" and "info2" have the same number
* of integer divisions.
*
* An integer division is considered to be a shift of another integer
* division if one is equal to the other plus a constant.
*
* In particular, for each pair of integer divisions, if both are known,
* have identical coefficients (apart from the constant term) and
* if the difference between the constant terms (taking into account
* the denominator) is an integer, then move the difference outside.
* That is, if one integer division is of the form
*
* floor((f(x) + c_1)/d)
*
* while the other is of the form
*
* floor((f(x) + c_2)/d)
*
* and n = (c_2 - c_1)/d is an integer, then replace the first
* integer division by
*
* floor((f(x) + c_1 + n * d)/d) - n = floor((f(x) + c_2)/d) - n
*/
static int harmonize_divs(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
int i;
int total;
if (!info1->bmap || !info2->bmap)
return -1;
if (info1->bmap->n_div != info2->bmap->n_div)
return 0;
if (info1->bmap->n_div == 0)
return 0;
total = isl_basic_map_total_dim(info1->bmap);
for (i = 0; i < info1->bmap->n_div; ++i) {
isl_int d;
int r = 0;
if (isl_int_is_zero(info1->bmap->div[i][0]) ||
isl_int_is_zero(info2->bmap->div[i][0]))
continue;
if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
continue;
if (isl_int_eq(info1->bmap->div[i][1], info2->bmap->div[i][1]))
continue;
if (!isl_seq_eq(info1->bmap->div[i] + 2,
info2->bmap->div[i] + 2, total))
continue;
isl_int_init(d);
isl_int_sub(d, info2->bmap->div[i][1], info1->bmap->div[i][1]);
if (isl_int_is_divisible_by(d, info1->bmap->div[i][0])) {
isl_int_divexact(d, d, info1->bmap->div[i][0]);
r = shift_div(info1, i, d);
}
isl_int_clear(d);
if (r < 0)
return -1;
}
return 0;
}
/* Do the two basic maps live in the same local space, i.e.,
* do they have the same (known) divs?
* If either basic map has any unknown divs, then we can only assume
* that they do not live in the same local space.
*/
static int same_divs(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
int i;
int known;
int total;
if (!bmap1 || !bmap2)
return -1;
if (bmap1->n_div != bmap2->n_div)
return 0;
if (bmap1->n_div == 0)
return 1;
known = isl_basic_map_divs_known(bmap1);
if (known < 0 || !known)
return known;
known = isl_basic_map_divs_known(bmap2);
if (known < 0 || !known)
return known;
total = isl_basic_map_total_dim(bmap1);
for (i = 0; i < bmap1->n_div; ++i)
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
return 0;
return 1;
}
/* Does "bmap" contain the basic map represented by the tableau "tab"
* after expanding the divs of "bmap" to match those of "tab"?
* The expansion is performed using the divs "div" and expansion "exp"
* computed by the caller.
* Then we check if all constraints of the expanded "bmap" are valid for "tab".
*/
static int contains_with_expanded_divs(__isl_keep isl_basic_map *bmap,
struct isl_tab *tab, __isl_keep isl_mat *div, int *exp)
{
int superset = 0;
int *eq_i = NULL;
int *ineq_i = NULL;
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
if (!bmap)
goto error;
eq_i = eq_status_in(bmap, tab);
if (bmap->n_eq && !eq_i)
goto error;
if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
goto error;
if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
goto done;
ineq_i = ineq_status_in(bmap, NULL, tab);
if (bmap->n_ineq && !ineq_i)
goto error;
if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
goto error;
if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
goto done;
if (all(eq_i, 2 * bmap->n_eq, STATUS_VALID) &&
all(ineq_i, bmap->n_ineq, STATUS_VALID))
superset = 1;
done:
isl_basic_map_free(bmap);
free(eq_i);
free(ineq_i);
return superset;
error:
isl_basic_map_free(bmap);
free(eq_i);
free(ineq_i);
return -1;
}
/* Does "bmap_i" contain the basic map represented by "info_j"
* after aligning the divs of "bmap_i" to those of "info_j".
* Note that this can only succeed if the number of divs of "bmap_i"
* is smaller than (or equal to) the number of divs of "info_j".
*
* We first check if the divs of "bmap_i" are all known and form a subset
* of those of "bmap_j". If so, we pass control over to
* contains_with_expanded_divs.
*/
static int contains_after_aligning_divs(__isl_keep isl_basic_map *bmap_i,
struct isl_coalesce_info *info_j)
{
int known;
isl_mat *div_i, *div_j, *div;
int *exp1 = NULL;
int *exp2 = NULL;
isl_ctx *ctx;
int subset;
known = isl_basic_map_divs_known(bmap_i);
if (known < 0 || !known)
return known;
ctx = isl_basic_map_get_ctx(bmap_i);
div_i = isl_basic_map_get_divs(bmap_i);
div_j = isl_basic_map_get_divs(info_j->bmap);
if (!div_i || !div_j)
goto error;
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
goto error;
div = isl_merge_divs(div_i, div_j, exp1, exp2);
if (!div)
goto error;
if (div->n_row == div_j->n_row)
subset = contains_with_expanded_divs(bmap_i,
info_j->tab, div, exp1);
else
subset = 0;
isl_mat_free(div);
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp2);
free(exp1);
return subset;
error:
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp1);
free(exp2);
return -1;
}
/* Check if the basic map "j" is a subset of basic map "i",
* if "i" has fewer divs that "j".
* If so, remove basic map "j".
*
* If the two basic maps have the same number of divs, then
* they must necessarily be different. Otherwise, we would have
* called coalesce_local_pair. We therefore don't try anything
* in this case.
*/
static int coalesced_subset(int i, int j, struct isl_coalesce_info *info)
{
int superset;
if (info[i].bmap->n_div >= info[j].bmap->n_div)
return 0;
superset = contains_after_aligning_divs(info[i].bmap, &info[j]);
if (superset < 0)
return -1;
if (superset)
drop(&info[j]);
return superset;
}
/* Check if basic map "j" is a subset of basic map "i" after
* exploiting the extra equalities of "j" to simplify the divs of "i".
* If so, remove basic map "j".
*
* If "j" does not have any equalities or if they are the same
* as those of "i", then we cannot exploit them to simplify the divs.
* Similarly, if there are no divs in "i", then they cannot be simplified.
* If, on the other hand, the affine hulls of "i" and "j" do not intersect,
* then "j" cannot be a subset of "i".
*
* Otherwise, we intersect "i" with the affine hull of "j" and then
* check if "j" is a subset of the result after aligning the divs.
* If so, then "j" is definitely a subset of "i" and can be removed.
* Note that if after intersection with the affine hull of "j".
* "i" still has more divs than "j", then there is no way we can
* align the divs of "i" to those of "j".
*/
static int coalesced_subset_with_equalities(int i, int j,
struct isl_coalesce_info *info)
{
isl_basic_map *hull_i, *hull_j, *bmap_i;
int equal, empty, subset;
if (info[j].bmap->n_eq == 0)
return 0;
if (info[i].bmap->n_div == 0)
return 0;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || equal || empty < 0 || empty) {
isl_basic_map_free(hull_j);
return equal < 0 || empty < 0 ? -1 : 0;
}
bmap_i = isl_basic_map_copy(info[i].bmap);
bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
if (!bmap_i)
return -1;
if (bmap_i->n_div > info[j].bmap->n_div) {
isl_basic_map_free(bmap_i);
return 0;
}
subset = contains_after_aligning_divs(bmap_i, &info[j]);
isl_basic_map_free(bmap_i);
if (subset < 0)
return -1;
if (subset)
drop(&info[j]);
return subset;
}
/* Check if one of the basic maps is a subset of the other and, if so,
* drop the subset.
* Note that we only perform any test if the number of divs is different
* in the two basic maps. In case the number of divs is the same,
* we have already established that the divs are different
* in the two basic maps.
* In particular, if the number of divs of basic map i is smaller than
* the number of divs of basic map j, then we check if j is a subset of i
* and vice versa.
*/
static enum isl_change check_coalesce_subset(int i, int j,
struct isl_coalesce_info *info)
{
int changed;
changed = coalesced_subset(i, j, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_second;
changed = coalesced_subset(j, i, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_first;
changed = coalesced_subset_with_equalities(i, j, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_second;
changed = coalesced_subset_with_equalities(j, i, info);
if (changed < 0 || changed)
return changed < 0 ? isl_change_error : isl_change_drop_first;
return isl_change_none;
}
/* Does "bmap" involve any divs that themselves refer to divs?
*/
static int has_nested_div(__isl_keep isl_basic_map *bmap)
{
int i;
unsigned total;
unsigned n_div;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
total -= n_div;
for (i = 0; i < n_div; ++i)
if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
n_div) != -1)
return 1;
return 0;
}
/* Return a list of affine expressions, one for each integer division
* in "bmap_i". For each integer division that also appears in "bmap_j",
* the affine expression is set to NaN. The number of NaNs in the list
* is equal to the number of integer divisions in "bmap_j".
* For the other integer divisions of "bmap_i", the corresponding
* element in the list is a purely affine expression equal to the integer
* division in "hull".
* If no such list can be constructed, then the number of elements
* in the returned list is smaller than the number of integer divisions
* in "bmap_i".
*/
static __isl_give isl_aff_list *set_up_substitutions(
__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
__isl_take isl_basic_map *hull)
{
unsigned n_div_i, n_div_j, total;
isl_ctx *ctx;
isl_local_space *ls;
isl_basic_set *wrap_hull;
isl_aff *aff_nan;
isl_aff_list *list;
int i, j;
if (!hull)
return NULL;
ctx = isl_basic_map_get_ctx(hull);
n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
total = isl_basic_map_total_dim(bmap_i) - n_div_i;
ls = isl_basic_map_get_local_space(bmap_i);
ls = isl_local_space_wrap(ls);
wrap_hull = isl_basic_map_wrap(hull);
aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
list = isl_aff_list_alloc(ctx, n_div_i);
j = 0;
for (i = 0; i < n_div_i; ++i) {
isl_aff *aff;
if (j < n_div_j &&
isl_seq_eq(bmap_i->div[i], bmap_j->div[j], 2 + total)) {
++j;
list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
continue;
}
if (n_div_i - i <= n_div_j - j)
break;
aff = isl_local_space_get_div(ls, i);
aff = isl_aff_substitute_equalities(aff,
isl_basic_set_copy(wrap_hull));
aff = isl_aff_floor(aff);
if (!aff)
goto error;
if (isl_aff_dim(aff, isl_dim_div) != 0) {
isl_aff_free(aff);
break;
}
list = isl_aff_list_add(list, aff);
}
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
return list;
error:
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
isl_aff_list_free(list);
return NULL;
}
/* Add variables to info->bmap and info->tab corresponding to the elements
* in "list" that are not set to NaN.
* "extra_var" is the number of these elements.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in "tab"
* is equal to "dim" plus the number of elements in "list".
*/
static int add_sub_vars(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim, int extra_var)
{
int i, j, n;
isl_space *space;
space = isl_basic_map_get_space(info->bmap);
info->bmap = isl_basic_map_cow(info->bmap);
info->bmap = isl_basic_map_extend_space(info->bmap, space,
extra_var, 0, 0);
if (!info->bmap)
return -1;
n = isl_aff_list_n_aff(list);
for (i = 0; i < n; ++i) {
int is_nan;
isl_aff *aff;
aff = isl_aff_list_get_aff(list, i);
is_nan = isl_aff_is_nan(aff);
isl_aff_free(aff);
if (is_nan < 0)
return -1;
if (is_nan)
continue;
if (isl_tab_insert_var(info->tab, dim + i) < 0)
return -1;
if (isl_basic_map_alloc_div(info->bmap) < 0)
return -1;
for (j = n - 1; j > i; --j)
isl_basic_map_swap_div(info->bmap, j - 1, j);
}
return 0;
}
/* For each element in "list" that is not set to NaN, fix the corresponding
* variable in "tab" to the purely affine expression defined by the element.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
*/
static int add_sub_equalities(struct isl_tab *tab,
__isl_keep isl_aff_list *list, int dim)
{
int i, n;
isl_ctx *ctx;
isl_vec *sub;
isl_aff *aff;
n = isl_aff_list_n_aff(list);
ctx = isl_tab_get_ctx(tab);
sub = isl_vec_alloc(ctx, 1 + dim + n);
if (!sub)
return -1;
isl_seq_clr(sub->el + 1 + dim, n);
for (i = 0; i < n; ++i) {
aff = isl_aff_list_get_aff(list, i);
if (!aff)
goto error;
if (isl_aff_is_nan(aff)) {
isl_aff_free(aff);
continue;
}
isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
if (isl_tab_add_eq(tab, sub->el) < 0)
goto error;
isl_int_set_si(sub->el[1 + dim + i], 0);
isl_aff_free(aff);
}
isl_vec_free(sub);
return 0;
error:
isl_aff_free(aff);
isl_vec_free(sub);
return -1;
}
/* Add variables to info->tab and info->bmap corresponding to the elements
* in "list" that are not set to NaN. The value of the added variable
* in info->tab is fixed to the purely affine expression defined by the element.
* "dim" is the offset in the variables of info->tab where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in info->tab
* is equal to "dim" plus the number of elements in "list".
*/
static int add_subs(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim)
{
int extra_var;
int n;
if (!list)
return -1;
n = isl_aff_list_n_aff(list);
extra_var = n - (info->tab->n_var - dim);
if (isl_tab_extend_vars(info->tab, extra_var) < 0)
return -1;
if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
return -1;
if (add_sub_vars(info, list, dim, extra_var) < 0)
return -1;
return add_sub_equalities(info->tab, list, dim);
}
/* Coalesce basic map "j" into basic map "i" after adding the extra integer
* divisions in "i" but not in "j" to basic map "j", with values
* specified by "list". The total number of elements in "list"
* is equal to the number of integer divisions in "i", while the number
* of NaN elements in the list is equal to the number of integer divisions
* in "j".
*
* If no coalescing can be performed, then we need to revert basic map "j"
* to its original state. We do the same if basic map "i" gets dropped
* during the coalescing, even though this should not happen in practice
* since we have already checked for "j" being a subset of "i"
* before we reach this stage.
*/
static enum isl_change coalesce_with_subs(int i, int j,
struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
{
isl_basic_map *bmap_j;
struct isl_tab_undo *snap;
unsigned dim;
enum isl_change change;
bmap_j = isl_basic_map_copy(info[j].bmap);
snap = isl_tab_snap(info[j].tab);
dim = isl_basic_map_dim(bmap_j, isl_dim_all);
dim -= isl_basic_map_dim(bmap_j, isl_dim_div);
if (add_subs(&info[j], list, dim) < 0)
goto error;
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none && change != isl_change_drop_first) {
isl_basic_map_free(bmap_j);
} else {
isl_basic_map_free(info[j].bmap);
info[j].bmap = bmap_j;
if (isl_tab_rollback(info[j].tab, snap) < 0)
return isl_change_error;
}
return change;
error:
isl_basic_map_free(bmap_j);
return isl_change_error;
}
/* Check if we can coalesce basic map "j" into basic map "i" after copying
* those extra integer divisions in "i" that can be simplified away
* using the extra equalities in "j".
* All divs are assumed to be known and not contain any nested divs.
*
* We first check if there are any extra equalities in "j" that we
* can exploit. Then we check if every integer division in "i"
* either already appears in "j" or can be simplified using the
* extra equalities to a purely affine expression.
* If these tests succeed, then we try to coalesce the two basic maps
* by introducing extra dimensions in "j" corresponding to
* the extra integer divsisions "i" fixed to the corresponding
* purely affine expression.
*/
static enum isl_change check_coalesce_into_eq(int i, int j,
struct isl_coalesce_info *info)
{
unsigned n_div_i, n_div_j;
isl_basic_map *hull_i, *hull_j;
int equal, empty;
isl_aff_list *list;
enum isl_change change;
n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
if (n_div_i <= n_div_j)
return isl_change_none;
if (info[j].bmap->n_eq == 0)
return isl_change_none;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || empty < 0)
goto error;
if (equal || empty) {
isl_basic_map_free(hull_j);
return isl_change_none;
}
list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
if (!list)
return isl_change_error;
if (isl_aff_list_n_aff(list) < n_div_i)
change = isl_change_none;
else
change = coalesce_with_subs(i, j, info, list);
isl_aff_list_free(list);
return change;
error:
isl_basic_map_free(hull_j);
return isl_change_error;
}
/* Check if we can coalesce basic maps "i" and "j" after copying
* those extra integer divisions in one of the basic maps that can
* be simplified away using the extra equalities in the other basic map.
* We require all divs to be known in both basic maps.
* Furthermore, to simplify the comparison of div expressions,
* we do not allow any nested integer divisions.
*/
static enum isl_change check_coalesce_eq(int i, int j,
struct isl_coalesce_info *info)
{
int known, nested;
enum isl_change change;
known = isl_basic_map_divs_known(info[i].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
known = isl_basic_map_divs_known(info[j].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[i].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[j].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
change = check_coalesce_into_eq(i, j, info);
if (change != isl_change_none)
return change;
change = check_coalesce_into_eq(j, i, info);
if (change != isl_change_none)
return invert_change(change);
return isl_change_none;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* We first check if the two basic maps live in the same local space,
* after aligning the divs that differ by only an integer constant.
* If so, we do the complete check. Otherwise, we check if they have
* the same number of integer divisions and can be coalesced, if one is
* an obvious subset of the other or if the extra integer divisions
* of one basic map can be simplified away using the extra equalities
* of the other basic map.
*/
static enum isl_change coalesce_pair(int i, int j,
struct isl_coalesce_info *info)
{
int same;
enum isl_change change;
if (harmonize_divs(&info[i], &info[j]) < 0)
return isl_change_error;
same = same_divs(info[i].bmap, info[j].bmap);
if (same < 0)
return isl_change_error;
if (same)
return coalesce_local_pair(i, j, info);
if (info[i].bmap->n_div == info[j].bmap->n_div) {
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none)
return change;
}
change = check_coalesce_subset(i, j, info);
if (change != isl_change_none)
return change;
return check_coalesce_eq(i, j, info);
}
/* Return the maximum of "a" and "b".
*/
static int isl_max(int a, int b)
{
return a > b ? a : b;
}
/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
* with those in the range [start2, end2[, skipping basic maps
* that have been removed (either before or within this function).
*
* For each basic map i in the first range, we check if it can be coalesced
* with respect to any previously considered basic map j in the second range.
* If i gets dropped (because it was a subset of some j), then
* we can move on to the next basic map.
* If j gets dropped, we need to continue checking against the other
* previously considered basic maps.
* If the two basic maps got fused, then we recheck the fused basic map
* against the previously considered basic maps, starting at i + 1
* (even if start2 is greater than i + 1).
*/
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
int start1, int end1, int start2, int end2)
{
int i, j;
for (i = end1 - 1; i >= start1; --i) {
if (info[i].removed)
continue;
for (j = isl_max(i + 1, start2); j < end2; ++j) {
enum isl_change changed;
if (info[j].removed)
continue;
if (info[i].removed)
isl_die(ctx, isl_error_internal,
"basic map unexpectedly removed",
return -1);
changed = coalesce_pair(i, j, info);
switch (changed) {
case isl_change_error:
return -1;
case isl_change_none:
case isl_change_drop_second:
continue;
case isl_change_drop_first:
j = end2;
break;
case isl_change_fuse:
j = i;
break;
}
}
}
return 0;
}
/* Pairwise coalesce the basic maps described by the "n" elements of "info".
*
* We consider groups of basic maps that live in the same apparent
* affine hull and we first coalesce within such a group before we
* coalesce the elements in the group with elements of previously
* considered groups. If a fuse happens during the second phase,
* then we also reconsider the elements within the group.
*/
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
{
int start, end;
for (end = n; end > 0; end = start) {
start = end - 1;
while (start >= 1 &&
info[start - 1].hull_hash == info[start].hull_hash)
start--;
if (coalesce_range(ctx, info, start, end, start, end) < 0)
return -1;
if (coalesce_range(ctx, info, start, end, end, n) < 0)
return -1;
}
return 0;
}
/* Update the basic maps in "map" based on the information in "info".
* In particular, remove the basic maps that have been marked removed and
* update the others based on the information in the corresponding tableau.
* Since we detected implicit equalities without calling
* isl_basic_map_gauss, we need to do it now.
* Also call isl_basic_map_simplify if we may have lost the definition
* of one or more integer divisions.
*/
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
int n, struct isl_coalesce_info *info)
{
int i;
if (!map)
return NULL;
for (i = n - 1; i >= 0; --i) {
if (info[i].removed) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
continue;
}
info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
info[i].tab);
info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
if (info[i].simplify)
info[i].bmap = isl_basic_map_simplify(info[i].bmap);
info[i].bmap = isl_basic_map_finalize(info[i].bmap);
if (!info[i].bmap)
return isl_map_free(map);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
isl_basic_map_free(map->p[i]);
map->p[i] = info[i].bmap;
info[i].bmap = NULL;
}
return map;
}
/* For each pair of basic maps in the map, check if the union of the two
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and start over.
*
* We factor out any (hidden) common factor from the constraint
* coefficients to improve the detection of adjacent constraints.
*
* Since we are constructing the tableaus of the basic maps anyway,
* we exploit them to detect implicit equalities and redundant constraints.
* This also helps the coalescing as it can ignore the redundant constraints.
* In order to avoid confusion, we make all implicit equalities explicit
* in the basic maps. We don't call isl_basic_map_gauss, though,
* as that may affect the number of constraints.
* This means that we have to call isl_basic_map_gauss at the end
* of the computation (in update_basic_maps) to ensure that
* the basic maps are not left in an unexpected state.
* For each basic map, we also compute the hash of the apparent affine hull
* for use in coalesce.
*/
struct isl_map *isl_map_coalesce(struct isl_map *map)
{
int i;
unsigned n;
isl_ctx *ctx;
struct isl_coalesce_info *info = NULL;
map = isl_map_remove_empty_parts(map);
if (!map)
return NULL;
if (map->n <= 1)
return map;
ctx = isl_map_get_ctx(map);
map = isl_map_sort_divs(map);
map = isl_map_cow(map);
if (!map)
return NULL;
n = map->n;
info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
if (!info)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
if (!map->p[i])
goto error;
info[i].bmap = isl_basic_map_copy(map->p[i]);
info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
if (!info[i].tab)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
goto error;
info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
info[i].bmap);
if (!info[i].bmap)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
if (isl_tab_detect_redundant(info[i].tab) < 0)
goto error;
if (coalesce_info_set_hull_hash(&info[i]) < 0)
goto error;
}
for (i = map->n - 1; i >= 0; --i)
if (info[i].tab->empty)
drop(&info[i]);
if (coalesce(ctx, n, info) < 0)
goto error;
map = update_basic_maps(map, n, info);
clear_coalesce_info(n, info);
return map;
error:
clear_coalesce_info(n, info);
isl_map_free(map);
return NULL;
}
/* For each pair of basic sets in the set, check if the union of the two
* can be represented by a single basic set.
* If so, replace the pair by the single basic set and start over.
*/
struct isl_set *isl_set_coalesce(struct isl_set *set)
{
return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
}