forked from OSchip/llvm-project
8704 lines
225 KiB
C
8704 lines
225 KiB
C
/*
|
||
* Copyright 2011 INRIA Saclay
|
||
* Copyright 2011 Sven Verdoolaege
|
||
* Copyright 2012-2014 Ecole Normale Superieure
|
||
* Copyright 2014 INRIA Rocquencourt
|
||
*
|
||
* Use of this software is governed by the MIT license
|
||
*
|
||
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
||
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
||
* 91893 Orsay, France
|
||
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
|
||
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
|
||
* B.P. 105 - 78153 Le Chesnay, France
|
||
*/
|
||
|
||
#include <isl_ctx_private.h>
|
||
#define ISL_DIM_H
|
||
#include <isl_map_private.h>
|
||
#include <isl_union_map_private.h>
|
||
#include <isl_aff_private.h>
|
||
#include <isl_space_private.h>
|
||
#include <isl_local_space_private.h>
|
||
#include <isl_vec_private.h>
|
||
#include <isl_mat_private.h>
|
||
#include <isl/constraint.h>
|
||
#include <isl_seq.h>
|
||
#include <isl/set.h>
|
||
#include <isl_val_private.h>
|
||
#include <isl/deprecated/aff_int.h>
|
||
#include <isl_config.h>
|
||
|
||
#undef BASE
|
||
#define BASE aff
|
||
|
||
#include <isl_list_templ.c>
|
||
|
||
#undef BASE
|
||
#define BASE pw_aff
|
||
|
||
#include <isl_list_templ.c>
|
||
|
||
#undef BASE
|
||
#define BASE union_pw_aff
|
||
|
||
#include <isl_list_templ.c>
|
||
|
||
#undef BASE
|
||
#define BASE union_pw_multi_aff
|
||
|
||
#include <isl_list_templ.c>
|
||
|
||
__isl_give isl_aff *isl_aff_alloc_vec(__isl_take isl_local_space *ls,
|
||
__isl_take isl_vec *v)
|
||
{
|
||
isl_aff *aff;
|
||
|
||
if (!ls || !v)
|
||
goto error;
|
||
|
||
aff = isl_calloc_type(v->ctx, struct isl_aff);
|
||
if (!aff)
|
||
goto error;
|
||
|
||
aff->ref = 1;
|
||
aff->ls = ls;
|
||
aff->v = v;
|
||
|
||
return aff;
|
||
error:
|
||
isl_local_space_free(ls);
|
||
isl_vec_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_alloc(__isl_take isl_local_space *ls)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_vec *v;
|
||
unsigned total;
|
||
|
||
if (!ls)
|
||
return NULL;
|
||
|
||
ctx = isl_local_space_get_ctx(ls);
|
||
if (!isl_local_space_divs_known(ls))
|
||
isl_die(ctx, isl_error_invalid, "local space has unknown divs",
|
||
goto error);
|
||
if (!isl_local_space_is_set(ls))
|
||
isl_die(ctx, isl_error_invalid,
|
||
"domain of affine expression should be a set",
|
||
goto error);
|
||
|
||
total = isl_local_space_dim(ls, isl_dim_all);
|
||
v = isl_vec_alloc(ctx, 1 + 1 + total);
|
||
return isl_aff_alloc_vec(ls, v);
|
||
error:
|
||
isl_local_space_free(ls);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_zero_on_domain(__isl_take isl_local_space *ls)
|
||
{
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_alloc(ls);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
isl_int_set_si(aff->v->el[0], 1);
|
||
isl_seq_clr(aff->v->el + 1, aff->v->size - 1);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Return a piecewise affine expression defined on the specified domain
|
||
* that is equal to zero.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(__isl_take isl_local_space *ls)
|
||
{
|
||
return isl_pw_aff_from_aff(isl_aff_zero_on_domain(ls));
|
||
}
|
||
|
||
/* Return an affine expression defined on the specified domain
|
||
* that represents NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_nan_on_domain(__isl_take isl_local_space *ls)
|
||
{
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_alloc(ls);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
isl_seq_clr(aff->v->el, aff->v->size);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Return a piecewise affine expression defined on the specified domain
|
||
* that represents NaN.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(__isl_take isl_local_space *ls)
|
||
{
|
||
return isl_pw_aff_from_aff(isl_aff_nan_on_domain(ls));
|
||
}
|
||
|
||
/* Return an affine expression that is equal to "val" on
|
||
* domain local space "ls".
|
||
*/
|
||
__isl_give isl_aff *isl_aff_val_on_domain(__isl_take isl_local_space *ls,
|
||
__isl_take isl_val *val)
|
||
{
|
||
isl_aff *aff;
|
||
|
||
if (!ls || !val)
|
||
goto error;
|
||
if (!isl_val_is_rat(val))
|
||
isl_die(isl_val_get_ctx(val), isl_error_invalid,
|
||
"expecting rational value", goto error);
|
||
|
||
aff = isl_aff_alloc(isl_local_space_copy(ls));
|
||
if (!aff)
|
||
goto error;
|
||
|
||
isl_seq_clr(aff->v->el + 2, aff->v->size - 2);
|
||
isl_int_set(aff->v->el[1], val->n);
|
||
isl_int_set(aff->v->el[0], val->d);
|
||
|
||
isl_local_space_free(ls);
|
||
isl_val_free(val);
|
||
return aff;
|
||
error:
|
||
isl_local_space_free(ls);
|
||
isl_val_free(val);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return an affine expression that is equal to the specified dimension
|
||
* in "ls".
|
||
*/
|
||
__isl_give isl_aff *isl_aff_var_on_domain(__isl_take isl_local_space *ls,
|
||
enum isl_dim_type type, unsigned pos)
|
||
{
|
||
isl_space *space;
|
||
isl_aff *aff;
|
||
|
||
if (!ls)
|
||
return NULL;
|
||
|
||
space = isl_local_space_get_space(ls);
|
||
if (!space)
|
||
goto error;
|
||
if (isl_space_is_map(space))
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"expecting (parameter) set space", goto error);
|
||
if (pos >= isl_local_space_dim(ls, type))
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"position out of bounds", goto error);
|
||
|
||
isl_space_free(space);
|
||
aff = isl_aff_alloc(ls);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
|
||
isl_int_set_si(aff->v->el[0], 1);
|
||
isl_seq_clr(aff->v->el + 1, aff->v->size - 1);
|
||
isl_int_set_si(aff->v->el[1 + pos], 1);
|
||
|
||
return aff;
|
||
error:
|
||
isl_local_space_free(ls);
|
||
isl_space_free(space);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a piecewise affine expression that is equal to
|
||
* the specified dimension in "ls".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_var_on_domain(__isl_take isl_local_space *ls,
|
||
enum isl_dim_type type, unsigned pos)
|
||
{
|
||
return isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, type, pos));
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->ref++;
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_dup(__isl_keep isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
return isl_aff_alloc_vec(isl_local_space_copy(aff->ls),
|
||
isl_vec_copy(aff->v));
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_cow(__isl_take isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (aff->ref == 1)
|
||
return aff;
|
||
aff->ref--;
|
||
return isl_aff_dup(aff);
|
||
}
|
||
|
||
__isl_null isl_aff *isl_aff_free(__isl_take isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (--aff->ref > 0)
|
||
return NULL;
|
||
|
||
isl_local_space_free(aff->ls);
|
||
isl_vec_free(aff->v);
|
||
|
||
free(aff);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff)
|
||
{
|
||
return aff ? isl_local_space_get_ctx(aff->ls) : NULL;
|
||
}
|
||
|
||
/* Return a hash value that digests "aff".
|
||
*/
|
||
uint32_t isl_aff_get_hash(__isl_keep isl_aff *aff)
|
||
{
|
||
uint32_t hash, ls_hash, v_hash;
|
||
|
||
if (!aff)
|
||
return 0;
|
||
|
||
hash = isl_hash_init();
|
||
ls_hash = isl_local_space_get_hash(aff->ls);
|
||
isl_hash_hash(hash, ls_hash);
|
||
v_hash = isl_vec_get_hash(aff->v);
|
||
isl_hash_hash(hash, v_hash);
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Externally, an isl_aff has a map space, but internally, the
|
||
* ls field corresponds to the domain of that space.
|
||
*/
|
||
int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type)
|
||
{
|
||
if (!aff)
|
||
return 0;
|
||
if (type == isl_dim_out)
|
||
return 1;
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
return isl_local_space_dim(aff->ls, type);
|
||
}
|
||
|
||
/* Return the position of the dimension of the given type and name
|
||
* in "aff".
|
||
* Return -1 if no such dimension can be found.
|
||
*/
|
||
int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff, enum isl_dim_type type,
|
||
const char *name)
|
||
{
|
||
if (!aff)
|
||
return -1;
|
||
if (type == isl_dim_out)
|
||
return -1;
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
return isl_local_space_find_dim_by_name(aff->ls, type, name);
|
||
}
|
||
|
||
__isl_give isl_space *isl_aff_get_domain_space(__isl_keep isl_aff *aff)
|
||
{
|
||
return aff ? isl_local_space_get_space(aff->ls) : NULL;
|
||
}
|
||
|
||
__isl_give isl_space *isl_aff_get_space(__isl_keep isl_aff *aff)
|
||
{
|
||
isl_space *space;
|
||
if (!aff)
|
||
return NULL;
|
||
space = isl_local_space_get_space(aff->ls);
|
||
space = isl_space_from_domain(space);
|
||
space = isl_space_add_dims(space, isl_dim_out, 1);
|
||
return space;
|
||
}
|
||
|
||
__isl_give isl_local_space *isl_aff_get_domain_local_space(
|
||
__isl_keep isl_aff *aff)
|
||
{
|
||
return aff ? isl_local_space_copy(aff->ls) : NULL;
|
||
}
|
||
|
||
__isl_give isl_local_space *isl_aff_get_local_space(__isl_keep isl_aff *aff)
|
||
{
|
||
isl_local_space *ls;
|
||
if (!aff)
|
||
return NULL;
|
||
ls = isl_local_space_copy(aff->ls);
|
||
ls = isl_local_space_from_domain(ls);
|
||
ls = isl_local_space_add_dims(ls, isl_dim_out, 1);
|
||
return ls;
|
||
}
|
||
|
||
/* Externally, an isl_aff has a map space, but internally, the
|
||
* ls field corresponds to the domain of that space.
|
||
*/
|
||
const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
|
||
enum isl_dim_type type, unsigned pos)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
if (type == isl_dim_out)
|
||
return NULL;
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
return isl_local_space_get_dim_name(aff->ls, type, pos);
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_reset_domain_space(__isl_take isl_aff *aff,
|
||
__isl_take isl_space *dim)
|
||
{
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff || !dim)
|
||
goto error;
|
||
|
||
aff->ls = isl_local_space_reset_space(aff->ls, dim);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_space_free(dim);
|
||
return NULL;
|
||
}
|
||
|
||
/* Reset the space of "aff". This function is called from isl_pw_templ.c
|
||
* and doesn't know if the space of an element object is represented
|
||
* directly or through its domain. It therefore passes along both.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_reset_space_and_domain(__isl_take isl_aff *aff,
|
||
__isl_take isl_space *space, __isl_take isl_space *domain)
|
||
{
|
||
isl_space_free(space);
|
||
return isl_aff_reset_domain_space(aff, domain);
|
||
}
|
||
|
||
/* Reorder the coefficients of the affine expression based
|
||
* on the given reodering.
|
||
* The reordering r is assumed to have been extended with the local
|
||
* variables.
|
||
*/
|
||
static __isl_give isl_vec *vec_reorder(__isl_take isl_vec *vec,
|
||
__isl_take isl_reordering *r, int n_div)
|
||
{
|
||
isl_vec *res;
|
||
int i;
|
||
|
||
if (!vec || !r)
|
||
goto error;
|
||
|
||
res = isl_vec_alloc(vec->ctx,
|
||
2 + isl_space_dim(r->dim, isl_dim_all) + n_div);
|
||
isl_seq_cpy(res->el, vec->el, 2);
|
||
isl_seq_clr(res->el + 2, res->size - 2);
|
||
for (i = 0; i < r->len; ++i)
|
||
isl_int_set(res->el[2 + r->pos[i]], vec->el[2 + i]);
|
||
|
||
isl_reordering_free(r);
|
||
isl_vec_free(vec);
|
||
return res;
|
||
error:
|
||
isl_vec_free(vec);
|
||
isl_reordering_free(r);
|
||
return NULL;
|
||
}
|
||
|
||
/* Reorder the dimensions of the domain of "aff" according
|
||
* to the given reordering.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_realign_domain(__isl_take isl_aff *aff,
|
||
__isl_take isl_reordering *r)
|
||
{
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
|
||
r = isl_reordering_extend(r, aff->ls->div->n_row);
|
||
aff->v = vec_reorder(aff->v, isl_reordering_copy(r),
|
||
aff->ls->div->n_row);
|
||
aff->ls = isl_local_space_realign(aff->ls, r);
|
||
|
||
if (!aff->v || !aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_reordering_free(r);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_align_params(__isl_take isl_aff *aff,
|
||
__isl_take isl_space *model)
|
||
{
|
||
if (!aff || !model)
|
||
goto error;
|
||
|
||
if (!isl_space_match(aff->ls->dim, isl_dim_param,
|
||
model, isl_dim_param)) {
|
||
isl_reordering *exp;
|
||
|
||
model = isl_space_drop_dims(model, isl_dim_in,
|
||
0, isl_space_dim(model, isl_dim_in));
|
||
model = isl_space_drop_dims(model, isl_dim_out,
|
||
0, isl_space_dim(model, isl_dim_out));
|
||
exp = isl_parameter_alignment_reordering(aff->ls->dim, model);
|
||
exp = isl_reordering_extend_space(exp,
|
||
isl_aff_get_domain_space(aff));
|
||
aff = isl_aff_realign_domain(aff, exp);
|
||
}
|
||
|
||
isl_space_free(model);
|
||
return aff;
|
||
error:
|
||
isl_space_free(model);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Is "aff" obviously equal to zero?
|
||
*
|
||
* If the denominator is zero, then "aff" is not equal to zero.
|
||
*/
|
||
isl_bool isl_aff_plain_is_zero(__isl_keep isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return isl_bool_error;
|
||
|
||
if (isl_int_is_zero(aff->v->el[0]))
|
||
return isl_bool_false;
|
||
return isl_seq_first_non_zero(aff->v->el + 1, aff->v->size - 1) < 0;
|
||
}
|
||
|
||
/* Does "aff" represent NaN?
|
||
*/
|
||
isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return isl_bool_error;
|
||
|
||
return isl_seq_first_non_zero(aff->v->el, 2) < 0;
|
||
}
|
||
|
||
/* Does "pa" involve any NaNs?
|
||
*/
|
||
isl_bool isl_pw_aff_involves_nan(__isl_keep isl_pw_aff *pa)
|
||
{
|
||
int i;
|
||
|
||
if (!pa)
|
||
return isl_bool_error;
|
||
if (pa->n == 0)
|
||
return isl_bool_false;
|
||
|
||
for (i = 0; i < pa->n; ++i) {
|
||
isl_bool is_nan = isl_aff_is_nan(pa->p[i].aff);
|
||
if (is_nan < 0 || is_nan)
|
||
return is_nan;
|
||
}
|
||
|
||
return isl_bool_false;
|
||
}
|
||
|
||
/* Are "aff1" and "aff2" obviously equal?
|
||
*
|
||
* NaN is not equal to anything, not even to another NaN.
|
||
*/
|
||
isl_bool isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
|
||
__isl_keep isl_aff *aff2)
|
||
{
|
||
isl_bool equal;
|
||
|
||
if (!aff1 || !aff2)
|
||
return isl_bool_error;
|
||
|
||
if (isl_aff_is_nan(aff1) || isl_aff_is_nan(aff2))
|
||
return isl_bool_false;
|
||
|
||
equal = isl_local_space_is_equal(aff1->ls, aff2->ls);
|
||
if (equal < 0 || !equal)
|
||
return equal;
|
||
|
||
return isl_vec_is_equal(aff1->v, aff2->v);
|
||
}
|
||
|
||
/* Return the common denominator of "aff" in "v".
|
||
*
|
||
* We cannot return anything meaningful in case of a NaN.
|
||
*/
|
||
int isl_aff_get_denominator(__isl_keep isl_aff *aff, isl_int *v)
|
||
{
|
||
if (!aff)
|
||
return -1;
|
||
if (isl_aff_is_nan(aff))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot get denominator of NaN", return -1);
|
||
isl_int_set(*v, aff->v->el[0]);
|
||
return 0;
|
||
}
|
||
|
||
/* Return the common denominator of "aff".
|
||
*/
|
||
__isl_give isl_val *isl_aff_get_denominator_val(__isl_keep isl_aff *aff)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (isl_aff_is_nan(aff))
|
||
return isl_val_nan(ctx);
|
||
return isl_val_int_from_isl_int(ctx, aff->v->el[0]);
|
||
}
|
||
|
||
/* Return the constant term of "aff" in "v".
|
||
*
|
||
* We cannot return anything meaningful in case of a NaN.
|
||
*/
|
||
int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v)
|
||
{
|
||
if (!aff)
|
||
return -1;
|
||
if (isl_aff_is_nan(aff))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot get constant term of NaN", return -1);
|
||
isl_int_set(*v, aff->v->el[1]);
|
||
return 0;
|
||
}
|
||
|
||
/* Return the constant term of "aff".
|
||
*/
|
||
__isl_give isl_val *isl_aff_get_constant_val(__isl_keep isl_aff *aff)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_val *v;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (isl_aff_is_nan(aff))
|
||
return isl_val_nan(ctx);
|
||
v = isl_val_rat_from_isl_int(ctx, aff->v->el[1], aff->v->el[0]);
|
||
return isl_val_normalize(v);
|
||
}
|
||
|
||
/* Return the coefficient of the variable of type "type" at position "pos"
|
||
* of "aff" in "v".
|
||
*
|
||
* We cannot return anything meaningful in case of a NaN.
|
||
*/
|
||
int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
|
||
enum isl_dim_type type, int pos, isl_int *v)
|
||
{
|
||
if (!aff)
|
||
return -1;
|
||
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
return -1);
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"position out of bounds", return -1);
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot get coefficient of NaN", return -1);
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
isl_int_set(*v, aff->v->el[1 + pos]);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the coefficient of the variable of type "type" at position "pos"
|
||
* of "aff".
|
||
*/
|
||
__isl_give isl_val *isl_aff_get_coefficient_val(__isl_keep isl_aff *aff,
|
||
enum isl_dim_type type, int pos)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_val *v;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (type == isl_dim_out)
|
||
isl_die(ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
return NULL);
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(ctx, isl_error_invalid,
|
||
"position out of bounds", return NULL);
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
return isl_val_nan(ctx);
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
v = isl_val_rat_from_isl_int(ctx, aff->v->el[1 + pos], aff->v->el[0]);
|
||
return isl_val_normalize(v);
|
||
}
|
||
|
||
/* Return the sign of the coefficient of the variable of type "type"
|
||
* at position "pos" of "aff".
|
||
*/
|
||
int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff, enum isl_dim_type type,
|
||
int pos)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
if (!aff)
|
||
return 0;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (type == isl_dim_out)
|
||
isl_die(ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
return 0);
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(ctx, isl_error_invalid,
|
||
"position out of bounds", return 0);
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
return isl_int_sgn(aff->v->el[1 + pos]);
|
||
}
|
||
|
||
/* Replace the denominator of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_denominator(__isl_take isl_aff *aff, isl_int v)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_set(aff->v->el[0], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Replace the numerator of the constant term of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_constant(__isl_take isl_aff *aff, isl_int v)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_set(aff->v->el[1], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Replace the constant term of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_constant_val(__isl_take isl_aff *aff,
|
||
__isl_take isl_val *v)
|
||
{
|
||
if (!aff || !v)
|
||
goto error;
|
||
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
if (!isl_val_is_rat(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting rational value", goto error);
|
||
|
||
if (isl_int_eq(aff->v->el[1], v->n) &&
|
||
isl_int_eq(aff->v->el[0], v->d)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
|
||
if (isl_int_eq(aff->v->el[0], v->d)) {
|
||
isl_int_set(aff->v->el[1], v->n);
|
||
} else if (isl_int_is_one(v->d)) {
|
||
isl_int_mul(aff->v->el[1], aff->v->el[0], v->n);
|
||
} else {
|
||
isl_seq_scale(aff->v->el + 1,
|
||
aff->v->el + 1, v->d, aff->v->size - 1);
|
||
isl_int_mul(aff->v->el[1], aff->v->el[0], v->n);
|
||
isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
}
|
||
|
||
isl_val_free(v);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
/* Add "v" to the constant term of "aff".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add_constant(__isl_take isl_aff *aff, isl_int v)
|
||
{
|
||
if (isl_int_is_zero(v))
|
||
return aff;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_addmul(aff->v->el[1], aff->v->el[0], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Add "v" to the constant term of "aff".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add_constant_val(__isl_take isl_aff *aff,
|
||
__isl_take isl_val *v)
|
||
{
|
||
if (!aff || !v)
|
||
goto error;
|
||
|
||
if (isl_aff_is_nan(aff) || isl_val_is_zero(v)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
if (!isl_val_is_rat(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting rational value", goto error);
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
|
||
if (isl_int_is_one(v->d)) {
|
||
isl_int_addmul(aff->v->el[1], aff->v->el[0], v->n);
|
||
} else if (isl_int_eq(aff->v->el[0], v->d)) {
|
||
isl_int_add(aff->v->el[1], aff->v->el[1], v->n);
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
} else {
|
||
isl_seq_scale(aff->v->el + 1,
|
||
aff->v->el + 1, v->d, aff->v->size - 1);
|
||
isl_int_addmul(aff->v->el[1], aff->v->el[0], v->n);
|
||
isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
}
|
||
|
||
isl_val_free(v);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_add_constant_si(__isl_take isl_aff *aff, int v)
|
||
{
|
||
isl_int t;
|
||
|
||
isl_int_init(t);
|
||
isl_int_set_si(t, v);
|
||
aff = isl_aff_add_constant(aff, t);
|
||
isl_int_clear(t);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Add "v" to the numerator of the constant term of "aff".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add_constant_num(__isl_take isl_aff *aff, isl_int v)
|
||
{
|
||
if (isl_int_is_zero(v))
|
||
return aff;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_add(aff->v->el[1], aff->v->el[1], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Add "v" to the numerator of the constant term of "aff".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add_constant_num_si(__isl_take isl_aff *aff, int v)
|
||
{
|
||
isl_int t;
|
||
|
||
if (v == 0)
|
||
return aff;
|
||
|
||
isl_int_init(t);
|
||
isl_int_set_si(t, v);
|
||
aff = isl_aff_add_constant_num(aff, t);
|
||
isl_int_clear(t);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Replace the numerator of the constant term of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_constant_si(__isl_take isl_aff *aff, int v)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_set_si(aff->v->el[1], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Replace the numerator of the coefficient of the variable of type "type"
|
||
* at position "pos" of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_coefficient(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, int pos, isl_int v)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
return isl_aff_free(aff));
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"position out of bounds", return isl_aff_free(aff));
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
isl_int_set(aff->v->el[1 + pos], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Replace the numerator of the coefficient of the variable of type "type"
|
||
* at position "pos" of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_coefficient_si(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, int pos, int v)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
return isl_aff_free(aff));
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos < 0 || pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"position out of bounds", return isl_aff_free(aff));
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
if (isl_int_cmp_si(aff->v->el[1 + pos], v) == 0)
|
||
return aff;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_set_si(aff->v->el[1 + pos], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Replace the coefficient of the variable of type "type" at position "pos"
|
||
* of "aff" by "v".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_coefficient_val(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, int pos, __isl_take isl_val *v)
|
||
{
|
||
if (!aff || !v)
|
||
goto error;
|
||
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
goto error);
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"position out of bounds", goto error);
|
||
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
if (!isl_val_is_rat(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting rational value", goto error);
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
if (isl_int_eq(aff->v->el[1 + pos], v->n) &&
|
||
isl_int_eq(aff->v->el[0], v->d)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
|
||
if (isl_int_eq(aff->v->el[0], v->d)) {
|
||
isl_int_set(aff->v->el[1 + pos], v->n);
|
||
} else if (isl_int_is_one(v->d)) {
|
||
isl_int_mul(aff->v->el[1 + pos], aff->v->el[0], v->n);
|
||
} else {
|
||
isl_seq_scale(aff->v->el + 1,
|
||
aff->v->el + 1, v->d, aff->v->size - 1);
|
||
isl_int_mul(aff->v->el[1 + pos], aff->v->el[0], v->n);
|
||
isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
}
|
||
|
||
isl_val_free(v);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
/* Add "v" to the coefficient of the variable of type "type"
|
||
* at position "pos" of "aff".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add_coefficient(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, int pos, isl_int v)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
return isl_aff_free(aff));
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"position out of bounds", return isl_aff_free(aff));
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Add "v" to the coefficient of the variable of type "type"
|
||
* at position "pos" of "aff".
|
||
*
|
||
* A NaN is unaffected by this operation.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add_coefficient_val(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, int pos, __isl_take isl_val *v)
|
||
{
|
||
if (!aff || !v)
|
||
goto error;
|
||
|
||
if (isl_val_is_zero(v)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"output/set dimension does not have a coefficient",
|
||
goto error);
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
if (pos >= isl_local_space_dim(aff->ls, type))
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"position out of bounds", goto error);
|
||
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
if (!isl_val_is_rat(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting rational value", goto error);
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
if (isl_int_is_one(v->d)) {
|
||
isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v->n);
|
||
} else if (isl_int_eq(aff->v->el[0], v->d)) {
|
||
isl_int_add(aff->v->el[1 + pos], aff->v->el[1 + pos], v->n);
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
} else {
|
||
isl_seq_scale(aff->v->el + 1,
|
||
aff->v->el + 1, v->d, aff->v->size - 1);
|
||
isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v->n);
|
||
isl_int_mul(aff->v->el[0], aff->v->el[0], v->d);
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
goto error;
|
||
}
|
||
|
||
isl_val_free(v);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_add_coefficient_si(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, int pos, int v)
|
||
{
|
||
isl_int t;
|
||
|
||
isl_int_init(t);
|
||
isl_int_set_si(t, v);
|
||
aff = isl_aff_add_coefficient(aff, type, pos, t);
|
||
isl_int_clear(t);
|
||
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_get_div(__isl_keep isl_aff *aff, int pos)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
return isl_local_space_get_div(aff->ls, pos);
|
||
}
|
||
|
||
/* Return the negation of "aff".
|
||
*
|
||
* As a special case, -NaN = NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_seq_neg(aff->v->el + 1, aff->v->el + 1, aff->v->size - 1);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Remove divs from the local space that do not appear in the affine
|
||
* expression.
|
||
* We currently only remove divs at the end.
|
||
* Some intermediate divs may also not appear directly in the affine
|
||
* expression, but we would also need to check that no other divs are
|
||
* defined in terms of them.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_remove_unused_divs(__isl_take isl_aff *aff)
|
||
{
|
||
int pos;
|
||
int off;
|
||
int n;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
n = isl_local_space_dim(aff->ls, isl_dim_div);
|
||
off = isl_local_space_offset(aff->ls, isl_dim_div);
|
||
|
||
pos = isl_seq_last_non_zero(aff->v->el + 1 + off, n) + 1;
|
||
if (pos == n)
|
||
return aff;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->ls = isl_local_space_drop_dims(aff->ls, isl_dim_div, pos, n - pos);
|
||
aff->v = isl_vec_drop_els(aff->v, 1 + off + pos, n - pos);
|
||
if (!aff->ls || !aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Given two affine expressions "p" of length p_len (including the
|
||
* denominator and the constant term) and "subs" of length subs_len,
|
||
* plug in "subs" for the variable at position "pos".
|
||
* The variables of "subs" and "p" are assumed to match up to subs_len,
|
||
* but "p" may have additional variables.
|
||
* "v" is an initialized isl_int that can be used internally.
|
||
*
|
||
* In particular, if "p" represents the expression
|
||
*
|
||
* (a i + g)/m
|
||
*
|
||
* with i the variable at position "pos" and "subs" represents the expression
|
||
*
|
||
* f/d
|
||
*
|
||
* then the result represents the expression
|
||
*
|
||
* (a f + d g)/(m d)
|
||
*
|
||
*/
|
||
void isl_seq_substitute(isl_int *p, int pos, isl_int *subs,
|
||
int p_len, int subs_len, isl_int v)
|
||
{
|
||
isl_int_set(v, p[1 + pos]);
|
||
isl_int_set_si(p[1 + pos], 0);
|
||
isl_seq_combine(p + 1, subs[0], p + 1, v, subs + 1, subs_len - 1);
|
||
isl_seq_scale(p + subs_len, p + subs_len, subs[0], p_len - subs_len);
|
||
isl_int_mul(p[0], p[0], subs[0]);
|
||
}
|
||
|
||
/* Look for any divs in the aff->ls with a denominator equal to one
|
||
* and plug them into the affine expression and any subsequent divs
|
||
* that may reference the div.
|
||
*/
|
||
static __isl_give isl_aff *plug_in_integral_divs(__isl_take isl_aff *aff)
|
||
{
|
||
int i, n;
|
||
int len;
|
||
isl_int v;
|
||
isl_vec *vec;
|
||
isl_local_space *ls;
|
||
unsigned pos;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
n = isl_local_space_dim(aff->ls, isl_dim_div);
|
||
len = aff->v->size;
|
||
for (i = 0; i < n; ++i) {
|
||
if (!isl_int_is_one(aff->ls->div->row[i][0]))
|
||
continue;
|
||
ls = isl_local_space_copy(aff->ls);
|
||
ls = isl_local_space_substitute_seq(ls, isl_dim_div, i,
|
||
aff->ls->div->row[i], len, i + 1, n - (i + 1));
|
||
vec = isl_vec_copy(aff->v);
|
||
vec = isl_vec_cow(vec);
|
||
if (!ls || !vec)
|
||
goto error;
|
||
|
||
isl_int_init(v);
|
||
|
||
pos = isl_local_space_offset(aff->ls, isl_dim_div) + i;
|
||
isl_seq_substitute(vec->el, pos, aff->ls->div->row[i],
|
||
len, len, v);
|
||
|
||
isl_int_clear(v);
|
||
|
||
isl_vec_free(aff->v);
|
||
aff->v = vec;
|
||
isl_local_space_free(aff->ls);
|
||
aff->ls = ls;
|
||
}
|
||
|
||
return aff;
|
||
error:
|
||
isl_vec_free(vec);
|
||
isl_local_space_free(ls);
|
||
return isl_aff_free(aff);
|
||
}
|
||
|
||
/* Look for any divs j that appear with a unit coefficient inside
|
||
* the definitions of other divs i and plug them into the definitions
|
||
* of the divs i.
|
||
*
|
||
* In particular, an expression of the form
|
||
*
|
||
* floor((f(..) + floor(g(..)/n))/m)
|
||
*
|
||
* is simplified to
|
||
*
|
||
* floor((n * f(..) + g(..))/(n * m))
|
||
*
|
||
* This simplification is correct because we can move the expression
|
||
* f(..) into the inner floor in the original expression to obtain
|
||
*
|
||
* floor(floor((n * f(..) + g(..))/n)/m)
|
||
*
|
||
* from which we can derive the simplified expression.
|
||
*/
|
||
static __isl_give isl_aff *plug_in_unit_divs(__isl_take isl_aff *aff)
|
||
{
|
||
int i, j, n;
|
||
int off;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
n = isl_local_space_dim(aff->ls, isl_dim_div);
|
||
off = isl_local_space_offset(aff->ls, isl_dim_div);
|
||
for (i = 1; i < n; ++i) {
|
||
for (j = 0; j < i; ++j) {
|
||
if (!isl_int_is_one(aff->ls->div->row[i][1 + off + j]))
|
||
continue;
|
||
aff->ls = isl_local_space_substitute_seq(aff->ls,
|
||
isl_dim_div, j, aff->ls->div->row[j],
|
||
aff->v->size, i, 1);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
}
|
||
}
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Swap divs "a" and "b" in "aff", which is assumed to be non-NULL.
|
||
*
|
||
* Even though this function is only called on isl_affs with a single
|
||
* reference, we are careful to only change aff->v and aff->ls together.
|
||
*/
|
||
static __isl_give isl_aff *swap_div(__isl_take isl_aff *aff, int a, int b)
|
||
{
|
||
unsigned off = isl_local_space_offset(aff->ls, isl_dim_div);
|
||
isl_local_space *ls;
|
||
isl_vec *v;
|
||
|
||
ls = isl_local_space_copy(aff->ls);
|
||
ls = isl_local_space_swap_div(ls, a, b);
|
||
v = isl_vec_copy(aff->v);
|
||
v = isl_vec_cow(v);
|
||
if (!ls || !v)
|
||
goto error;
|
||
|
||
isl_int_swap(v->el[1 + off + a], v->el[1 + off + b]);
|
||
isl_vec_free(aff->v);
|
||
aff->v = v;
|
||
isl_local_space_free(aff->ls);
|
||
aff->ls = ls;
|
||
|
||
return aff;
|
||
error:
|
||
isl_vec_free(v);
|
||
isl_local_space_free(ls);
|
||
return isl_aff_free(aff);
|
||
}
|
||
|
||
/* Merge divs "a" and "b" in "aff", which is assumed to be non-NULL.
|
||
*
|
||
* We currently do not actually remove div "b", but simply add its
|
||
* coefficient to that of "a" and then zero it out.
|
||
*/
|
||
static __isl_give isl_aff *merge_divs(__isl_take isl_aff *aff, int a, int b)
|
||
{
|
||
unsigned off = isl_local_space_offset(aff->ls, isl_dim_div);
|
||
|
||
if (isl_int_is_zero(aff->v->el[1 + off + b]))
|
||
return aff;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_add(aff->v->el[1 + off + a],
|
||
aff->v->el[1 + off + a], aff->v->el[1 + off + b]);
|
||
isl_int_set_si(aff->v->el[1 + off + b], 0);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Sort the divs in the local space of "aff" according to
|
||
* the comparison function "cmp_row" in isl_local_space.c,
|
||
* combining the coefficients of identical divs.
|
||
*
|
||
* Reordering divs does not change the semantics of "aff",
|
||
* so there is no need to call isl_aff_cow.
|
||
* Moreover, this function is currently only called on isl_affs
|
||
* with a single reference.
|
||
*/
|
||
static __isl_give isl_aff *sort_divs(__isl_take isl_aff *aff)
|
||
{
|
||
int i, j, n;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
n = isl_aff_dim(aff, isl_dim_div);
|
||
for (i = 1; i < n; ++i) {
|
||
for (j = i - 1; j >= 0; --j) {
|
||
int cmp = isl_mat_cmp_div(aff->ls->div, j, j + 1);
|
||
if (cmp < 0)
|
||
break;
|
||
if (cmp == 0)
|
||
aff = merge_divs(aff, j, j + 1);
|
||
else
|
||
aff = swap_div(aff, j, j + 1);
|
||
if (!aff)
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Normalize the representation of "aff".
|
||
*
|
||
* This function should only be called of "new" isl_affs, i.e.,
|
||
* with only a single reference. We therefore do not need to
|
||
* worry about affecting other instances.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_normalize(__isl_take isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
aff->v = isl_vec_normalize(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
aff = plug_in_integral_divs(aff);
|
||
aff = plug_in_unit_divs(aff);
|
||
aff = sort_divs(aff);
|
||
aff = isl_aff_remove_unused_divs(aff);
|
||
return aff;
|
||
}
|
||
|
||
/* Given f, return floor(f).
|
||
* If f is an integer expression, then just return f.
|
||
* If f is a constant, then return the constant floor(f).
|
||
* Otherwise, if f = g/m, write g = q m + r,
|
||
* create a new div d = [r/m] and return the expression q + d.
|
||
* The coefficients in r are taken to lie between -m/2 and m/2.
|
||
*
|
||
* As a special case, floor(NaN) = NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff)
|
||
{
|
||
int i;
|
||
int size;
|
||
isl_ctx *ctx;
|
||
isl_vec *div;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
if (isl_int_is_one(aff->v->el[0]))
|
||
return aff;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
if (isl_aff_is_cst(aff)) {
|
||
isl_int_fdiv_q(aff->v->el[1], aff->v->el[1], aff->v->el[0]);
|
||
isl_int_set_si(aff->v->el[0], 1);
|
||
return aff;
|
||
}
|
||
|
||
div = isl_vec_copy(aff->v);
|
||
div = isl_vec_cow(div);
|
||
if (!div)
|
||
return isl_aff_free(aff);
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
isl_int_fdiv_q(aff->v->el[0], aff->v->el[0], ctx->two);
|
||
for (i = 1; i < aff->v->size; ++i) {
|
||
isl_int_fdiv_r(div->el[i], div->el[i], div->el[0]);
|
||
isl_int_fdiv_q(aff->v->el[i], aff->v->el[i], div->el[0]);
|
||
if (isl_int_gt(div->el[i], aff->v->el[0])) {
|
||
isl_int_sub(div->el[i], div->el[i], div->el[0]);
|
||
isl_int_add_ui(aff->v->el[i], aff->v->el[i], 1);
|
||
}
|
||
}
|
||
|
||
aff->ls = isl_local_space_add_div(aff->ls, div);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
size = aff->v->size;
|
||
aff->v = isl_vec_extend(aff->v, size + 1);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
isl_int_set_si(aff->v->el[0], 1);
|
||
isl_int_set_si(aff->v->el[size], 1);
|
||
|
||
aff = isl_aff_normalize(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Compute
|
||
*
|
||
* aff mod m = aff - m * floor(aff/m)
|
||
*/
|
||
__isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff, isl_int m)
|
||
{
|
||
isl_aff *res;
|
||
|
||
res = isl_aff_copy(aff);
|
||
aff = isl_aff_scale_down(aff, m);
|
||
aff = isl_aff_floor(aff);
|
||
aff = isl_aff_scale(aff, m);
|
||
res = isl_aff_sub(res, aff);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Compute
|
||
*
|
||
* aff mod m = aff - m * floor(aff/m)
|
||
*
|
||
* with m an integer value.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
|
||
__isl_take isl_val *m)
|
||
{
|
||
isl_aff *res;
|
||
|
||
if (!aff || !m)
|
||
goto error;
|
||
|
||
if (!isl_val_is_int(m))
|
||
isl_die(isl_val_get_ctx(m), isl_error_invalid,
|
||
"expecting integer modulo", goto error);
|
||
|
||
res = isl_aff_copy(aff);
|
||
aff = isl_aff_scale_down_val(aff, isl_val_copy(m));
|
||
aff = isl_aff_floor(aff);
|
||
aff = isl_aff_scale_val(aff, m);
|
||
res = isl_aff_sub(res, aff);
|
||
|
||
return res;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(m);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute
|
||
*
|
||
* pwaff mod m = pwaff - m * floor(pwaff/m)
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_mod(__isl_take isl_pw_aff *pwaff, isl_int m)
|
||
{
|
||
isl_pw_aff *res;
|
||
|
||
res = isl_pw_aff_copy(pwaff);
|
||
pwaff = isl_pw_aff_scale_down(pwaff, m);
|
||
pwaff = isl_pw_aff_floor(pwaff);
|
||
pwaff = isl_pw_aff_scale(pwaff, m);
|
||
res = isl_pw_aff_sub(res, pwaff);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Compute
|
||
*
|
||
* pa mod m = pa - m * floor(pa/m)
|
||
*
|
||
* with m an integer value.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_mod_val(__isl_take isl_pw_aff *pa,
|
||
__isl_take isl_val *m)
|
||
{
|
||
if (!pa || !m)
|
||
goto error;
|
||
if (!isl_val_is_int(m))
|
||
isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
|
||
"expecting integer modulo", goto error);
|
||
pa = isl_pw_aff_mod(pa, m->n);
|
||
isl_val_free(m);
|
||
return pa;
|
||
error:
|
||
isl_pw_aff_free(pa);
|
||
isl_val_free(m);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given f, return ceil(f).
|
||
* If f is an integer expression, then just return f.
|
||
* Otherwise, let f be the expression
|
||
*
|
||
* e/m
|
||
*
|
||
* then return
|
||
*
|
||
* floor((e + m - 1)/m)
|
||
*
|
||
* As a special case, ceil(NaN) = NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
if (isl_int_is_one(aff->v->el[0]))
|
||
return aff;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_add(aff->v->el[1], aff->v->el[1], aff->v->el[0]);
|
||
isl_int_sub_ui(aff->v->el[1], aff->v->el[1], 1);
|
||
aff = isl_aff_floor(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Apply the expansion computed by isl_merge_divs.
|
||
* The expansion itself is given by "exp" while the resulting
|
||
* list of divs is given by "div".
|
||
*/
|
||
__isl_give isl_aff *isl_aff_expand_divs(__isl_take isl_aff *aff,
|
||
__isl_take isl_mat *div, int *exp)
|
||
{
|
||
int old_n_div;
|
||
int new_n_div;
|
||
int offset;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff || !div)
|
||
goto error;
|
||
|
||
old_n_div = isl_local_space_dim(aff->ls, isl_dim_div);
|
||
new_n_div = isl_mat_rows(div);
|
||
offset = 1 + isl_local_space_offset(aff->ls, isl_dim_div);
|
||
|
||
aff->v = isl_vec_expand(aff->v, offset, old_n_div, exp, new_n_div);
|
||
aff->ls = isl_local_space_replace_divs(aff->ls, div);
|
||
if (!aff->v || !aff->ls)
|
||
return isl_aff_free(aff);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_mat_free(div);
|
||
return NULL;
|
||
}
|
||
|
||
/* Add two affine expressions that live in the same local space.
|
||
*/
|
||
static __isl_give isl_aff *add_expanded(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
isl_int gcd, f;
|
||
|
||
aff1 = isl_aff_cow(aff1);
|
||
if (!aff1 || !aff2)
|
||
goto error;
|
||
|
||
aff1->v = isl_vec_cow(aff1->v);
|
||
if (!aff1->v)
|
||
goto error;
|
||
|
||
isl_int_init(gcd);
|
||
isl_int_init(f);
|
||
isl_int_gcd(gcd, aff1->v->el[0], aff2->v->el[0]);
|
||
isl_int_divexact(f, aff2->v->el[0], gcd);
|
||
isl_seq_scale(aff1->v->el + 1, aff1->v->el + 1, f, aff1->v->size - 1);
|
||
isl_int_divexact(f, aff1->v->el[0], gcd);
|
||
isl_seq_addmul(aff1->v->el + 1, f, aff2->v->el + 1, aff1->v->size - 1);
|
||
isl_int_divexact(f, aff2->v->el[0], gcd);
|
||
isl_int_mul(aff1->v->el[0], aff1->v->el[0], f);
|
||
isl_int_clear(f);
|
||
isl_int_clear(gcd);
|
||
|
||
isl_aff_free(aff2);
|
||
return aff1;
|
||
error:
|
||
isl_aff_free(aff1);
|
||
isl_aff_free(aff2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the sum of "aff1" and "aff2".
|
||
*
|
||
* If either of the two is NaN, then the result is NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
isl_ctx *ctx;
|
||
int *exp1 = NULL;
|
||
int *exp2 = NULL;
|
||
isl_mat *div;
|
||
int n_div1, n_div2;
|
||
|
||
if (!aff1 || !aff2)
|
||
goto error;
|
||
|
||
ctx = isl_aff_get_ctx(aff1);
|
||
if (!isl_space_is_equal(aff1->ls->dim, aff2->ls->dim))
|
||
isl_die(ctx, isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
|
||
if (isl_aff_is_nan(aff1)) {
|
||
isl_aff_free(aff2);
|
||
return aff1;
|
||
}
|
||
if (isl_aff_is_nan(aff2)) {
|
||
isl_aff_free(aff1);
|
||
return aff2;
|
||
}
|
||
|
||
n_div1 = isl_aff_dim(aff1, isl_dim_div);
|
||
n_div2 = isl_aff_dim(aff2, isl_dim_div);
|
||
if (n_div1 == 0 && n_div2 == 0)
|
||
return add_expanded(aff1, aff2);
|
||
|
||
exp1 = isl_alloc_array(ctx, int, n_div1);
|
||
exp2 = isl_alloc_array(ctx, int, n_div2);
|
||
if ((n_div1 && !exp1) || (n_div2 && !exp2))
|
||
goto error;
|
||
|
||
div = isl_merge_divs(aff1->ls->div, aff2->ls->div, exp1, exp2);
|
||
aff1 = isl_aff_expand_divs(aff1, isl_mat_copy(div), exp1);
|
||
aff2 = isl_aff_expand_divs(aff2, div, exp2);
|
||
free(exp1);
|
||
free(exp2);
|
||
|
||
return add_expanded(aff1, aff2);
|
||
error:
|
||
free(exp1);
|
||
free(exp2);
|
||
isl_aff_free(aff1);
|
||
isl_aff_free(aff2);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
return isl_aff_add(aff1, isl_aff_neg(aff2));
|
||
}
|
||
|
||
/* Return the result of scaling "aff" by a factor of "f".
|
||
*
|
||
* As a special case, f * NaN = NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff, isl_int f)
|
||
{
|
||
isl_int gcd;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
|
||
if (isl_int_is_one(f))
|
||
return aff;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
if (isl_int_is_pos(f) && isl_int_is_divisible_by(aff->v->el[0], f)) {
|
||
isl_int_divexact(aff->v->el[0], aff->v->el[0], f);
|
||
return aff;
|
||
}
|
||
|
||
isl_int_init(gcd);
|
||
isl_int_gcd(gcd, aff->v->el[0], f);
|
||
isl_int_divexact(aff->v->el[0], aff->v->el[0], gcd);
|
||
isl_int_divexact(gcd, f, gcd);
|
||
isl_seq_scale(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1);
|
||
isl_int_clear(gcd);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Multiple "aff" by "v".
|
||
*/
|
||
__isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
|
||
__isl_take isl_val *v)
|
||
{
|
||
if (!aff || !v)
|
||
goto error;
|
||
|
||
if (isl_val_is_one(v)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
if (!isl_val_is_rat(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting rational factor", goto error);
|
||
|
||
aff = isl_aff_scale(aff, v->n);
|
||
aff = isl_aff_scale_down(aff, v->d);
|
||
|
||
isl_val_free(v);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the result of scaling "aff" down by a factor of "f".
|
||
*
|
||
* As a special case, NaN/f = NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff, isl_int f)
|
||
{
|
||
isl_int gcd;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff))
|
||
return aff;
|
||
|
||
if (isl_int_is_one(f))
|
||
return aff;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
if (isl_int_is_zero(f))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot scale down by zero", return isl_aff_free(aff));
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
isl_int_init(gcd);
|
||
isl_seq_gcd(aff->v->el + 1, aff->v->size - 1, &gcd);
|
||
isl_int_gcd(gcd, gcd, f);
|
||
isl_seq_scale_down(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1);
|
||
isl_int_divexact(gcd, f, gcd);
|
||
isl_int_mul(aff->v->el[0], aff->v->el[0], gcd);
|
||
isl_int_clear(gcd);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Divide "aff" by "v".
|
||
*/
|
||
__isl_give isl_aff *isl_aff_scale_down_val(__isl_take isl_aff *aff,
|
||
__isl_take isl_val *v)
|
||
{
|
||
if (!aff || !v)
|
||
goto error;
|
||
|
||
if (isl_val_is_one(v)) {
|
||
isl_val_free(v);
|
||
return aff;
|
||
}
|
||
|
||
if (!isl_val_is_rat(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting rational factor", goto error);
|
||
if (!isl_val_is_pos(v))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"factor needs to be positive", goto error);
|
||
|
||
aff = isl_aff_scale(aff, v->d);
|
||
aff = isl_aff_scale_down(aff, v->n);
|
||
|
||
isl_val_free(v);
|
||
return aff;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_val_free(v);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_scale_down_ui(__isl_take isl_aff *aff, unsigned f)
|
||
{
|
||
isl_int v;
|
||
|
||
if (f == 1)
|
||
return aff;
|
||
|
||
isl_int_init(v);
|
||
isl_int_set_ui(v, f);
|
||
aff = isl_aff_scale_down(aff, v);
|
||
isl_int_clear(v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_set_dim_name(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, unsigned pos, const char *s)
|
||
{
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"cannot set name of output/set dimension",
|
||
return isl_aff_free(aff));
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
aff->ls = isl_local_space_set_dim_name(aff->ls, type, pos, s);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_set_dim_id(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, unsigned pos, __isl_take isl_id *id)
|
||
{
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"cannot set name of output/set dimension",
|
||
goto error);
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
aff->ls = isl_local_space_set_dim_id(aff->ls, type, pos, id);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
error:
|
||
isl_id_free(id);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Replace the identifier of the input tuple of "aff" by "id".
|
||
* type is currently required to be equal to isl_dim_in
|
||
*/
|
||
__isl_give isl_aff *isl_aff_set_tuple_id(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, __isl_take isl_id *id)
|
||
{
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
if (type != isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"cannot only set id of input tuple", goto error);
|
||
aff->ls = isl_local_space_set_tuple_id(aff->ls, isl_dim_set, id);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
error:
|
||
isl_id_free(id);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Exploit the equalities in "eq" to simplify the affine expression
|
||
* and the expressions of the integer divisions in the local space.
|
||
* The integer divisions in this local space are assumed to appear
|
||
* as regular dimensions in "eq".
|
||
*/
|
||
static __isl_give isl_aff *isl_aff_substitute_equalities_lifted(
|
||
__isl_take isl_aff *aff, __isl_take isl_basic_set *eq)
|
||
{
|
||
int i, j;
|
||
unsigned total;
|
||
unsigned n_div;
|
||
|
||
if (!eq)
|
||
goto error;
|
||
if (eq->n_eq == 0) {
|
||
isl_basic_set_free(eq);
|
||
return aff;
|
||
}
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
goto error;
|
||
|
||
aff->ls = isl_local_space_substitute_equalities(aff->ls,
|
||
isl_basic_set_copy(eq));
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->ls || !aff->v)
|
||
goto error;
|
||
|
||
total = 1 + isl_space_dim(eq->dim, isl_dim_all);
|
||
n_div = eq->n_div;
|
||
for (i = 0; i < eq->n_eq; ++i) {
|
||
j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
|
||
if (j < 0 || j == 0 || j >= total)
|
||
continue;
|
||
|
||
isl_seq_elim(aff->v->el + 1, eq->eq[i], j, total,
|
||
&aff->v->el[0]);
|
||
}
|
||
|
||
isl_basic_set_free(eq);
|
||
aff = isl_aff_normalize(aff);
|
||
return aff;
|
||
error:
|
||
isl_basic_set_free(eq);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Exploit the equalities in "eq" to simplify the affine expression
|
||
* and the expressions of the integer divisions in the local space.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_substitute_equalities(__isl_take isl_aff *aff,
|
||
__isl_take isl_basic_set *eq)
|
||
{
|
||
int n_div;
|
||
|
||
if (!aff || !eq)
|
||
goto error;
|
||
n_div = isl_local_space_dim(aff->ls, isl_dim_div);
|
||
if (n_div > 0)
|
||
eq = isl_basic_set_add_dims(eq, isl_dim_set, n_div);
|
||
return isl_aff_substitute_equalities_lifted(aff, eq);
|
||
error:
|
||
isl_basic_set_free(eq);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Look for equalities among the variables shared by context and aff
|
||
* and the integer divisions of aff, if any.
|
||
* The equalities are then used to eliminate coefficients and/or integer
|
||
* divisions from aff.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
|
||
__isl_take isl_set *context)
|
||
{
|
||
isl_basic_set *hull;
|
||
int n_div;
|
||
|
||
if (!aff)
|
||
goto error;
|
||
n_div = isl_local_space_dim(aff->ls, isl_dim_div);
|
||
if (n_div > 0) {
|
||
isl_basic_set *bset;
|
||
isl_local_space *ls;
|
||
context = isl_set_add_dims(context, isl_dim_set, n_div);
|
||
ls = isl_aff_get_domain_local_space(aff);
|
||
bset = isl_basic_set_from_local_space(ls);
|
||
bset = isl_basic_set_lift(bset);
|
||
bset = isl_basic_set_flatten(bset);
|
||
context = isl_set_intersect(context,
|
||
isl_set_from_basic_set(bset));
|
||
}
|
||
|
||
hull = isl_set_affine_hull(context);
|
||
return isl_aff_substitute_equalities_lifted(aff, hull);
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_set_free(context);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_gist_params(__isl_take isl_aff *aff,
|
||
__isl_take isl_set *context)
|
||
{
|
||
isl_set *dom_context = isl_set_universe(isl_aff_get_domain_space(aff));
|
||
dom_context = isl_set_intersect_params(dom_context, context);
|
||
return isl_aff_gist(aff, dom_context);
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the space
|
||
* of aff where it is positive. "rational" should not be set.
|
||
*
|
||
* If "aff" is NaN, then it is not positive.
|
||
*/
|
||
static __isl_give isl_basic_set *aff_pos_basic_set(__isl_take isl_aff *aff,
|
||
int rational)
|
||
{
|
||
isl_constraint *ineq;
|
||
isl_basic_set *bset;
|
||
isl_val *c;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_space *space = isl_aff_get_domain_space(aff);
|
||
isl_aff_free(aff);
|
||
return isl_basic_set_empty(space);
|
||
}
|
||
if (rational)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_unsupported,
|
||
"rational sets not supported", goto error);
|
||
|
||
ineq = isl_inequality_from_aff(aff);
|
||
c = isl_constraint_get_constant_val(ineq);
|
||
c = isl_val_sub_ui(c, 1);
|
||
ineq = isl_constraint_set_constant_val(ineq, c);
|
||
|
||
bset = isl_basic_set_from_constraint(ineq);
|
||
bset = isl_basic_set_simplify(bset);
|
||
return bset;
|
||
error:
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the space
|
||
* of aff where it is non-negative.
|
||
* If "rational" is set, then return a rational basic set.
|
||
*
|
||
* If "aff" is NaN, then it is not non-negative (it's not negative either).
|
||
*/
|
||
static __isl_give isl_basic_set *aff_nonneg_basic_set(
|
||
__isl_take isl_aff *aff, int rational)
|
||
{
|
||
isl_constraint *ineq;
|
||
isl_basic_set *bset;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_space *space = isl_aff_get_domain_space(aff);
|
||
isl_aff_free(aff);
|
||
return isl_basic_set_empty(space);
|
||
}
|
||
|
||
ineq = isl_inequality_from_aff(aff);
|
||
|
||
bset = isl_basic_set_from_constraint(ineq);
|
||
if (rational)
|
||
bset = isl_basic_set_set_rational(bset);
|
||
bset = isl_basic_set_simplify(bset);
|
||
return bset;
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the space
|
||
* of aff where it is non-negative.
|
||
*/
|
||
__isl_give isl_basic_set *isl_aff_nonneg_basic_set(__isl_take isl_aff *aff)
|
||
{
|
||
return aff_nonneg_basic_set(aff, 0);
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the domain space
|
||
* of aff where it is negative.
|
||
*/
|
||
__isl_give isl_basic_set *isl_aff_neg_basic_set(__isl_take isl_aff *aff)
|
||
{
|
||
aff = isl_aff_neg(aff);
|
||
aff = isl_aff_add_constant_num_si(aff, -1);
|
||
return isl_aff_nonneg_basic_set(aff);
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the space
|
||
* of aff where it is zero.
|
||
* If "rational" is set, then return a rational basic set.
|
||
*
|
||
* If "aff" is NaN, then it is not zero.
|
||
*/
|
||
static __isl_give isl_basic_set *aff_zero_basic_set(__isl_take isl_aff *aff,
|
||
int rational)
|
||
{
|
||
isl_constraint *ineq;
|
||
isl_basic_set *bset;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_space *space = isl_aff_get_domain_space(aff);
|
||
isl_aff_free(aff);
|
||
return isl_basic_set_empty(space);
|
||
}
|
||
|
||
ineq = isl_equality_from_aff(aff);
|
||
|
||
bset = isl_basic_set_from_constraint(ineq);
|
||
if (rational)
|
||
bset = isl_basic_set_set_rational(bset);
|
||
bset = isl_basic_set_simplify(bset);
|
||
return bset;
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the space
|
||
* of aff where it is zero.
|
||
*/
|
||
__isl_give isl_basic_set *isl_aff_zero_basic_set(__isl_take isl_aff *aff)
|
||
{
|
||
return aff_zero_basic_set(aff, 0);
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the shared space
|
||
* of aff1 and aff2 where aff1 is greater than or equal to aff2.
|
||
*/
|
||
__isl_give isl_basic_set *isl_aff_ge_basic_set(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
aff1 = isl_aff_sub(aff1, aff2);
|
||
|
||
return isl_aff_nonneg_basic_set(aff1);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared space
|
||
* of aff1 and aff2 where aff1 is greater than or equal to aff2.
|
||
*/
|
||
__isl_give isl_set *isl_aff_ge_set(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
return isl_set_from_basic_set(isl_aff_ge_basic_set(aff1, aff2));
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the shared space
|
||
* of aff1 and aff2 where aff1 is smaller than or equal to aff2.
|
||
*/
|
||
__isl_give isl_basic_set *isl_aff_le_basic_set(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
return isl_aff_ge_basic_set(aff2, aff1);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared space
|
||
* of aff1 and aff2 where aff1 is smaller than or equal to aff2.
|
||
*/
|
||
__isl_give isl_set *isl_aff_le_set(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
return isl_aff_ge_set(aff2, aff1);
|
||
}
|
||
|
||
/* Return a basic set containing those elements in the shared space
|
||
* of aff1 and aff2 where aff1 and aff2 are equal.
|
||
*/
|
||
__isl_give isl_basic_set *isl_aff_eq_basic_set(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
aff1 = isl_aff_sub(aff1, aff2);
|
||
|
||
return isl_aff_zero_basic_set(aff1);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared space
|
||
* of aff1 and aff2 where aff1 and aff2 are equal.
|
||
*/
|
||
__isl_give isl_set *isl_aff_eq_set(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
return isl_set_from_basic_set(isl_aff_eq_basic_set(aff1, aff2));
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_add_on_domain(__isl_keep isl_set *dom,
|
||
__isl_take isl_aff *aff1, __isl_take isl_aff *aff2)
|
||
{
|
||
aff1 = isl_aff_add(aff1, aff2);
|
||
aff1 = isl_aff_gist(aff1, isl_set_copy(dom));
|
||
return aff1;
|
||
}
|
||
|
||
int isl_aff_is_empty(__isl_keep isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether the given affine expression has non-zero coefficient
|
||
* for any dimension in the given range or if any of these dimensions
|
||
* appear with non-zero coefficients in any of the integer divisions
|
||
* involved in the affine expression.
|
||
*/
|
||
isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
|
||
enum isl_dim_type type, unsigned first, unsigned n)
|
||
{
|
||
int i;
|
||
isl_ctx *ctx;
|
||
int *active = NULL;
|
||
isl_bool involves = isl_bool_false;
|
||
|
||
if (!aff)
|
||
return isl_bool_error;
|
||
if (n == 0)
|
||
return isl_bool_false;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (first + n > isl_aff_dim(aff, type))
|
||
isl_die(ctx, isl_error_invalid,
|
||
"range out of bounds", return isl_bool_error);
|
||
|
||
active = isl_local_space_get_active(aff->ls, aff->v->el + 2);
|
||
if (!active)
|
||
goto error;
|
||
|
||
first += isl_local_space_offset(aff->ls, type) - 1;
|
||
for (i = 0; i < n; ++i)
|
||
if (active[first + i]) {
|
||
involves = isl_bool_true;
|
||
break;
|
||
}
|
||
|
||
free(active);
|
||
|
||
return involves;
|
||
error:
|
||
free(active);
|
||
return isl_bool_error;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_drop_dims(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, unsigned first, unsigned n)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"cannot drop output/set dimension",
|
||
return isl_aff_free(aff));
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type))
|
||
return aff;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (first + n > isl_local_space_dim(aff->ls, type))
|
||
isl_die(ctx, isl_error_invalid, "range out of bounds",
|
||
return isl_aff_free(aff));
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->ls = isl_local_space_drop_dims(aff->ls, type, first, n);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
first += 1 + isl_local_space_offset(aff->ls, type);
|
||
aff->v = isl_vec_drop_els(aff->v, first, n);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Project the domain of the affine expression onto its parameter space.
|
||
* The affine expression may not involve any of the domain dimensions.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_project_domain_on_params(__isl_take isl_aff *aff)
|
||
{
|
||
isl_space *space;
|
||
unsigned n;
|
||
int involves;
|
||
|
||
n = isl_aff_dim(aff, isl_dim_in);
|
||
involves = isl_aff_involves_dims(aff, isl_dim_in, 0, n);
|
||
if (involves < 0)
|
||
return isl_aff_free(aff);
|
||
if (involves)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"affine expression involves some of the domain dimensions",
|
||
return isl_aff_free(aff));
|
||
aff = isl_aff_drop_dims(aff, isl_dim_in, 0, n);
|
||
space = isl_aff_get_domain_space(aff);
|
||
space = isl_space_params(space);
|
||
aff = isl_aff_reset_domain_space(aff, space);
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_insert_dims(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, unsigned first, unsigned n)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (type == isl_dim_out)
|
||
isl_die(aff->v->ctx, isl_error_invalid,
|
||
"cannot insert output/set dimensions",
|
||
return isl_aff_free(aff));
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type))
|
||
return aff;
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (first > isl_local_space_dim(aff->ls, type))
|
||
isl_die(ctx, isl_error_invalid, "position out of bounds",
|
||
return isl_aff_free(aff));
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->ls = isl_local_space_insert_dims(aff->ls, type, first, n);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
first += 1 + isl_local_space_offset(aff->ls, type);
|
||
aff->v = isl_vec_insert_zero_els(aff->v, first, n);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_add_dims(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, unsigned n)
|
||
{
|
||
unsigned pos;
|
||
|
||
pos = isl_aff_dim(aff, type);
|
||
|
||
return isl_aff_insert_dims(aff, type, pos, n);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_add_dims(__isl_take isl_pw_aff *pwaff,
|
||
enum isl_dim_type type, unsigned n)
|
||
{
|
||
unsigned pos;
|
||
|
||
pos = isl_pw_aff_dim(pwaff, type);
|
||
|
||
return isl_pw_aff_insert_dims(pwaff, type, pos, n);
|
||
}
|
||
|
||
/* Move the "n" dimensions of "src_type" starting at "src_pos" of "aff"
|
||
* to dimensions of "dst_type" at "dst_pos".
|
||
*
|
||
* We only support moving input dimensions to parameters and vice versa.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_move_dims(__isl_take isl_aff *aff,
|
||
enum isl_dim_type dst_type, unsigned dst_pos,
|
||
enum isl_dim_type src_type, unsigned src_pos, unsigned n)
|
||
{
|
||
unsigned g_dst_pos;
|
||
unsigned g_src_pos;
|
||
|
||
if (!aff)
|
||
return NULL;
|
||
if (n == 0 &&
|
||
!isl_local_space_is_named_or_nested(aff->ls, src_type) &&
|
||
!isl_local_space_is_named_or_nested(aff->ls, dst_type))
|
||
return aff;
|
||
|
||
if (dst_type == isl_dim_out || src_type == isl_dim_out)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot move output/set dimension",
|
||
return isl_aff_free(aff));
|
||
if (dst_type == isl_dim_div || src_type == isl_dim_div)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot move divs", return isl_aff_free(aff));
|
||
if (dst_type == isl_dim_in)
|
||
dst_type = isl_dim_set;
|
||
if (src_type == isl_dim_in)
|
||
src_type = isl_dim_set;
|
||
|
||
if (src_pos + n > isl_local_space_dim(aff->ls, src_type))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"range out of bounds", return isl_aff_free(aff));
|
||
if (dst_type == src_type)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_unsupported,
|
||
"moving dims within the same type not supported",
|
||
return isl_aff_free(aff));
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
g_src_pos = 1 + isl_local_space_offset(aff->ls, src_type) + src_pos;
|
||
g_dst_pos = 1 + isl_local_space_offset(aff->ls, dst_type) + dst_pos;
|
||
if (dst_type > src_type)
|
||
g_dst_pos -= n;
|
||
|
||
aff->v = isl_vec_move_els(aff->v, g_dst_pos, g_src_pos, n);
|
||
aff->ls = isl_local_space_move_dims(aff->ls, dst_type, dst_pos,
|
||
src_type, src_pos, n);
|
||
if (!aff->v || !aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
aff = sort_divs(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_from_aff(__isl_take isl_aff *aff)
|
||
{
|
||
isl_set *dom = isl_set_universe(isl_aff_get_domain_space(aff));
|
||
return isl_pw_aff_alloc(dom, aff);
|
||
}
|
||
|
||
#undef PW
|
||
#define PW isl_pw_aff
|
||
#undef EL
|
||
#define EL isl_aff
|
||
#undef EL_IS_ZERO
|
||
#define EL_IS_ZERO is_empty
|
||
#undef ZERO
|
||
#define ZERO empty
|
||
#undef IS_ZERO
|
||
#define IS_ZERO is_empty
|
||
#undef FIELD
|
||
#define FIELD aff
|
||
#undef DEFAULT_IS_ZERO
|
||
#define DEFAULT_IS_ZERO 0
|
||
|
||
#define NO_EVAL
|
||
#define NO_OPT
|
||
#define NO_LIFT
|
||
#define NO_MORPH
|
||
|
||
#include <isl_pw_templ.c>
|
||
#include <isl_pw_hash.c>
|
||
#include <isl_pw_union_opt.c>
|
||
|
||
#undef UNION
|
||
#define UNION isl_union_pw_aff
|
||
#undef PART
|
||
#define PART isl_pw_aff
|
||
#undef PARTS
|
||
#define PARTS pw_aff
|
||
|
||
#include <isl_union_single.c>
|
||
#include <isl_union_neg.c>
|
||
|
||
static __isl_give isl_set *align_params_pw_pw_set_and(
|
||
__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2,
|
||
__isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2))
|
||
{
|
||
if (!pwaff1 || !pwaff2)
|
||
goto error;
|
||
if (isl_space_match(pwaff1->dim, isl_dim_param,
|
||
pwaff2->dim, isl_dim_param))
|
||
return fn(pwaff1, pwaff2);
|
||
if (!isl_space_has_named_params(pwaff1->dim) ||
|
||
!isl_space_has_named_params(pwaff2->dim))
|
||
isl_die(isl_pw_aff_get_ctx(pwaff1), isl_error_invalid,
|
||
"unaligned unnamed parameters", goto error);
|
||
pwaff1 = isl_pw_aff_align_params(pwaff1, isl_pw_aff_get_space(pwaff2));
|
||
pwaff2 = isl_pw_aff_align_params(pwaff2, isl_pw_aff_get_space(pwaff1));
|
||
return fn(pwaff1, pwaff2);
|
||
error:
|
||
isl_pw_aff_free(pwaff1);
|
||
isl_pw_aff_free(pwaff2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Align the parameters of the to isl_pw_aff arguments and
|
||
* then apply a function "fn" on them that returns an isl_map.
|
||
*/
|
||
static __isl_give isl_map *align_params_pw_pw_map_and(
|
||
__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2,
|
||
__isl_give isl_map *(*fn)(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2))
|
||
{
|
||
if (!pa1 || !pa2)
|
||
goto error;
|
||
if (isl_space_match(pa1->dim, isl_dim_param, pa2->dim, isl_dim_param))
|
||
return fn(pa1, pa2);
|
||
if (!isl_space_has_named_params(pa1->dim) ||
|
||
!isl_space_has_named_params(pa2->dim))
|
||
isl_die(isl_pw_aff_get_ctx(pa1), isl_error_invalid,
|
||
"unaligned unnamed parameters", goto error);
|
||
pa1 = isl_pw_aff_align_params(pa1, isl_pw_aff_get_space(pa2));
|
||
pa2 = isl_pw_aff_align_params(pa2, isl_pw_aff_get_space(pa1));
|
||
return fn(pa1, pa2);
|
||
error:
|
||
isl_pw_aff_free(pa1);
|
||
isl_pw_aff_free(pa2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute a piecewise quasi-affine expression with a domain that
|
||
* is the union of those of pwaff1 and pwaff2 and such that on each
|
||
* cell, the quasi-affine expression is the maximum of those of pwaff1
|
||
* and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given
|
||
* cell, then the associated expression is the defined one.
|
||
*/
|
||
static __isl_give isl_pw_aff *pw_aff_union_max(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_union_opt_cmp(pwaff1, pwaff2, &isl_aff_ge_set);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_union_max(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2,
|
||
&pw_aff_union_max);
|
||
}
|
||
|
||
/* Compute a piecewise quasi-affine expression with a domain that
|
||
* is the union of those of pwaff1 and pwaff2 and such that on each
|
||
* cell, the quasi-affine expression is the minimum of those of pwaff1
|
||
* and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given
|
||
* cell, then the associated expression is the defined one.
|
||
*/
|
||
static __isl_give isl_pw_aff *pw_aff_union_min(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_union_opt_cmp(pwaff1, pwaff2, &isl_aff_le_set);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_union_min(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2,
|
||
&pw_aff_union_min);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2, int max)
|
||
{
|
||
if (max)
|
||
return isl_pw_aff_union_max(pwaff1, pwaff2);
|
||
else
|
||
return isl_pw_aff_union_min(pwaff1, pwaff2);
|
||
}
|
||
|
||
/* Construct a map with as domain the domain of pwaff and
|
||
* one-dimensional range corresponding to the affine expressions.
|
||
*/
|
||
static __isl_give isl_map *map_from_pw_aff(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
int i;
|
||
isl_space *dim;
|
||
isl_map *map;
|
||
|
||
if (!pwaff)
|
||
return NULL;
|
||
|
||
dim = isl_pw_aff_get_space(pwaff);
|
||
map = isl_map_empty(dim);
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
isl_basic_map *bmap;
|
||
isl_map *map_i;
|
||
|
||
bmap = isl_basic_map_from_aff(isl_aff_copy(pwaff->p[i].aff));
|
||
map_i = isl_map_from_basic_map(bmap);
|
||
map_i = isl_map_intersect_domain(map_i,
|
||
isl_set_copy(pwaff->p[i].set));
|
||
map = isl_map_union_disjoint(map, map_i);
|
||
}
|
||
|
||
isl_pw_aff_free(pwaff);
|
||
|
||
return map;
|
||
}
|
||
|
||
/* Construct a map with as domain the domain of pwaff and
|
||
* one-dimensional range corresponding to the affine expressions.
|
||
*/
|
||
__isl_give isl_map *isl_map_from_pw_aff(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
if (!pwaff)
|
||
return NULL;
|
||
if (isl_space_is_set(pwaff->dim))
|
||
isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
|
||
"space of input is not a map", goto error);
|
||
return map_from_pw_aff(pwaff);
|
||
error:
|
||
isl_pw_aff_free(pwaff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Construct a one-dimensional set with as parameter domain
|
||
* the domain of pwaff and the single set dimension
|
||
* corresponding to the affine expressions.
|
||
*/
|
||
__isl_give isl_set *isl_set_from_pw_aff(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
if (!pwaff)
|
||
return NULL;
|
||
if (!isl_space_is_set(pwaff->dim))
|
||
isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
|
||
"space of input is not a set", goto error);
|
||
return map_from_pw_aff(pwaff);
|
||
error:
|
||
isl_pw_aff_free(pwaff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a set containing those elements in the domain
|
||
* of "pwaff" where it satisfies "fn" (if complement is 0) or
|
||
* does not satisfy "fn" (if complement is 1).
|
||
*
|
||
* The pieces with a NaN never belong to the result since
|
||
* NaN does not satisfy any property.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_locus(__isl_take isl_pw_aff *pwaff,
|
||
__isl_give isl_basic_set *(*fn)(__isl_take isl_aff *aff, int rational),
|
||
int complement)
|
||
{
|
||
int i;
|
||
isl_set *set;
|
||
|
||
if (!pwaff)
|
||
return NULL;
|
||
|
||
set = isl_set_empty(isl_pw_aff_get_domain_space(pwaff));
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
isl_basic_set *bset;
|
||
isl_set *set_i, *locus;
|
||
int rational;
|
||
|
||
if (isl_aff_is_nan(pwaff->p[i].aff))
|
||
continue;
|
||
|
||
rational = isl_set_has_rational(pwaff->p[i].set);
|
||
bset = fn(isl_aff_copy(pwaff->p[i].aff), rational);
|
||
locus = isl_set_from_basic_set(bset);
|
||
set_i = isl_set_copy(pwaff->p[i].set);
|
||
if (complement)
|
||
set_i = isl_set_subtract(set_i, locus);
|
||
else
|
||
set_i = isl_set_intersect(set_i, locus);
|
||
set = isl_set_union_disjoint(set, set_i);
|
||
}
|
||
|
||
isl_pw_aff_free(pwaff);
|
||
|
||
return set;
|
||
}
|
||
|
||
/* Return a set containing those elements in the domain
|
||
* of "pa" where it is positive.
|
||
*/
|
||
__isl_give isl_set *isl_pw_aff_pos_set(__isl_take isl_pw_aff *pa)
|
||
{
|
||
return pw_aff_locus(pa, &aff_pos_basic_set, 0);
|
||
}
|
||
|
||
/* Return a set containing those elements in the domain
|
||
* of pwaff where it is non-negative.
|
||
*/
|
||
__isl_give isl_set *isl_pw_aff_nonneg_set(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
return pw_aff_locus(pwaff, &aff_nonneg_basic_set, 0);
|
||
}
|
||
|
||
/* Return a set containing those elements in the domain
|
||
* of pwaff where it is zero.
|
||
*/
|
||
__isl_give isl_set *isl_pw_aff_zero_set(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
return pw_aff_locus(pwaff, &aff_zero_basic_set, 0);
|
||
}
|
||
|
||
/* Return a set containing those elements in the domain
|
||
* of pwaff where it is not zero.
|
||
*/
|
||
__isl_give isl_set *isl_pw_aff_non_zero_set(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
return pw_aff_locus(pwaff, &aff_zero_basic_set, 1);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of pwaff1 and pwaff2 where pwaff1 is greater than (or equal) to pwaff2.
|
||
*
|
||
* We compute the difference on the shared domain and then construct
|
||
* the set of values where this difference is non-negative.
|
||
* If strict is set, we first subtract 1 from the difference.
|
||
* If equal is set, we only return the elements where pwaff1 and pwaff2
|
||
* are equal.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_gte_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2, int strict, int equal)
|
||
{
|
||
isl_set *set1, *set2;
|
||
|
||
set1 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff1));
|
||
set2 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff2));
|
||
set1 = isl_set_intersect(set1, set2);
|
||
pwaff1 = isl_pw_aff_intersect_domain(pwaff1, isl_set_copy(set1));
|
||
pwaff2 = isl_pw_aff_intersect_domain(pwaff2, isl_set_copy(set1));
|
||
pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_neg(pwaff2));
|
||
|
||
if (strict) {
|
||
isl_space *dim = isl_set_get_space(set1);
|
||
isl_aff *aff;
|
||
aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
|
||
aff = isl_aff_add_constant_si(aff, -1);
|
||
pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_alloc(set1, aff));
|
||
} else
|
||
isl_set_free(set1);
|
||
|
||
if (equal)
|
||
return isl_pw_aff_zero_set(pwaff1);
|
||
return isl_pw_aff_nonneg_set(pwaff1);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of pwaff1 and pwaff2 where pwaff1 is equal to pwaff2.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return pw_aff_gte_set(pwaff1, pwaff2, 0, 1);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_eq_set);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of pwaff1 and pwaff2 where pwaff1 is greater than or equal to pwaff2.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return pw_aff_gte_set(pwaff1, pwaff2, 0, 0);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ge_set);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of pwaff1 and pwaff2 where pwaff1 is strictly greater than pwaff2.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return pw_aff_gte_set(pwaff1, pwaff2, 1, 0);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_gt_set);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_le_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_ge_set(pwaff2, pwaff1);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_lt_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_gt_set(pwaff2, pwaff1);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function values are ordered in the same way as "order",
|
||
* which returns a set in the shared domain of its two arguments.
|
||
* The parameters of "pa1" and "pa2" are assumed to have been aligned.
|
||
*
|
||
* Let "pa1" and "pa2" be defined on domains A and B respectively.
|
||
* We first pull back the two functions such that they are defined on
|
||
* the domain [A -> B]. Then we apply "order", resulting in a set
|
||
* in the space [A -> B]. Finally, we unwrap this set to obtain
|
||
* a map in the space A -> B.
|
||
*/
|
||
static __isl_give isl_map *isl_pw_aff_order_map_aligned(
|
||
__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2,
|
||
__isl_give isl_set *(*order)(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2))
|
||
{
|
||
isl_space *space1, *space2;
|
||
isl_multi_aff *ma;
|
||
isl_set *set;
|
||
|
||
space1 = isl_space_domain(isl_pw_aff_get_space(pa1));
|
||
space2 = isl_space_domain(isl_pw_aff_get_space(pa2));
|
||
space1 = isl_space_map_from_domain_and_range(space1, space2);
|
||
ma = isl_multi_aff_domain_map(isl_space_copy(space1));
|
||
pa1 = isl_pw_aff_pullback_multi_aff(pa1, ma);
|
||
ma = isl_multi_aff_range_map(space1);
|
||
pa2 = isl_pw_aff_pullback_multi_aff(pa2, ma);
|
||
set = order(pa1, pa2);
|
||
|
||
return isl_set_unwrap(set);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function values are equal.
|
||
* The parameters of "pa1" and "pa2" are assumed to have been aligned.
|
||
*/
|
||
static __isl_give isl_map *isl_pw_aff_eq_map_aligned(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_eq_set);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function values are equal.
|
||
*/
|
||
__isl_give isl_map *isl_pw_aff_eq_map(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_eq_map_aligned);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function value of "pa1" is less than the function value of "pa2".
|
||
* The parameters of "pa1" and "pa2" are assumed to have been aligned.
|
||
*/
|
||
static __isl_give isl_map *isl_pw_aff_lt_map_aligned(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_lt_set);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function value of "pa1" is less than the function value of "pa2".
|
||
*/
|
||
__isl_give isl_map *isl_pw_aff_lt_map(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_lt_map_aligned);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function value of "pa1" is greater than the function value
|
||
* of "pa2".
|
||
* The parameters of "pa1" and "pa2" are assumed to have been aligned.
|
||
*/
|
||
static __isl_give isl_map *isl_pw_aff_gt_map_aligned(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_gt_set);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "pa1" and "pa2"
|
||
* where the function value of "pa1" is greater than the function value
|
||
* of "pa2".
|
||
*/
|
||
__isl_give isl_map *isl_pw_aff_gt_map(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_gt_map_aligned);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of the elements of list1 and list2 where each element in list1
|
||
* has the relation specified by "fn" with each element in list2.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_list_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2,
|
||
__isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2))
|
||
{
|
||
int i, j;
|
||
isl_ctx *ctx;
|
||
isl_set *set;
|
||
|
||
if (!list1 || !list2)
|
||
goto error;
|
||
|
||
ctx = isl_pw_aff_list_get_ctx(list1);
|
||
if (list1->n < 1 || list2->n < 1)
|
||
isl_die(ctx, isl_error_invalid,
|
||
"list should contain at least one element", goto error);
|
||
|
||
set = isl_set_universe(isl_pw_aff_get_domain_space(list1->p[0]));
|
||
for (i = 0; i < list1->n; ++i)
|
||
for (j = 0; j < list2->n; ++j) {
|
||
isl_set *set_ij;
|
||
|
||
set_ij = fn(isl_pw_aff_copy(list1->p[i]),
|
||
isl_pw_aff_copy(list2->p[j]));
|
||
set = isl_set_intersect(set, set_ij);
|
||
}
|
||
|
||
isl_pw_aff_list_free(list1);
|
||
isl_pw_aff_list_free(list2);
|
||
return set;
|
||
error:
|
||
isl_pw_aff_list_free(list1);
|
||
isl_pw_aff_list_free(list2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of the elements of list1 and list2 where each element in list1
|
||
* is equal to each element in list2.
|
||
*/
|
||
__isl_give isl_set *isl_pw_aff_list_eq_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2)
|
||
{
|
||
return pw_aff_list_set(list1, list2, &isl_pw_aff_eq_set);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_list_ne_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2)
|
||
{
|
||
return pw_aff_list_set(list1, list2, &isl_pw_aff_ne_set);
|
||
}
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of the elements of list1 and list2 where each element in list1
|
||
* is less than or equal to each element in list2.
|
||
*/
|
||
__isl_give isl_set *isl_pw_aff_list_le_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2)
|
||
{
|
||
return pw_aff_list_set(list1, list2, &isl_pw_aff_le_set);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_list_lt_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2)
|
||
{
|
||
return pw_aff_list_set(list1, list2, &isl_pw_aff_lt_set);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_list_ge_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2)
|
||
{
|
||
return pw_aff_list_set(list1, list2, &isl_pw_aff_ge_set);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_list_gt_set(__isl_take isl_pw_aff_list *list1,
|
||
__isl_take isl_pw_aff_list *list2)
|
||
{
|
||
return pw_aff_list_set(list1, list2, &isl_pw_aff_gt_set);
|
||
}
|
||
|
||
|
||
/* Return a set containing those elements in the shared domain
|
||
* of pwaff1 and pwaff2 where pwaff1 is not equal to pwaff2.
|
||
*/
|
||
static __isl_give isl_set *pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
isl_set *set_lt, *set_gt;
|
||
|
||
set_lt = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff1),
|
||
isl_pw_aff_copy(pwaff2));
|
||
set_gt = isl_pw_aff_gt_set(pwaff1, pwaff2);
|
||
return isl_set_union_disjoint(set_lt, set_gt);
|
||
}
|
||
|
||
__isl_give isl_set *isl_pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ne_set);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_scale_down(__isl_take isl_pw_aff *pwaff,
|
||
isl_int v)
|
||
{
|
||
int i;
|
||
|
||
if (isl_int_is_one(v))
|
||
return pwaff;
|
||
if (!isl_int_is_pos(v))
|
||
isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid,
|
||
"factor needs to be positive",
|
||
return isl_pw_aff_free(pwaff));
|
||
pwaff = isl_pw_aff_cow(pwaff);
|
||
if (!pwaff)
|
||
return NULL;
|
||
if (pwaff->n == 0)
|
||
return pwaff;
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
pwaff->p[i].aff = isl_aff_scale_down(pwaff->p[i].aff, v);
|
||
if (!pwaff->p[i].aff)
|
||
return isl_pw_aff_free(pwaff);
|
||
}
|
||
|
||
return pwaff;
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_floor(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
int i;
|
||
|
||
pwaff = isl_pw_aff_cow(pwaff);
|
||
if (!pwaff)
|
||
return NULL;
|
||
if (pwaff->n == 0)
|
||
return pwaff;
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
pwaff->p[i].aff = isl_aff_floor(pwaff->p[i].aff);
|
||
if (!pwaff->p[i].aff)
|
||
return isl_pw_aff_free(pwaff);
|
||
}
|
||
|
||
return pwaff;
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_ceil(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
int i;
|
||
|
||
pwaff = isl_pw_aff_cow(pwaff);
|
||
if (!pwaff)
|
||
return NULL;
|
||
if (pwaff->n == 0)
|
||
return pwaff;
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
pwaff->p[i].aff = isl_aff_ceil(pwaff->p[i].aff);
|
||
if (!pwaff->p[i].aff)
|
||
return isl_pw_aff_free(pwaff);
|
||
}
|
||
|
||
return pwaff;
|
||
}
|
||
|
||
/* Assuming that "cond1" and "cond2" are disjoint,
|
||
* return an affine expression that is equal to pwaff1 on cond1
|
||
* and to pwaff2 on cond2.
|
||
*/
|
||
static __isl_give isl_pw_aff *isl_pw_aff_select(
|
||
__isl_take isl_set *cond1, __isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_set *cond2, __isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
pwaff1 = isl_pw_aff_intersect_domain(pwaff1, cond1);
|
||
pwaff2 = isl_pw_aff_intersect_domain(pwaff2, cond2);
|
||
|
||
return isl_pw_aff_add_disjoint(pwaff1, pwaff2);
|
||
}
|
||
|
||
/* Return an affine expression that is equal to pwaff_true for elements
|
||
* where "cond" is non-zero and to pwaff_false for elements where "cond"
|
||
* is zero.
|
||
* That is, return cond ? pwaff_true : pwaff_false;
|
||
*
|
||
* If "cond" involves and NaN, then we conservatively return a NaN
|
||
* on its entire domain. In principle, we could consider the pieces
|
||
* where it is NaN separately from those where it is not.
|
||
*
|
||
* If "pwaff_true" and "pwaff_false" are obviously equal to each other,
|
||
* then only use the domain of "cond" to restrict the domain.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_cond(__isl_take isl_pw_aff *cond,
|
||
__isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false)
|
||
{
|
||
isl_set *cond_true, *cond_false;
|
||
isl_bool equal;
|
||
|
||
if (!cond)
|
||
goto error;
|
||
if (isl_pw_aff_involves_nan(cond)) {
|
||
isl_space *space = isl_pw_aff_get_domain_space(cond);
|
||
isl_local_space *ls = isl_local_space_from_space(space);
|
||
isl_pw_aff_free(cond);
|
||
isl_pw_aff_free(pwaff_true);
|
||
isl_pw_aff_free(pwaff_false);
|
||
return isl_pw_aff_nan_on_domain(ls);
|
||
}
|
||
|
||
pwaff_true = isl_pw_aff_align_params(pwaff_true,
|
||
isl_pw_aff_get_space(pwaff_false));
|
||
pwaff_false = isl_pw_aff_align_params(pwaff_false,
|
||
isl_pw_aff_get_space(pwaff_true));
|
||
equal = isl_pw_aff_plain_is_equal(pwaff_true, pwaff_false);
|
||
if (equal < 0)
|
||
goto error;
|
||
if (equal) {
|
||
isl_set *dom;
|
||
|
||
dom = isl_set_coalesce(isl_pw_aff_domain(cond));
|
||
isl_pw_aff_free(pwaff_false);
|
||
return isl_pw_aff_intersect_domain(pwaff_true, dom);
|
||
}
|
||
|
||
cond_true = isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond));
|
||
cond_false = isl_pw_aff_zero_set(cond);
|
||
return isl_pw_aff_select(cond_true, pwaff_true,
|
||
cond_false, pwaff_false);
|
||
error:
|
||
isl_pw_aff_free(cond);
|
||
isl_pw_aff_free(pwaff_true);
|
||
isl_pw_aff_free(pwaff_false);
|
||
return NULL;
|
||
}
|
||
|
||
isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff)
|
||
{
|
||
if (!aff)
|
||
return isl_bool_error;
|
||
|
||
return isl_seq_first_non_zero(aff->v->el + 2, aff->v->size - 2) == -1;
|
||
}
|
||
|
||
/* Check whether pwaff is a piecewise constant.
|
||
*/
|
||
isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff)
|
||
{
|
||
int i;
|
||
|
||
if (!pwaff)
|
||
return isl_bool_error;
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
isl_bool is_cst = isl_aff_is_cst(pwaff->p[i].aff);
|
||
if (is_cst < 0 || !is_cst)
|
||
return is_cst;
|
||
}
|
||
|
||
return isl_bool_true;
|
||
}
|
||
|
||
/* Are all elements of "mpa" piecewise constants?
|
||
*/
|
||
isl_bool isl_multi_pw_aff_is_cst(__isl_keep isl_multi_pw_aff *mpa)
|
||
{
|
||
int i;
|
||
|
||
if (!mpa)
|
||
return isl_bool_error;
|
||
|
||
for (i = 0; i < mpa->n; ++i) {
|
||
isl_bool is_cst = isl_pw_aff_is_cst(mpa->p[i]);
|
||
if (is_cst < 0 || !is_cst)
|
||
return is_cst;
|
||
}
|
||
|
||
return isl_bool_true;
|
||
}
|
||
|
||
/* Return the product of "aff1" and "aff2".
|
||
*
|
||
* If either of the two is NaN, then the result is NaN.
|
||
*
|
||
* Otherwise, at least one of "aff1" or "aff2" needs to be a constant.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
if (!aff1 || !aff2)
|
||
goto error;
|
||
|
||
if (isl_aff_is_nan(aff1)) {
|
||
isl_aff_free(aff2);
|
||
return aff1;
|
||
}
|
||
if (isl_aff_is_nan(aff2)) {
|
||
isl_aff_free(aff1);
|
||
return aff2;
|
||
}
|
||
|
||
if (!isl_aff_is_cst(aff2) && isl_aff_is_cst(aff1))
|
||
return isl_aff_mul(aff2, aff1);
|
||
|
||
if (!isl_aff_is_cst(aff2))
|
||
isl_die(isl_aff_get_ctx(aff1), isl_error_invalid,
|
||
"at least one affine expression should be constant",
|
||
goto error);
|
||
|
||
aff1 = isl_aff_cow(aff1);
|
||
if (!aff1 || !aff2)
|
||
goto error;
|
||
|
||
aff1 = isl_aff_scale(aff1, aff2->v->el[1]);
|
||
aff1 = isl_aff_scale_down(aff1, aff2->v->el[0]);
|
||
|
||
isl_aff_free(aff2);
|
||
return aff1;
|
||
error:
|
||
isl_aff_free(aff1);
|
||
isl_aff_free(aff2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Divide "aff1" by "aff2", assuming "aff2" is a constant.
|
||
*
|
||
* If either of the two is NaN, then the result is NaN.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
int is_cst;
|
||
int neg;
|
||
|
||
if (!aff1 || !aff2)
|
||
goto error;
|
||
|
||
if (isl_aff_is_nan(aff1)) {
|
||
isl_aff_free(aff2);
|
||
return aff1;
|
||
}
|
||
if (isl_aff_is_nan(aff2)) {
|
||
isl_aff_free(aff1);
|
||
return aff2;
|
||
}
|
||
|
||
is_cst = isl_aff_is_cst(aff2);
|
||
if (is_cst < 0)
|
||
goto error;
|
||
if (!is_cst)
|
||
isl_die(isl_aff_get_ctx(aff2), isl_error_invalid,
|
||
"second argument should be a constant", goto error);
|
||
|
||
if (!aff2)
|
||
goto error;
|
||
|
||
neg = isl_int_is_neg(aff2->v->el[1]);
|
||
if (neg) {
|
||
isl_int_neg(aff2->v->el[0], aff2->v->el[0]);
|
||
isl_int_neg(aff2->v->el[1], aff2->v->el[1]);
|
||
}
|
||
|
||
aff1 = isl_aff_scale(aff1, aff2->v->el[0]);
|
||
aff1 = isl_aff_scale_down(aff1, aff2->v->el[1]);
|
||
|
||
if (neg) {
|
||
isl_int_neg(aff2->v->el[0], aff2->v->el[0]);
|
||
isl_int_neg(aff2->v->el[1], aff2->v->el[1]);
|
||
}
|
||
|
||
isl_aff_free(aff2);
|
||
return aff1;
|
||
error:
|
||
isl_aff_free(aff1);
|
||
isl_aff_free(aff2);
|
||
return NULL;
|
||
}
|
||
|
||
static __isl_give isl_pw_aff *pw_aff_add(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_add);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_add(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_add);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_union_add(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_union_add_(pwaff1, pwaff2);
|
||
}
|
||
|
||
static __isl_give isl_pw_aff *pw_aff_mul(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_mul);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_mul(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_mul);
|
||
}
|
||
|
||
static __isl_give isl_pw_aff *pw_aff_div(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
return isl_pw_aff_on_shared_domain(pa1, pa2, &isl_aff_div);
|
||
}
|
||
|
||
/* Divide "pa1" by "pa2", assuming "pa2" is a piecewise constant.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_div(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
int is_cst;
|
||
|
||
is_cst = isl_pw_aff_is_cst(pa2);
|
||
if (is_cst < 0)
|
||
goto error;
|
||
if (!is_cst)
|
||
isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
|
||
"second argument should be a piecewise constant",
|
||
goto error);
|
||
return isl_pw_aff_align_params_pw_pw_and(pa1, pa2, &pw_aff_div);
|
||
error:
|
||
isl_pw_aff_free(pa1);
|
||
isl_pw_aff_free(pa2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the quotient of the integer division of "pa1" by "pa2"
|
||
* with rounding towards zero.
|
||
* "pa2" is assumed to be a piecewise constant.
|
||
*
|
||
* In particular, return
|
||
*
|
||
* pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2)
|
||
*
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_tdiv_q(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
int is_cst;
|
||
isl_set *cond;
|
||
isl_pw_aff *f, *c;
|
||
|
||
is_cst = isl_pw_aff_is_cst(pa2);
|
||
if (is_cst < 0)
|
||
goto error;
|
||
if (!is_cst)
|
||
isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
|
||
"second argument should be a piecewise constant",
|
||
goto error);
|
||
|
||
pa1 = isl_pw_aff_div(pa1, pa2);
|
||
|
||
cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(pa1));
|
||
f = isl_pw_aff_floor(isl_pw_aff_copy(pa1));
|
||
c = isl_pw_aff_ceil(pa1);
|
||
return isl_pw_aff_cond(isl_set_indicator_function(cond), f, c);
|
||
error:
|
||
isl_pw_aff_free(pa1);
|
||
isl_pw_aff_free(pa2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the remainder of the integer division of "pa1" by "pa2"
|
||
* with rounding towards zero.
|
||
* "pa2" is assumed to be a piecewise constant.
|
||
*
|
||
* In particular, return
|
||
*
|
||
* pa1 - pa2 * (pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2))
|
||
*
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_tdiv_r(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2)
|
||
{
|
||
int is_cst;
|
||
isl_pw_aff *res;
|
||
|
||
is_cst = isl_pw_aff_is_cst(pa2);
|
||
if (is_cst < 0)
|
||
goto error;
|
||
if (!is_cst)
|
||
isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid,
|
||
"second argument should be a piecewise constant",
|
||
goto error);
|
||
res = isl_pw_aff_tdiv_q(isl_pw_aff_copy(pa1), isl_pw_aff_copy(pa2));
|
||
res = isl_pw_aff_mul(pa2, res);
|
||
res = isl_pw_aff_sub(pa1, res);
|
||
return res;
|
||
error:
|
||
isl_pw_aff_free(pa1);
|
||
isl_pw_aff_free(pa2);
|
||
return NULL;
|
||
}
|
||
|
||
static __isl_give isl_pw_aff *pw_aff_min(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
isl_set *le;
|
||
isl_set *dom;
|
||
|
||
dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)),
|
||
isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)));
|
||
le = isl_pw_aff_le_set(isl_pw_aff_copy(pwaff1),
|
||
isl_pw_aff_copy(pwaff2));
|
||
dom = isl_set_subtract(dom, isl_set_copy(le));
|
||
return isl_pw_aff_select(le, pwaff1, dom, pwaff2);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_min(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_min);
|
||
}
|
||
|
||
static __isl_give isl_pw_aff *pw_aff_max(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
isl_set *ge;
|
||
isl_set *dom;
|
||
|
||
dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)),
|
||
isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)));
|
||
ge = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff1),
|
||
isl_pw_aff_copy(pwaff2));
|
||
dom = isl_set_subtract(dom, isl_set_copy(ge));
|
||
return isl_pw_aff_select(ge, pwaff1, dom, pwaff2);
|
||
}
|
||
|
||
__isl_give isl_pw_aff *isl_pw_aff_max(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2)
|
||
{
|
||
return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_max);
|
||
}
|
||
|
||
static __isl_give isl_pw_aff *pw_aff_list_reduce(
|
||
__isl_take isl_pw_aff_list *list,
|
||
__isl_give isl_pw_aff *(*fn)(__isl_take isl_pw_aff *pwaff1,
|
||
__isl_take isl_pw_aff *pwaff2))
|
||
{
|
||
int i;
|
||
isl_ctx *ctx;
|
||
isl_pw_aff *res;
|
||
|
||
if (!list)
|
||
return NULL;
|
||
|
||
ctx = isl_pw_aff_list_get_ctx(list);
|
||
if (list->n < 1)
|
||
isl_die(ctx, isl_error_invalid,
|
||
"list should contain at least one element", goto error);
|
||
|
||
res = isl_pw_aff_copy(list->p[0]);
|
||
for (i = 1; i < list->n; ++i)
|
||
res = fn(res, isl_pw_aff_copy(list->p[i]));
|
||
|
||
isl_pw_aff_list_free(list);
|
||
return res;
|
||
error:
|
||
isl_pw_aff_list_free(list);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return an isl_pw_aff that maps each element in the intersection of the
|
||
* domains of the elements of list to the minimal corresponding affine
|
||
* expression.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_list_min(__isl_take isl_pw_aff_list *list)
|
||
{
|
||
return pw_aff_list_reduce(list, &isl_pw_aff_min);
|
||
}
|
||
|
||
/* Return an isl_pw_aff that maps each element in the intersection of the
|
||
* domains of the elements of list to the maximal corresponding affine
|
||
* expression.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_list_max(__isl_take isl_pw_aff_list *list)
|
||
{
|
||
return pw_aff_list_reduce(list, &isl_pw_aff_max);
|
||
}
|
||
|
||
/* Mark the domains of "pwaff" as rational.
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_set_rational(__isl_take isl_pw_aff *pwaff)
|
||
{
|
||
int i;
|
||
|
||
pwaff = isl_pw_aff_cow(pwaff);
|
||
if (!pwaff)
|
||
return NULL;
|
||
if (pwaff->n == 0)
|
||
return pwaff;
|
||
|
||
for (i = 0; i < pwaff->n; ++i) {
|
||
pwaff->p[i].set = isl_set_set_rational(pwaff->p[i].set);
|
||
if (!pwaff->p[i].set)
|
||
return isl_pw_aff_free(pwaff);
|
||
}
|
||
|
||
return pwaff;
|
||
}
|
||
|
||
/* Mark the domains of the elements of "list" as rational.
|
||
*/
|
||
__isl_give isl_pw_aff_list *isl_pw_aff_list_set_rational(
|
||
__isl_take isl_pw_aff_list *list)
|
||
{
|
||
int i, n;
|
||
|
||
if (!list)
|
||
return NULL;
|
||
if (list->n == 0)
|
||
return list;
|
||
|
||
n = list->n;
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa;
|
||
|
||
pa = isl_pw_aff_list_get_pw_aff(list, i);
|
||
pa = isl_pw_aff_set_rational(pa);
|
||
list = isl_pw_aff_list_set_pw_aff(list, i, pa);
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Do the parameters of "aff" match those of "space"?
|
||
*/
|
||
int isl_aff_matching_params(__isl_keep isl_aff *aff,
|
||
__isl_keep isl_space *space)
|
||
{
|
||
isl_space *aff_space;
|
||
int match;
|
||
|
||
if (!aff || !space)
|
||
return -1;
|
||
|
||
aff_space = isl_aff_get_domain_space(aff);
|
||
|
||
match = isl_space_match(space, isl_dim_param, aff_space, isl_dim_param);
|
||
|
||
isl_space_free(aff_space);
|
||
return match;
|
||
}
|
||
|
||
/* Check that the domain space of "aff" matches "space".
|
||
*
|
||
* Return 0 on success and -1 on error.
|
||
*/
|
||
int isl_aff_check_match_domain_space(__isl_keep isl_aff *aff,
|
||
__isl_keep isl_space *space)
|
||
{
|
||
isl_space *aff_space;
|
||
int match;
|
||
|
||
if (!aff || !space)
|
||
return -1;
|
||
|
||
aff_space = isl_aff_get_domain_space(aff);
|
||
|
||
match = isl_space_match(space, isl_dim_param, aff_space, isl_dim_param);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"parameters don't match", goto error);
|
||
match = isl_space_tuple_is_equal(space, isl_dim_in,
|
||
aff_space, isl_dim_set);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"domains don't match", goto error);
|
||
isl_space_free(aff_space);
|
||
return 0;
|
||
error:
|
||
isl_space_free(aff_space);
|
||
return -1;
|
||
}
|
||
|
||
#undef BASE
|
||
#define BASE aff
|
||
#undef DOMBASE
|
||
#define DOMBASE set
|
||
#define NO_DOMAIN
|
||
|
||
#include <isl_multi_templ.c>
|
||
#include <isl_multi_apply_set.c>
|
||
#include <isl_multi_cmp.c>
|
||
#include <isl_multi_floor.c>
|
||
#include <isl_multi_gist.c>
|
||
|
||
#undef NO_DOMAIN
|
||
|
||
/* Remove any internal structure of the domain of "ma".
|
||
* If there is any such internal structure in the input,
|
||
* then the name of the corresponding space is also removed.
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
|
||
__isl_take isl_multi_aff *ma)
|
||
{
|
||
isl_space *space;
|
||
|
||
if (!ma)
|
||
return NULL;
|
||
|
||
if (!ma->space->nested[0])
|
||
return ma;
|
||
|
||
space = isl_multi_aff_get_space(ma);
|
||
space = isl_space_flatten_domain(space);
|
||
ma = isl_multi_aff_reset_space(ma, space);
|
||
|
||
return ma;
|
||
}
|
||
|
||
/* Given a map space, return an isl_multi_aff that maps a wrapped copy
|
||
* of the space to its domain.
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_domain_map(__isl_take isl_space *space)
|
||
{
|
||
int i, n_in;
|
||
isl_local_space *ls;
|
||
isl_multi_aff *ma;
|
||
|
||
if (!space)
|
||
return NULL;
|
||
if (!isl_space_is_map(space))
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"not a map space", goto error);
|
||
|
||
n_in = isl_space_dim(space, isl_dim_in);
|
||
space = isl_space_domain_map(space);
|
||
|
||
ma = isl_multi_aff_alloc(isl_space_copy(space));
|
||
if (n_in == 0) {
|
||
isl_space_free(space);
|
||
return ma;
|
||
}
|
||
|
||
space = isl_space_domain(space);
|
||
ls = isl_local_space_from_space(space);
|
||
for (i = 0; i < n_in; ++i) {
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
||
isl_dim_set, i);
|
||
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
}
|
||
isl_local_space_free(ls);
|
||
return ma;
|
||
error:
|
||
isl_space_free(space);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given a map space, return an isl_multi_aff that maps a wrapped copy
|
||
* of the space to its range.
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_range_map(__isl_take isl_space *space)
|
||
{
|
||
int i, n_in, n_out;
|
||
isl_local_space *ls;
|
||
isl_multi_aff *ma;
|
||
|
||
if (!space)
|
||
return NULL;
|
||
if (!isl_space_is_map(space))
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"not a map space", goto error);
|
||
|
||
n_in = isl_space_dim(space, isl_dim_in);
|
||
n_out = isl_space_dim(space, isl_dim_out);
|
||
space = isl_space_range_map(space);
|
||
|
||
ma = isl_multi_aff_alloc(isl_space_copy(space));
|
||
if (n_out == 0) {
|
||
isl_space_free(space);
|
||
return ma;
|
||
}
|
||
|
||
space = isl_space_domain(space);
|
||
ls = isl_local_space_from_space(space);
|
||
for (i = 0; i < n_out; ++i) {
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
||
isl_dim_set, n_in + i);
|
||
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
}
|
||
isl_local_space_free(ls);
|
||
return ma;
|
||
error:
|
||
isl_space_free(space);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given a map space, return an isl_pw_multi_aff that maps a wrapped copy
|
||
* of the space to its range.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
|
||
__isl_take isl_space *space)
|
||
{
|
||
return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_range_map(space));
|
||
}
|
||
|
||
/* Given the space of a set and a range of set dimensions,
|
||
* construct an isl_multi_aff that projects out those dimensions.
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_project_out_map(
|
||
__isl_take isl_space *space, enum isl_dim_type type,
|
||
unsigned first, unsigned n)
|
||
{
|
||
int i, dim;
|
||
isl_local_space *ls;
|
||
isl_multi_aff *ma;
|
||
|
||
if (!space)
|
||
return NULL;
|
||
if (!isl_space_is_set(space))
|
||
isl_die(isl_space_get_ctx(space), isl_error_unsupported,
|
||
"expecting set space", goto error);
|
||
if (type != isl_dim_set)
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"only set dimensions can be projected out", goto error);
|
||
|
||
dim = isl_space_dim(space, isl_dim_set);
|
||
if (first + n > dim)
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"range out of bounds", goto error);
|
||
|
||
space = isl_space_from_domain(space);
|
||
space = isl_space_add_dims(space, isl_dim_out, dim - n);
|
||
|
||
if (dim == n)
|
||
return isl_multi_aff_alloc(space);
|
||
|
||
ma = isl_multi_aff_alloc(isl_space_copy(space));
|
||
space = isl_space_domain(space);
|
||
ls = isl_local_space_from_space(space);
|
||
|
||
for (i = 0; i < first; ++i) {
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
||
isl_dim_set, i);
|
||
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
}
|
||
|
||
for (i = 0; i < dim - (first + n); ++i) {
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
||
isl_dim_set, first + n + i);
|
||
ma = isl_multi_aff_set_aff(ma, first + i, aff);
|
||
}
|
||
|
||
isl_local_space_free(ls);
|
||
return ma;
|
||
error:
|
||
isl_space_free(space);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given the space of a set and a range of set dimensions,
|
||
* construct an isl_pw_multi_aff that projects out those dimensions.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_project_out_map(
|
||
__isl_take isl_space *space, enum isl_dim_type type,
|
||
unsigned first, unsigned n)
|
||
{
|
||
isl_multi_aff *ma;
|
||
|
||
ma = isl_multi_aff_project_out_map(space, type, first, n);
|
||
return isl_pw_multi_aff_from_multi_aff(ma);
|
||
}
|
||
|
||
/* Create an isl_pw_multi_aff with the given isl_multi_aff on a universe
|
||
* domain.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_aff(
|
||
__isl_take isl_multi_aff *ma)
|
||
{
|
||
isl_set *dom = isl_set_universe(isl_multi_aff_get_domain_space(ma));
|
||
return isl_pw_multi_aff_alloc(dom, ma);
|
||
}
|
||
|
||
/* Create a piecewise multi-affine expression in the given space that maps each
|
||
* input dimension to the corresponding output dimension.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
|
||
__isl_take isl_space *space)
|
||
{
|
||
return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_identity(space));
|
||
}
|
||
|
||
/* Exploit the equalities in "eq" to simplify the affine expressions.
|
||
*/
|
||
static __isl_give isl_multi_aff *isl_multi_aff_substitute_equalities(
|
||
__isl_take isl_multi_aff *maff, __isl_take isl_basic_set *eq)
|
||
{
|
||
int i;
|
||
|
||
maff = isl_multi_aff_cow(maff);
|
||
if (!maff || !eq)
|
||
goto error;
|
||
|
||
for (i = 0; i < maff->n; ++i) {
|
||
maff->p[i] = isl_aff_substitute_equalities(maff->p[i],
|
||
isl_basic_set_copy(eq));
|
||
if (!maff->p[i])
|
||
goto error;
|
||
}
|
||
|
||
isl_basic_set_free(eq);
|
||
return maff;
|
||
error:
|
||
isl_basic_set_free(eq);
|
||
isl_multi_aff_free(maff);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_multi_aff *isl_multi_aff_scale(__isl_take isl_multi_aff *maff,
|
||
isl_int f)
|
||
{
|
||
int i;
|
||
|
||
maff = isl_multi_aff_cow(maff);
|
||
if (!maff)
|
||
return NULL;
|
||
|
||
for (i = 0; i < maff->n; ++i) {
|
||
maff->p[i] = isl_aff_scale(maff->p[i], f);
|
||
if (!maff->p[i])
|
||
return isl_multi_aff_free(maff);
|
||
}
|
||
|
||
return maff;
|
||
}
|
||
|
||
__isl_give isl_multi_aff *isl_multi_aff_add_on_domain(__isl_keep isl_set *dom,
|
||
__isl_take isl_multi_aff *maff1, __isl_take isl_multi_aff *maff2)
|
||
{
|
||
maff1 = isl_multi_aff_add(maff1, maff2);
|
||
maff1 = isl_multi_aff_gist(maff1, isl_set_copy(dom));
|
||
return maff1;
|
||
}
|
||
|
||
int isl_multi_aff_is_empty(__isl_keep isl_multi_aff *maff)
|
||
{
|
||
if (!maff)
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the set of domain elements where "ma1" is lexicographically
|
||
* smaller than or equal to "ma2".
|
||
*/
|
||
__isl_give isl_set *isl_multi_aff_lex_le_set(__isl_take isl_multi_aff *ma1,
|
||
__isl_take isl_multi_aff *ma2)
|
||
{
|
||
return isl_multi_aff_lex_ge_set(ma2, ma1);
|
||
}
|
||
|
||
/* Return the set of domain elements where "ma1" is lexicographically
|
||
* smaller than "ma2".
|
||
*/
|
||
__isl_give isl_set *isl_multi_aff_lex_lt_set(__isl_take isl_multi_aff *ma1,
|
||
__isl_take isl_multi_aff *ma2)
|
||
{
|
||
return isl_multi_aff_lex_gt_set(ma2, ma1);
|
||
}
|
||
|
||
/* Return the set of domain elements where "ma1" and "ma2"
|
||
* satisfy "order".
|
||
*/
|
||
static __isl_give isl_set *isl_multi_aff_order_set(
|
||
__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2,
|
||
__isl_give isl_map *order(__isl_take isl_space *set_space))
|
||
{
|
||
isl_space *space;
|
||
isl_map *map1, *map2;
|
||
isl_map *map, *ge;
|
||
|
||
map1 = isl_map_from_multi_aff(ma1);
|
||
map2 = isl_map_from_multi_aff(ma2);
|
||
map = isl_map_range_product(map1, map2);
|
||
space = isl_space_range(isl_map_get_space(map));
|
||
space = isl_space_domain(isl_space_unwrap(space));
|
||
ge = order(space);
|
||
map = isl_map_intersect_range(map, isl_map_wrap(ge));
|
||
|
||
return isl_map_domain(map);
|
||
}
|
||
|
||
/* Return the set of domain elements where "ma1" is lexicographically
|
||
* greater than or equal to "ma2".
|
||
*/
|
||
__isl_give isl_set *isl_multi_aff_lex_ge_set(__isl_take isl_multi_aff *ma1,
|
||
__isl_take isl_multi_aff *ma2)
|
||
{
|
||
return isl_multi_aff_order_set(ma1, ma2, &isl_map_lex_ge);
|
||
}
|
||
|
||
/* Return the set of domain elements where "ma1" is lexicographically
|
||
* greater than "ma2".
|
||
*/
|
||
__isl_give isl_set *isl_multi_aff_lex_gt_set(__isl_take isl_multi_aff *ma1,
|
||
__isl_take isl_multi_aff *ma2)
|
||
{
|
||
return isl_multi_aff_order_set(ma1, ma2, &isl_map_lex_gt);
|
||
}
|
||
|
||
#undef PW
|
||
#define PW isl_pw_multi_aff
|
||
#undef EL
|
||
#define EL isl_multi_aff
|
||
#undef EL_IS_ZERO
|
||
#define EL_IS_ZERO is_empty
|
||
#undef ZERO
|
||
#define ZERO empty
|
||
#undef IS_ZERO
|
||
#define IS_ZERO is_empty
|
||
#undef FIELD
|
||
#define FIELD maff
|
||
#undef DEFAULT_IS_ZERO
|
||
#define DEFAULT_IS_ZERO 0
|
||
|
||
#define NO_SUB
|
||
#define NO_EVAL
|
||
#define NO_OPT
|
||
#define NO_INVOLVES_DIMS
|
||
#define NO_INSERT_DIMS
|
||
#define NO_LIFT
|
||
#define NO_MORPH
|
||
|
||
#include <isl_pw_templ.c>
|
||
#include <isl_pw_union_opt.c>
|
||
|
||
#undef NO_SUB
|
||
|
||
#undef UNION
|
||
#define UNION isl_union_pw_multi_aff
|
||
#undef PART
|
||
#define PART isl_pw_multi_aff
|
||
#undef PARTS
|
||
#define PARTS pw_multi_aff
|
||
|
||
#include <isl_union_multi.c>
|
||
#include <isl_union_neg.c>
|
||
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmax(
|
||
__isl_take isl_pw_multi_aff *pma1,
|
||
__isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_union_opt_cmp(pma1, pma2,
|
||
&isl_multi_aff_lex_ge_set);
|
||
}
|
||
|
||
/* Given two piecewise multi affine expressions, return a piecewise
|
||
* multi-affine expression defined on the union of the definition domains
|
||
* of the inputs that is equal to the lexicographic maximum of the two
|
||
* inputs on each cell. If only one of the two inputs is defined on
|
||
* a given cell, then it is considered to be the maximum.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
|
||
__isl_take isl_pw_multi_aff *pma1,
|
||
__isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_union_lexmax);
|
||
}
|
||
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmin(
|
||
__isl_take isl_pw_multi_aff *pma1,
|
||
__isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_union_opt_cmp(pma1, pma2,
|
||
&isl_multi_aff_lex_le_set);
|
||
}
|
||
|
||
/* Given two piecewise multi affine expressions, return a piecewise
|
||
* multi-affine expression defined on the union of the definition domains
|
||
* of the inputs that is equal to the lexicographic minimum of the two
|
||
* inputs on each cell. If only one of the two inputs is defined on
|
||
* a given cell, then it is considered to be the minimum.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
|
||
__isl_take isl_pw_multi_aff *pma1,
|
||
__isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_union_lexmin);
|
||
}
|
||
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_add(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_on_shared_domain(pma1, pma2,
|
||
&isl_multi_aff_add);
|
||
}
|
||
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_add);
|
||
}
|
||
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_sub(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_on_shared_domain(pma1, pma2,
|
||
&isl_multi_aff_sub);
|
||
}
|
||
|
||
/* Subtract "pma2" from "pma1" and return the result.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_sub);
|
||
}
|
||
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_union_add_(pma1, pma2);
|
||
}
|
||
|
||
/* Compute the sum of "upa1" and "upa2" on the union of their domains,
|
||
* with the actual sum on the shared domain and
|
||
* the defined expression on the symmetric difference of the domains.
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
|
||
__isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2)
|
||
{
|
||
return isl_union_pw_aff_union_add_(upa1, upa2);
|
||
}
|
||
|
||
/* Compute the sum of "upma1" and "upma2" on the union of their domains,
|
||
* with the actual sum on the shared domain and
|
||
* the defined expression on the symmetric difference of the domains.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_union_add(
|
||
__isl_take isl_union_pw_multi_aff *upma1,
|
||
__isl_take isl_union_pw_multi_aff *upma2)
|
||
{
|
||
return isl_union_pw_multi_aff_union_add_(upma1, upma2);
|
||
}
|
||
|
||
/* Given two piecewise multi-affine expressions A -> B and C -> D,
|
||
* construct a piecewise multi-affine expression [A -> C] -> [B -> D].
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_product(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
int i, j, n;
|
||
isl_space *space;
|
||
isl_pw_multi_aff *res;
|
||
|
||
if (!pma1 || !pma2)
|
||
goto error;
|
||
|
||
n = pma1->n * pma2->n;
|
||
space = isl_space_product(isl_space_copy(pma1->dim),
|
||
isl_space_copy(pma2->dim));
|
||
res = isl_pw_multi_aff_alloc_size(space, n);
|
||
|
||
for (i = 0; i < pma1->n; ++i) {
|
||
for (j = 0; j < pma2->n; ++j) {
|
||
isl_set *domain;
|
||
isl_multi_aff *ma;
|
||
|
||
domain = isl_set_product(isl_set_copy(pma1->p[i].set),
|
||
isl_set_copy(pma2->p[j].set));
|
||
ma = isl_multi_aff_product(
|
||
isl_multi_aff_copy(pma1->p[i].maff),
|
||
isl_multi_aff_copy(pma2->p[j].maff));
|
||
res = isl_pw_multi_aff_add_piece(res, domain, ma);
|
||
}
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma1);
|
||
isl_pw_multi_aff_free(pma2);
|
||
return res;
|
||
error:
|
||
isl_pw_multi_aff_free(pma1);
|
||
isl_pw_multi_aff_free(pma2);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_product);
|
||
}
|
||
|
||
/* Construct a map mapping the domain of the piecewise multi-affine expression
|
||
* to its range, with each dimension in the range equated to the
|
||
* corresponding affine expression on its cell.
|
||
*/
|
||
__isl_give isl_map *isl_map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma)
|
||
{
|
||
int i;
|
||
isl_map *map;
|
||
|
||
if (!pma)
|
||
return NULL;
|
||
|
||
map = isl_map_empty(isl_pw_multi_aff_get_space(pma));
|
||
|
||
for (i = 0; i < pma->n; ++i) {
|
||
isl_multi_aff *maff;
|
||
isl_basic_map *bmap;
|
||
isl_map *map_i;
|
||
|
||
maff = isl_multi_aff_copy(pma->p[i].maff);
|
||
bmap = isl_basic_map_from_multi_aff(maff);
|
||
map_i = isl_map_from_basic_map(bmap);
|
||
map_i = isl_map_intersect_domain(map_i,
|
||
isl_set_copy(pma->p[i].set));
|
||
map = isl_map_union_disjoint(map, map_i);
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
return map;
|
||
}
|
||
|
||
__isl_give isl_set *isl_set_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma)
|
||
{
|
||
if (!pma)
|
||
return NULL;
|
||
|
||
if (!isl_space_is_set(pma->dim))
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"isl_pw_multi_aff cannot be converted into an isl_set",
|
||
goto error);
|
||
|
||
return isl_map_from_pw_multi_aff(pma);
|
||
error:
|
||
isl_pw_multi_aff_free(pma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Subtract the initial "n" elements in "ma" with coefficients in "c" and
|
||
* denominator "denom".
|
||
* "denom" is allowed to be negative, in which case the actual denominator
|
||
* is -denom and the expressions are added instead.
|
||
*/
|
||
static __isl_give isl_aff *subtract_initial(__isl_take isl_aff *aff,
|
||
__isl_keep isl_multi_aff *ma, int n, isl_int *c, isl_int denom)
|
||
{
|
||
int i, first;
|
||
int sign;
|
||
isl_int d;
|
||
|
||
first = isl_seq_first_non_zero(c, n);
|
||
if (first == -1)
|
||
return aff;
|
||
|
||
sign = isl_int_sgn(denom);
|
||
isl_int_init(d);
|
||
isl_int_abs(d, denom);
|
||
for (i = first; i < n; ++i) {
|
||
isl_aff *aff_i;
|
||
|
||
if (isl_int_is_zero(c[i]))
|
||
continue;
|
||
aff_i = isl_multi_aff_get_aff(ma, i);
|
||
aff_i = isl_aff_scale(aff_i, c[i]);
|
||
aff_i = isl_aff_scale_down(aff_i, d);
|
||
if (sign >= 0)
|
||
aff = isl_aff_sub(aff, aff_i);
|
||
else
|
||
aff = isl_aff_add(aff, aff_i);
|
||
}
|
||
isl_int_clear(d);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Extract an affine expression that expresses the output dimension "pos"
|
||
* of "bmap" in terms of the parameters and input dimensions from
|
||
* equality "eq".
|
||
* Note that this expression may involve integer divisions defined
|
||
* in terms of parameters and input dimensions.
|
||
* The equality may also involve references to earlier (but not later)
|
||
* output dimensions. These are replaced by the corresponding elements
|
||
* in "ma".
|
||
*
|
||
* If the equality is of the form
|
||
*
|
||
* f(i) + h(j) + a x + g(i) = 0,
|
||
*
|
||
* with f(i) a linear combinations of the parameters and input dimensions,
|
||
* g(i) a linear combination of integer divisions defined in terms of the same
|
||
* and h(j) a linear combinations of earlier output dimensions,
|
||
* then the affine expression is
|
||
*
|
||
* (-f(i) - g(i))/a - h(j)/a
|
||
*
|
||
* If the equality is of the form
|
||
*
|
||
* f(i) + h(j) - a x + g(i) = 0,
|
||
*
|
||
* then the affine expression is
|
||
*
|
||
* (f(i) + g(i))/a - h(j)/(-a)
|
||
*
|
||
*
|
||
* If "div" refers to an integer division (i.e., it is smaller than
|
||
* the number of integer divisions), then the equality constraint
|
||
* does involve an integer division (the one at position "div") that
|
||
* is defined in terms of output dimensions. However, this integer
|
||
* division can be eliminated by exploiting a pair of constraints
|
||
* x >= l and x <= l + n, with n smaller than the coefficient of "div"
|
||
* in the equality constraint. "ineq" refers to inequality x >= l, i.e.,
|
||
* -l + x >= 0.
|
||
* In particular, let
|
||
*
|
||
* x = e(i) + m floor(...)
|
||
*
|
||
* with e(i) the expression derived above and floor(...) the integer
|
||
* division involving output dimensions.
|
||
* From
|
||
*
|
||
* l <= x <= l + n,
|
||
*
|
||
* we have
|
||
*
|
||
* 0 <= x - l <= n
|
||
*
|
||
* This means
|
||
*
|
||
* e(i) + m floor(...) - l = (e(i) + m floor(...) - l) mod m
|
||
* = (e(i) - l) mod m
|
||
*
|
||
* Therefore,
|
||
*
|
||
* x - l = (e(i) - l) mod m
|
||
*
|
||
* or
|
||
*
|
||
* x = ((e(i) - l) mod m) + l
|
||
*
|
||
* The variable "shift" below contains the expression -l, which may
|
||
* also involve a linear combination of earlier output dimensions.
|
||
*/
|
||
static __isl_give isl_aff *extract_aff_from_equality(
|
||
__isl_keep isl_basic_map *bmap, int pos, int eq, int div, int ineq,
|
||
__isl_keep isl_multi_aff *ma)
|
||
{
|
||
unsigned o_out;
|
||
unsigned n_div, n_out;
|
||
isl_ctx *ctx;
|
||
isl_local_space *ls;
|
||
isl_aff *aff, *shift;
|
||
isl_val *mod;
|
||
|
||
ctx = isl_basic_map_get_ctx(bmap);
|
||
ls = isl_basic_map_get_local_space(bmap);
|
||
ls = isl_local_space_domain(ls);
|
||
aff = isl_aff_alloc(isl_local_space_copy(ls));
|
||
if (!aff)
|
||
goto error;
|
||
o_out = isl_basic_map_offset(bmap, isl_dim_out);
|
||
n_out = isl_basic_map_dim(bmap, isl_dim_out);
|
||
n_div = isl_basic_map_dim(bmap, isl_dim_div);
|
||
if (isl_int_is_neg(bmap->eq[eq][o_out + pos])) {
|
||
isl_seq_cpy(aff->v->el + 1, bmap->eq[eq], o_out);
|
||
isl_seq_cpy(aff->v->el + 1 + o_out,
|
||
bmap->eq[eq] + o_out + n_out, n_div);
|
||
} else {
|
||
isl_seq_neg(aff->v->el + 1, bmap->eq[eq], o_out);
|
||
isl_seq_neg(aff->v->el + 1 + o_out,
|
||
bmap->eq[eq] + o_out + n_out, n_div);
|
||
}
|
||
if (div < n_div)
|
||
isl_int_set_si(aff->v->el[1 + o_out + div], 0);
|
||
isl_int_abs(aff->v->el[0], bmap->eq[eq][o_out + pos]);
|
||
aff = subtract_initial(aff, ma, pos, bmap->eq[eq] + o_out,
|
||
bmap->eq[eq][o_out + pos]);
|
||
if (div < n_div) {
|
||
shift = isl_aff_alloc(isl_local_space_copy(ls));
|
||
if (!shift)
|
||
goto error;
|
||
isl_seq_cpy(shift->v->el + 1, bmap->ineq[ineq], o_out);
|
||
isl_seq_cpy(shift->v->el + 1 + o_out,
|
||
bmap->ineq[ineq] + o_out + n_out, n_div);
|
||
isl_int_set_si(shift->v->el[0], 1);
|
||
shift = subtract_initial(shift, ma, pos,
|
||
bmap->ineq[ineq] + o_out, ctx->negone);
|
||
aff = isl_aff_add(aff, isl_aff_copy(shift));
|
||
mod = isl_val_int_from_isl_int(ctx,
|
||
bmap->eq[eq][o_out + n_out + div]);
|
||
mod = isl_val_abs(mod);
|
||
aff = isl_aff_mod_val(aff, mod);
|
||
aff = isl_aff_sub(aff, shift);
|
||
}
|
||
|
||
isl_local_space_free(ls);
|
||
return aff;
|
||
error:
|
||
isl_local_space_free(ls);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given a basic map with output dimensions defined
|
||
* in terms of the parameters input dimensions and earlier
|
||
* output dimensions using an equality (and possibly a pair on inequalities),
|
||
* extract an isl_aff that expresses output dimension "pos" in terms
|
||
* of the parameters and input dimensions.
|
||
* Note that this expression may involve integer divisions defined
|
||
* in terms of parameters and input dimensions.
|
||
* "ma" contains the expressions corresponding to earlier output dimensions.
|
||
*
|
||
* This function shares some similarities with
|
||
* isl_basic_map_has_defining_equality and isl_constraint_get_bound.
|
||
*/
|
||
static __isl_give isl_aff *extract_isl_aff_from_basic_map(
|
||
__isl_keep isl_basic_map *bmap, int pos, __isl_keep isl_multi_aff *ma)
|
||
{
|
||
int eq, div, ineq;
|
||
isl_aff *aff;
|
||
|
||
if (!bmap)
|
||
return NULL;
|
||
eq = isl_basic_map_output_defining_equality(bmap, pos, &div, &ineq);
|
||
if (eq >= bmap->n_eq)
|
||
isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
|
||
"unable to find suitable equality", return NULL);
|
||
aff = extract_aff_from_equality(bmap, pos, eq, div, ineq, ma);
|
||
|
||
aff = isl_aff_remove_unused_divs(aff);
|
||
return aff;
|
||
}
|
||
|
||
/* Given a basic map where each output dimension is defined
|
||
* in terms of the parameters and input dimensions using an equality,
|
||
* extract an isl_multi_aff that expresses the output dimensions in terms
|
||
* of the parameters and input dimensions.
|
||
*/
|
||
static __isl_give isl_multi_aff *extract_isl_multi_aff_from_basic_map(
|
||
__isl_take isl_basic_map *bmap)
|
||
{
|
||
int i;
|
||
unsigned n_out;
|
||
isl_multi_aff *ma;
|
||
|
||
if (!bmap)
|
||
return NULL;
|
||
|
||
ma = isl_multi_aff_alloc(isl_basic_map_get_space(bmap));
|
||
n_out = isl_basic_map_dim(bmap, isl_dim_out);
|
||
|
||
for (i = 0; i < n_out; ++i) {
|
||
isl_aff *aff;
|
||
|
||
aff = extract_isl_aff_from_basic_map(bmap, i, ma);
|
||
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
}
|
||
|
||
isl_basic_map_free(bmap);
|
||
|
||
return ma;
|
||
}
|
||
|
||
/* Given a basic set where each set dimension is defined
|
||
* in terms of the parameters using an equality,
|
||
* extract an isl_multi_aff that expresses the set dimensions in terms
|
||
* of the parameters.
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_from_basic_set_equalities(
|
||
__isl_take isl_basic_set *bset)
|
||
{
|
||
return extract_isl_multi_aff_from_basic_map(bset);
|
||
}
|
||
|
||
/* Create an isl_pw_multi_aff that is equivalent to
|
||
* isl_map_intersect_domain(isl_map_from_basic_map(bmap), domain).
|
||
* The given basic map is such that each output dimension is defined
|
||
* in terms of the parameters and input dimensions using an equality.
|
||
*
|
||
* Since some applications expect the result of isl_pw_multi_aff_from_map
|
||
* to only contain integer affine expressions, we compute the floor
|
||
* of the expression before returning.
|
||
*
|
||
* Remove all constraints involving local variables without
|
||
* an explicit representation (resulting in the removal of those
|
||
* local variables) prior to the actual extraction to ensure
|
||
* that the local spaces in which the resulting affine expressions
|
||
* are created do not contain any unknown local variables.
|
||
* Removing such constraints is safe because constraints involving
|
||
* unknown local variables are not used to determine whether
|
||
* a basic map is obviously single-valued.
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *plain_pw_multi_aff_from_map(
|
||
__isl_take isl_set *domain, __isl_take isl_basic_map *bmap)
|
||
{
|
||
isl_multi_aff *ma;
|
||
|
||
bmap = isl_basic_map_drop_constraint_involving_unknown_divs(bmap);
|
||
ma = extract_isl_multi_aff_from_basic_map(bmap);
|
||
ma = isl_multi_aff_floor(ma);
|
||
return isl_pw_multi_aff_alloc(domain, ma);
|
||
}
|
||
|
||
/* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
|
||
* This obviously only works if the input "map" is single-valued.
|
||
* If so, we compute the lexicographic minimum of the image in the form
|
||
* of an isl_pw_multi_aff. Since the image is unique, it is equal
|
||
* to its lexicographic minimum.
|
||
* If the input is not single-valued, we produce an error.
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_base(
|
||
__isl_take isl_map *map)
|
||
{
|
||
int i;
|
||
int sv;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
sv = isl_map_is_single_valued(map);
|
||
if (sv < 0)
|
||
goto error;
|
||
if (!sv)
|
||
isl_die(isl_map_get_ctx(map), isl_error_invalid,
|
||
"map is not single-valued", goto error);
|
||
map = isl_map_make_disjoint(map);
|
||
if (!map)
|
||
return NULL;
|
||
|
||
pma = isl_pw_multi_aff_empty(isl_map_get_space(map));
|
||
|
||
for (i = 0; i < map->n; ++i) {
|
||
isl_pw_multi_aff *pma_i;
|
||
isl_basic_map *bmap;
|
||
bmap = isl_basic_map_copy(map->p[i]);
|
||
pma_i = isl_basic_map_lexmin_pw_multi_aff(bmap);
|
||
pma = isl_pw_multi_aff_add_disjoint(pma, pma_i);
|
||
}
|
||
|
||
isl_map_free(map);
|
||
return pma;
|
||
error:
|
||
isl_map_free(map);
|
||
return NULL;
|
||
}
|
||
|
||
/* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map,
|
||
* taking into account that the output dimension at position "d"
|
||
* can be represented as
|
||
*
|
||
* x = floor((e(...) + c1) / m)
|
||
*
|
||
* given that constraint "i" is of the form
|
||
*
|
||
* e(...) + c1 - m x >= 0
|
||
*
|
||
*
|
||
* Let "map" be of the form
|
||
*
|
||
* A -> B
|
||
*
|
||
* We construct a mapping
|
||
*
|
||
* A -> [A -> x = floor(...)]
|
||
*
|
||
* apply that to the map, obtaining
|
||
*
|
||
* [A -> x = floor(...)] -> B
|
||
*
|
||
* and equate dimension "d" to x.
|
||
* We then compute a isl_pw_multi_aff representation of the resulting map
|
||
* and plug in the mapping above.
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_div(
|
||
__isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_space *space;
|
||
isl_local_space *ls;
|
||
isl_multi_aff *ma;
|
||
isl_aff *aff;
|
||
isl_vec *v;
|
||
isl_map *insert;
|
||
int offset;
|
||
int n;
|
||
int n_in;
|
||
isl_pw_multi_aff *pma;
|
||
int is_set;
|
||
|
||
is_set = isl_map_is_set(map);
|
||
|
||
offset = isl_basic_map_offset(hull, isl_dim_out);
|
||
ctx = isl_map_get_ctx(map);
|
||
space = isl_space_domain(isl_map_get_space(map));
|
||
n_in = isl_space_dim(space, isl_dim_set);
|
||
n = isl_space_dim(space, isl_dim_all);
|
||
|
||
v = isl_vec_alloc(ctx, 1 + 1 + n);
|
||
if (v) {
|
||
isl_int_neg(v->el[0], hull->ineq[i][offset + d]);
|
||
isl_seq_cpy(v->el + 1, hull->ineq[i], 1 + n);
|
||
}
|
||
isl_basic_map_free(hull);
|
||
|
||
ls = isl_local_space_from_space(isl_space_copy(space));
|
||
aff = isl_aff_alloc_vec(ls, v);
|
||
aff = isl_aff_floor(aff);
|
||
if (is_set) {
|
||
isl_space_free(space);
|
||
ma = isl_multi_aff_from_aff(aff);
|
||
} else {
|
||
ma = isl_multi_aff_identity(isl_space_map_from_set(space));
|
||
ma = isl_multi_aff_range_product(ma,
|
||
isl_multi_aff_from_aff(aff));
|
||
}
|
||
|
||
insert = isl_map_from_multi_aff(isl_multi_aff_copy(ma));
|
||
map = isl_map_apply_domain(map, insert);
|
||
map = isl_map_equate(map, isl_dim_in, n_in, isl_dim_out, d);
|
||
pma = isl_pw_multi_aff_from_map(map);
|
||
pma = isl_pw_multi_aff_pullback_multi_aff(pma, ma);
|
||
|
||
return pma;
|
||
}
|
||
|
||
/* Is constraint "c" of the form
|
||
*
|
||
* e(...) + c1 - m x >= 0
|
||
*
|
||
* or
|
||
*
|
||
* -e(...) + c2 + m x >= 0
|
||
*
|
||
* where m > 1 and e only depends on parameters and input dimemnsions?
|
||
*
|
||
* "offset" is the offset of the output dimensions
|
||
* "pos" is the position of output dimension x.
|
||
*/
|
||
static int is_potential_div_constraint(isl_int *c, int offset, int d, int total)
|
||
{
|
||
if (isl_int_is_zero(c[offset + d]))
|
||
return 0;
|
||
if (isl_int_is_one(c[offset + d]))
|
||
return 0;
|
||
if (isl_int_is_negone(c[offset + d]))
|
||
return 0;
|
||
if (isl_seq_first_non_zero(c + offset, d) != -1)
|
||
return 0;
|
||
if (isl_seq_first_non_zero(c + offset + d + 1,
|
||
total - (offset + d + 1)) != -1)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
|
||
*
|
||
* As a special case, we first check if there is any pair of constraints,
|
||
* shared by all the basic maps in "map" that force a given dimension
|
||
* to be equal to the floor of some affine combination of the input dimensions.
|
||
*
|
||
* In particular, if we can find two constraints
|
||
*
|
||
* e(...) + c1 - m x >= 0 i.e., m x <= e(...) + c1
|
||
*
|
||
* and
|
||
*
|
||
* -e(...) + c2 + m x >= 0 i.e., m x >= e(...) - c2
|
||
*
|
||
* where m > 1 and e only depends on parameters and input dimemnsions,
|
||
* and such that
|
||
*
|
||
* c1 + c2 < m i.e., -c2 >= c1 - (m - 1)
|
||
*
|
||
* then we know that we can take
|
||
*
|
||
* x = floor((e(...) + c1) / m)
|
||
*
|
||
* without having to perform any computation.
|
||
*
|
||
* Note that we know that
|
||
*
|
||
* c1 + c2 >= 1
|
||
*
|
||
* If c1 + c2 were 0, then we would have detected an equality during
|
||
* simplification. If c1 + c2 were negative, then we would have detected
|
||
* a contradiction.
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_check_div(
|
||
__isl_take isl_map *map)
|
||
{
|
||
int d, dim;
|
||
int i, j, n;
|
||
int offset, total;
|
||
isl_int sum;
|
||
isl_basic_map *hull;
|
||
|
||
hull = isl_map_unshifted_simple_hull(isl_map_copy(map));
|
||
if (!hull)
|
||
goto error;
|
||
|
||
isl_int_init(sum);
|
||
dim = isl_map_dim(map, isl_dim_out);
|
||
offset = isl_basic_map_offset(hull, isl_dim_out);
|
||
total = 1 + isl_basic_map_total_dim(hull);
|
||
n = hull->n_ineq;
|
||
for (d = 0; d < dim; ++d) {
|
||
for (i = 0; i < n; ++i) {
|
||
if (!is_potential_div_constraint(hull->ineq[i],
|
||
offset, d, total))
|
||
continue;
|
||
for (j = i + 1; j < n; ++j) {
|
||
if (!isl_seq_is_neg(hull->ineq[i] + 1,
|
||
hull->ineq[j] + 1, total - 1))
|
||
continue;
|
||
isl_int_add(sum, hull->ineq[i][0],
|
||
hull->ineq[j][0]);
|
||
if (isl_int_abs_lt(sum,
|
||
hull->ineq[i][offset + d]))
|
||
break;
|
||
|
||
}
|
||
if (j >= n)
|
||
continue;
|
||
isl_int_clear(sum);
|
||
if (isl_int_is_pos(hull->ineq[j][offset + d]))
|
||
j = i;
|
||
return pw_multi_aff_from_map_div(map, hull, d, j);
|
||
}
|
||
}
|
||
isl_int_clear(sum);
|
||
isl_basic_map_free(hull);
|
||
return pw_multi_aff_from_map_base(map);
|
||
error:
|
||
isl_map_free(map);
|
||
isl_basic_map_free(hull);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given an affine expression
|
||
*
|
||
* [A -> B] -> f(A,B)
|
||
*
|
||
* construct an isl_multi_aff
|
||
*
|
||
* [A -> B] -> B'
|
||
*
|
||
* such that dimension "d" in B' is set to "aff" and the remaining
|
||
* dimensions are set equal to the corresponding dimensions in B.
|
||
* "n_in" is the dimension of the space A.
|
||
* "n_out" is the dimension of the space B.
|
||
*
|
||
* If "is_set" is set, then the affine expression is of the form
|
||
*
|
||
* [B] -> f(B)
|
||
*
|
||
* and we construct an isl_multi_aff
|
||
*
|
||
* B -> B'
|
||
*/
|
||
static __isl_give isl_multi_aff *range_map(__isl_take isl_aff *aff, int d,
|
||
unsigned n_in, unsigned n_out, int is_set)
|
||
{
|
||
int i;
|
||
isl_multi_aff *ma;
|
||
isl_space *space, *space2;
|
||
isl_local_space *ls;
|
||
|
||
space = isl_aff_get_domain_space(aff);
|
||
ls = isl_local_space_from_space(isl_space_copy(space));
|
||
space2 = isl_space_copy(space);
|
||
if (!is_set)
|
||
space2 = isl_space_range(isl_space_unwrap(space2));
|
||
space = isl_space_map_from_domain_and_range(space, space2);
|
||
ma = isl_multi_aff_alloc(space);
|
||
ma = isl_multi_aff_set_aff(ma, d, aff);
|
||
|
||
for (i = 0; i < n_out; ++i) {
|
||
if (i == d)
|
||
continue;
|
||
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
|
||
isl_dim_set, n_in + i);
|
||
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
}
|
||
|
||
isl_local_space_free(ls);
|
||
|
||
return ma;
|
||
}
|
||
|
||
/* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map,
|
||
* taking into account that the dimension at position "d" can be written as
|
||
*
|
||
* x = m a + f(..) (1)
|
||
*
|
||
* where m is equal to "gcd".
|
||
* "i" is the index of the equality in "hull" that defines f(..).
|
||
* In particular, the equality is of the form
|
||
*
|
||
* f(..) - x + m g(existentials) = 0
|
||
*
|
||
* or
|
||
*
|
||
* -f(..) + x + m g(existentials) = 0
|
||
*
|
||
* We basically plug (1) into "map", resulting in a map with "a"
|
||
* in the range instead of "x". The corresponding isl_pw_multi_aff
|
||
* defining "a" is then plugged back into (1) to obtain a definition for "x".
|
||
*
|
||
* Specifically, given the input map
|
||
*
|
||
* A -> B
|
||
*
|
||
* We first wrap it into a set
|
||
*
|
||
* [A -> B]
|
||
*
|
||
* and define (1) on top of the corresponding space, resulting in "aff".
|
||
* We use this to create an isl_multi_aff that maps the output position "d"
|
||
* from "a" to "x", leaving all other (intput and output) dimensions unchanged.
|
||
* We plug this into the wrapped map, unwrap the result and compute the
|
||
* corresponding isl_pw_multi_aff.
|
||
* The result is an expression
|
||
*
|
||
* A -> T(A)
|
||
*
|
||
* We adjust that to
|
||
*
|
||
* A -> [A -> T(A)]
|
||
*
|
||
* so that we can plug that into "aff", after extending the latter to
|
||
* a mapping
|
||
*
|
||
* [A -> B] -> B'
|
||
*
|
||
*
|
||
* If "map" is actually a set, then there is no "A" space, meaning
|
||
* that we do not need to perform any wrapping, and that the result
|
||
* of the recursive call is of the form
|
||
*
|
||
* [T]
|
||
*
|
||
* which is plugged into a mapping of the form
|
||
*
|
||
* B -> B'
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_stride(
|
||
__isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i,
|
||
isl_int gcd)
|
||
{
|
||
isl_set *set;
|
||
isl_space *space;
|
||
isl_local_space *ls;
|
||
isl_aff *aff;
|
||
isl_multi_aff *ma;
|
||
isl_pw_multi_aff *pma, *id;
|
||
unsigned n_in;
|
||
unsigned o_out;
|
||
unsigned n_out;
|
||
int is_set;
|
||
|
||
is_set = isl_map_is_set(map);
|
||
|
||
n_in = isl_basic_map_dim(hull, isl_dim_in);
|
||
n_out = isl_basic_map_dim(hull, isl_dim_out);
|
||
o_out = isl_basic_map_offset(hull, isl_dim_out);
|
||
|
||
if (is_set)
|
||
set = map;
|
||
else
|
||
set = isl_map_wrap(map);
|
||
space = isl_space_map_from_set(isl_set_get_space(set));
|
||
ma = isl_multi_aff_identity(space);
|
||
ls = isl_local_space_from_space(isl_set_get_space(set));
|
||
aff = isl_aff_alloc(ls);
|
||
if (aff) {
|
||
isl_int_set_si(aff->v->el[0], 1);
|
||
if (isl_int_is_one(hull->eq[i][o_out + d]))
|
||
isl_seq_neg(aff->v->el + 1, hull->eq[i],
|
||
aff->v->size - 1);
|
||
else
|
||
isl_seq_cpy(aff->v->el + 1, hull->eq[i],
|
||
aff->v->size - 1);
|
||
isl_int_set(aff->v->el[1 + o_out + d], gcd);
|
||
}
|
||
ma = isl_multi_aff_set_aff(ma, n_in + d, isl_aff_copy(aff));
|
||
set = isl_set_preimage_multi_aff(set, ma);
|
||
|
||
ma = range_map(aff, d, n_in, n_out, is_set);
|
||
|
||
if (is_set)
|
||
map = set;
|
||
else
|
||
map = isl_set_unwrap(set);
|
||
pma = isl_pw_multi_aff_from_map(map);
|
||
|
||
if (!is_set) {
|
||
space = isl_pw_multi_aff_get_domain_space(pma);
|
||
space = isl_space_map_from_set(space);
|
||
id = isl_pw_multi_aff_identity(space);
|
||
pma = isl_pw_multi_aff_range_product(id, pma);
|
||
}
|
||
id = isl_pw_multi_aff_from_multi_aff(ma);
|
||
pma = isl_pw_multi_aff_pullback_pw_multi_aff(id, pma);
|
||
|
||
isl_basic_map_free(hull);
|
||
return pma;
|
||
}
|
||
|
||
/* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map.
|
||
*
|
||
* As a special case, we first check if all output dimensions are uniquely
|
||
* defined in terms of the parameters and input dimensions over the entire
|
||
* domain. If so, we extract the desired isl_pw_multi_aff directly
|
||
* from the affine hull of "map" and its domain.
|
||
*
|
||
* Otherwise, we check if any of the output dimensions is "strided".
|
||
* That is, we check if can be written as
|
||
*
|
||
* x = m a + f(..)
|
||
*
|
||
* with m greater than 1, a some combination of existentially quantified
|
||
* variables and f an expression in the parameters and input dimensions.
|
||
* If so, we remove the stride in pw_multi_aff_from_map_stride.
|
||
*
|
||
* Otherwise, we continue with pw_multi_aff_from_map_check_div for a further
|
||
* special case.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(__isl_take isl_map *map)
|
||
{
|
||
int i, j;
|
||
isl_bool sv;
|
||
isl_basic_map *hull;
|
||
unsigned n_out;
|
||
unsigned o_out;
|
||
unsigned n_div;
|
||
unsigned o_div;
|
||
isl_int gcd;
|
||
|
||
if (!map)
|
||
return NULL;
|
||
|
||
map = isl_map_detect_equalities(map);
|
||
hull = isl_map_unshifted_simple_hull(isl_map_copy(map));
|
||
sv = isl_basic_map_plain_is_single_valued(hull);
|
||
if (sv >= 0 && sv)
|
||
return plain_pw_multi_aff_from_map(isl_map_domain(map), hull);
|
||
if (sv < 0)
|
||
hull = isl_basic_map_free(hull);
|
||
if (!hull)
|
||
goto error;
|
||
|
||
n_div = isl_basic_map_dim(hull, isl_dim_div);
|
||
o_div = isl_basic_map_offset(hull, isl_dim_div);
|
||
|
||
if (n_div == 0) {
|
||
isl_basic_map_free(hull);
|
||
return pw_multi_aff_from_map_check_div(map);
|
||
}
|
||
|
||
isl_int_init(gcd);
|
||
|
||
n_out = isl_basic_map_dim(hull, isl_dim_out);
|
||
o_out = isl_basic_map_offset(hull, isl_dim_out);
|
||
|
||
for (i = 0; i < n_out; ++i) {
|
||
for (j = 0; j < hull->n_eq; ++j) {
|
||
isl_int *eq = hull->eq[j];
|
||
isl_pw_multi_aff *res;
|
||
|
||
if (!isl_int_is_one(eq[o_out + i]) &&
|
||
!isl_int_is_negone(eq[o_out + i]))
|
||
continue;
|
||
if (isl_seq_first_non_zero(eq + o_out, i) != -1)
|
||
continue;
|
||
if (isl_seq_first_non_zero(eq + o_out + i + 1,
|
||
n_out - (i + 1)) != -1)
|
||
continue;
|
||
isl_seq_gcd(eq + o_div, n_div, &gcd);
|
||
if (isl_int_is_zero(gcd))
|
||
continue;
|
||
if (isl_int_is_one(gcd))
|
||
continue;
|
||
|
||
res = pw_multi_aff_from_map_stride(map, hull,
|
||
i, j, gcd);
|
||
isl_int_clear(gcd);
|
||
return res;
|
||
}
|
||
}
|
||
|
||
isl_int_clear(gcd);
|
||
isl_basic_map_free(hull);
|
||
return pw_multi_aff_from_map_check_div(map);
|
||
error:
|
||
isl_map_free(map);
|
||
return NULL;
|
||
}
|
||
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(__isl_take isl_set *set)
|
||
{
|
||
return isl_pw_multi_aff_from_map(set);
|
||
}
|
||
|
||
/* Convert "map" into an isl_pw_multi_aff (if possible) and
|
||
* add it to *user.
|
||
*/
|
||
static isl_stat pw_multi_aff_from_map(__isl_take isl_map *map, void *user)
|
||
{
|
||
isl_union_pw_multi_aff **upma = user;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
pma = isl_pw_multi_aff_from_map(map);
|
||
*upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
|
||
|
||
return *upma ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Create an isl_union_pw_multi_aff with the given isl_aff on a universe
|
||
* domain.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_aff(
|
||
__isl_take isl_aff *aff)
|
||
{
|
||
isl_multi_aff *ma;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
ma = isl_multi_aff_from_aff(aff);
|
||
pma = isl_pw_multi_aff_from_multi_aff(ma);
|
||
return isl_union_pw_multi_aff_from_pw_multi_aff(pma);
|
||
}
|
||
|
||
/* Try and create an isl_union_pw_multi_aff that is equivalent
|
||
* to the given isl_union_map.
|
||
* The isl_union_map is required to be single-valued in each space.
|
||
* Otherwise, an error is produced.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_map(
|
||
__isl_take isl_union_map *umap)
|
||
{
|
||
isl_space *space;
|
||
isl_union_pw_multi_aff *upma;
|
||
|
||
space = isl_union_map_get_space(umap);
|
||
upma = isl_union_pw_multi_aff_empty(space);
|
||
if (isl_union_map_foreach_map(umap, &pw_multi_aff_from_map, &upma) < 0)
|
||
upma = isl_union_pw_multi_aff_free(upma);
|
||
isl_union_map_free(umap);
|
||
|
||
return upma;
|
||
}
|
||
|
||
/* Try and create an isl_union_pw_multi_aff that is equivalent
|
||
* to the given isl_union_set.
|
||
* The isl_union_set is required to be a singleton in each space.
|
||
* Otherwise, an error is produced.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_set(
|
||
__isl_take isl_union_set *uset)
|
||
{
|
||
return isl_union_pw_multi_aff_from_union_map(uset);
|
||
}
|
||
|
||
/* Return the piecewise affine expression "set ? 1 : 0".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_set_indicator_function(__isl_take isl_set *set)
|
||
{
|
||
isl_pw_aff *pa;
|
||
isl_space *space = isl_set_get_space(set);
|
||
isl_local_space *ls = isl_local_space_from_space(space);
|
||
isl_aff *zero = isl_aff_zero_on_domain(isl_local_space_copy(ls));
|
||
isl_aff *one = isl_aff_zero_on_domain(ls);
|
||
|
||
one = isl_aff_add_constant_si(one, 1);
|
||
pa = isl_pw_aff_alloc(isl_set_copy(set), one);
|
||
set = isl_set_complement(set);
|
||
pa = isl_pw_aff_add_disjoint(pa, isl_pw_aff_alloc(set, zero));
|
||
|
||
return pa;
|
||
}
|
||
|
||
/* Plug in "subs" for dimension "type", "pos" of "aff".
|
||
*
|
||
* Let i be the dimension to replace and let "subs" be of the form
|
||
*
|
||
* f/d
|
||
*
|
||
* and "aff" of the form
|
||
*
|
||
* (a i + g)/m
|
||
*
|
||
* The result is
|
||
*
|
||
* (a f + d g')/(m d)
|
||
*
|
||
* where g' is the result of plugging in "subs" in each of the integer
|
||
* divisions in g.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_substitute(__isl_take isl_aff *aff,
|
||
enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_int v;
|
||
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff || !subs)
|
||
return isl_aff_free(aff);
|
||
|
||
ctx = isl_aff_get_ctx(aff);
|
||
if (!isl_space_is_equal(aff->ls->dim, subs->ls->dim))
|
||
isl_die(ctx, isl_error_invalid,
|
||
"spaces don't match", return isl_aff_free(aff));
|
||
if (isl_local_space_dim(subs->ls, isl_dim_div) != 0)
|
||
isl_die(ctx, isl_error_unsupported,
|
||
"cannot handle divs yet", return isl_aff_free(aff));
|
||
|
||
aff->ls = isl_local_space_substitute(aff->ls, type, pos, subs);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
aff->v = isl_vec_cow(aff->v);
|
||
if (!aff->v)
|
||
return isl_aff_free(aff);
|
||
|
||
pos += isl_local_space_offset(aff->ls, type);
|
||
|
||
isl_int_init(v);
|
||
isl_seq_substitute(aff->v->el, pos, subs->v->el,
|
||
aff->v->size, subs->v->size, v);
|
||
isl_int_clear(v);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Plug in "subs" for dimension "type", "pos" in each of the affine
|
||
* expressions in "maff".
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_substitute(
|
||
__isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos,
|
||
__isl_keep isl_aff *subs)
|
||
{
|
||
int i;
|
||
|
||
maff = isl_multi_aff_cow(maff);
|
||
if (!maff || !subs)
|
||
return isl_multi_aff_free(maff);
|
||
|
||
if (type == isl_dim_in)
|
||
type = isl_dim_set;
|
||
|
||
for (i = 0; i < maff->n; ++i) {
|
||
maff->p[i] = isl_aff_substitute(maff->p[i], type, pos, subs);
|
||
if (!maff->p[i])
|
||
return isl_multi_aff_free(maff);
|
||
}
|
||
|
||
return maff;
|
||
}
|
||
|
||
/* Plug in "subs" for dimension "type", "pos" of "pma".
|
||
*
|
||
* pma is of the form
|
||
*
|
||
* A_i(v) -> M_i(v)
|
||
*
|
||
* while subs is of the form
|
||
*
|
||
* v' = B_j(v) -> S_j
|
||
*
|
||
* Each pair i,j such that C_ij = A_i \cap B_i is non-empty
|
||
* has a contribution in the result, in particular
|
||
*
|
||
* C_ij(S_j) -> M_i(S_j)
|
||
*
|
||
* Note that plugging in S_j in C_ij may also result in an empty set
|
||
* and this contribution should simply be discarded.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_substitute(
|
||
__isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos,
|
||
__isl_keep isl_pw_aff *subs)
|
||
{
|
||
int i, j, n;
|
||
isl_pw_multi_aff *res;
|
||
|
||
if (!pma || !subs)
|
||
return isl_pw_multi_aff_free(pma);
|
||
|
||
n = pma->n * subs->n;
|
||
res = isl_pw_multi_aff_alloc_size(isl_space_copy(pma->dim), n);
|
||
|
||
for (i = 0; i < pma->n; ++i) {
|
||
for (j = 0; j < subs->n; ++j) {
|
||
isl_set *common;
|
||
isl_multi_aff *res_ij;
|
||
int empty;
|
||
|
||
common = isl_set_intersect(
|
||
isl_set_copy(pma->p[i].set),
|
||
isl_set_copy(subs->p[j].set));
|
||
common = isl_set_substitute(common,
|
||
type, pos, subs->p[j].aff);
|
||
empty = isl_set_plain_is_empty(common);
|
||
if (empty < 0 || empty) {
|
||
isl_set_free(common);
|
||
if (empty < 0)
|
||
goto error;
|
||
continue;
|
||
}
|
||
|
||
res_ij = isl_multi_aff_substitute(
|
||
isl_multi_aff_copy(pma->p[i].maff),
|
||
type, pos, subs->p[j].aff);
|
||
|
||
res = isl_pw_multi_aff_add_piece(res, common, res_ij);
|
||
}
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
return res;
|
||
error:
|
||
isl_pw_multi_aff_free(pma);
|
||
isl_pw_multi_aff_free(res);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the preimage of a range of dimensions in the affine expression "src"
|
||
* under "ma" and put the result in "dst". The number of dimensions in "src"
|
||
* that precede the range is given by "n_before". The number of dimensions
|
||
* in the range is given by the number of output dimensions of "ma".
|
||
* The number of dimensions that follow the range is given by "n_after".
|
||
* If "has_denom" is set (to one),
|
||
* then "src" and "dst" have an extra initial denominator.
|
||
* "n_div_ma" is the number of existentials in "ma"
|
||
* "n_div_bset" is the number of existentials in "src"
|
||
* The resulting "dst" (which is assumed to have been allocated by
|
||
* the caller) contains coefficients for both sets of existentials,
|
||
* first those in "ma" and then those in "src".
|
||
* f, c1, c2 and g are temporary objects that have been initialized
|
||
* by the caller.
|
||
*
|
||
* Let src represent the expression
|
||
*
|
||
* (a(p) + f_u u + b v + f_w w + c(divs))/d
|
||
*
|
||
* and let ma represent the expressions
|
||
*
|
||
* v_i = (r_i(p) + s_i(y) + t_i(divs'))/m_i
|
||
*
|
||
* We start out with the following expression for dst:
|
||
*
|
||
* (a(p) + f_u u + 0 y + f_w w + 0 divs' + c(divs) + f \sum_i b_i v_i)/d
|
||
*
|
||
* with the multiplication factor f initially equal to 1
|
||
* and f \sum_i b_i v_i kept separately.
|
||
* For each x_i that we substitute, we multiply the numerator
|
||
* (and denominator) of dst by c_1 = m_i and add the numerator
|
||
* of the x_i expression multiplied by c_2 = f b_i,
|
||
* after removing the common factors of c_1 and c_2.
|
||
* The multiplication factor f also needs to be multiplied by c_1
|
||
* for the next x_j, j > i.
|
||
*/
|
||
void isl_seq_preimage(isl_int *dst, isl_int *src,
|
||
__isl_keep isl_multi_aff *ma, int n_before, int n_after,
|
||
int n_div_ma, int n_div_bmap,
|
||
isl_int f, isl_int c1, isl_int c2, isl_int g, int has_denom)
|
||
{
|
||
int i;
|
||
int n_param, n_in, n_out;
|
||
int o_dst, o_src;
|
||
|
||
n_param = isl_multi_aff_dim(ma, isl_dim_param);
|
||
n_in = isl_multi_aff_dim(ma, isl_dim_in);
|
||
n_out = isl_multi_aff_dim(ma, isl_dim_out);
|
||
|
||
isl_seq_cpy(dst, src, has_denom + 1 + n_param + n_before);
|
||
o_dst = o_src = has_denom + 1 + n_param + n_before;
|
||
isl_seq_clr(dst + o_dst, n_in);
|
||
o_dst += n_in;
|
||
o_src += n_out;
|
||
isl_seq_cpy(dst + o_dst, src + o_src, n_after);
|
||
o_dst += n_after;
|
||
o_src += n_after;
|
||
isl_seq_clr(dst + o_dst, n_div_ma);
|
||
o_dst += n_div_ma;
|
||
isl_seq_cpy(dst + o_dst, src + o_src, n_div_bmap);
|
||
|
||
isl_int_set_si(f, 1);
|
||
|
||
for (i = 0; i < n_out; ++i) {
|
||
int offset = has_denom + 1 + n_param + n_before + i;
|
||
|
||
if (isl_int_is_zero(src[offset]))
|
||
continue;
|
||
isl_int_set(c1, ma->p[i]->v->el[0]);
|
||
isl_int_mul(c2, f, src[offset]);
|
||
isl_int_gcd(g, c1, c2);
|
||
isl_int_divexact(c1, c1, g);
|
||
isl_int_divexact(c2, c2, g);
|
||
|
||
isl_int_mul(f, f, c1);
|
||
o_dst = has_denom;
|
||
o_src = 1;
|
||
isl_seq_combine(dst + o_dst, c1, dst + o_dst,
|
||
c2, ma->p[i]->v->el + o_src, 1 + n_param);
|
||
o_dst += 1 + n_param;
|
||
o_src += 1 + n_param;
|
||
isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_before);
|
||
o_dst += n_before;
|
||
isl_seq_combine(dst + o_dst, c1, dst + o_dst,
|
||
c2, ma->p[i]->v->el + o_src, n_in);
|
||
o_dst += n_in;
|
||
o_src += n_in;
|
||
isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_after);
|
||
o_dst += n_after;
|
||
isl_seq_combine(dst + o_dst, c1, dst + o_dst,
|
||
c2, ma->p[i]->v->el + o_src, n_div_ma);
|
||
o_dst += n_div_ma;
|
||
o_src += n_div_ma;
|
||
isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_div_bmap);
|
||
if (has_denom)
|
||
isl_int_mul(dst[0], dst[0], c1);
|
||
}
|
||
}
|
||
|
||
/* Compute the pullback of "aff" by the function represented by "ma".
|
||
* In other words, plug in "ma" in "aff". The result is an affine expression
|
||
* defined over the domain space of "ma".
|
||
*
|
||
* If "aff" is represented by
|
||
*
|
||
* (a(p) + b x + c(divs))/d
|
||
*
|
||
* and ma is represented by
|
||
*
|
||
* x = D(p) + F(y) + G(divs')
|
||
*
|
||
* then the result is
|
||
*
|
||
* (a(p) + b D(p) + b F(y) + b G(divs') + c(divs))/d
|
||
*
|
||
* The divs in the local space of the input are similarly adjusted
|
||
* through a call to isl_local_space_preimage_multi_aff.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_pullback_multi_aff(__isl_take isl_aff *aff,
|
||
__isl_take isl_multi_aff *ma)
|
||
{
|
||
isl_aff *res = NULL;
|
||
isl_local_space *ls;
|
||
int n_div_aff, n_div_ma;
|
||
isl_int f, c1, c2, g;
|
||
|
||
ma = isl_multi_aff_align_divs(ma);
|
||
if (!aff || !ma)
|
||
goto error;
|
||
|
||
n_div_aff = isl_aff_dim(aff, isl_dim_div);
|
||
n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0;
|
||
|
||
ls = isl_aff_get_domain_local_space(aff);
|
||
ls = isl_local_space_preimage_multi_aff(ls, isl_multi_aff_copy(ma));
|
||
res = isl_aff_alloc(ls);
|
||
if (!res)
|
||
goto error;
|
||
|
||
isl_int_init(f);
|
||
isl_int_init(c1);
|
||
isl_int_init(c2);
|
||
isl_int_init(g);
|
||
|
||
isl_seq_preimage(res->v->el, aff->v->el, ma, 0, 0, n_div_ma, n_div_aff,
|
||
f, c1, c2, g, 1);
|
||
|
||
isl_int_clear(f);
|
||
isl_int_clear(c1);
|
||
isl_int_clear(c2);
|
||
isl_int_clear(g);
|
||
|
||
isl_aff_free(aff);
|
||
isl_multi_aff_free(ma);
|
||
res = isl_aff_normalize(res);
|
||
return res;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_multi_aff_free(ma);
|
||
isl_aff_free(res);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "aff1" by the function represented by "aff2".
|
||
* In other words, plug in "aff2" in "aff1". The result is an affine expression
|
||
* defined over the domain space of "aff1".
|
||
*
|
||
* The domain of "aff1" should match the range of "aff2", which means
|
||
* that it should be single-dimensional.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_pullback_aff(__isl_take isl_aff *aff1,
|
||
__isl_take isl_aff *aff2)
|
||
{
|
||
isl_multi_aff *ma;
|
||
|
||
ma = isl_multi_aff_from_aff(aff2);
|
||
return isl_aff_pullback_multi_aff(aff1, ma);
|
||
}
|
||
|
||
/* Compute the pullback of "ma1" by the function represented by "ma2".
|
||
* In other words, plug in "ma2" in "ma1".
|
||
*
|
||
* The parameters of "ma1" and "ma2" are assumed to have been aligned.
|
||
*/
|
||
static __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff_aligned(
|
||
__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)
|
||
{
|
||
int i;
|
||
isl_space *space = NULL;
|
||
|
||
ma2 = isl_multi_aff_align_divs(ma2);
|
||
ma1 = isl_multi_aff_cow(ma1);
|
||
if (!ma1 || !ma2)
|
||
goto error;
|
||
|
||
space = isl_space_join(isl_multi_aff_get_space(ma2),
|
||
isl_multi_aff_get_space(ma1));
|
||
|
||
for (i = 0; i < ma1->n; ++i) {
|
||
ma1->p[i] = isl_aff_pullback_multi_aff(ma1->p[i],
|
||
isl_multi_aff_copy(ma2));
|
||
if (!ma1->p[i])
|
||
goto error;
|
||
}
|
||
|
||
ma1 = isl_multi_aff_reset_space(ma1, space);
|
||
isl_multi_aff_free(ma2);
|
||
return ma1;
|
||
error:
|
||
isl_space_free(space);
|
||
isl_multi_aff_free(ma2);
|
||
isl_multi_aff_free(ma1);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "ma1" by the function represented by "ma2".
|
||
* In other words, plug in "ma2" in "ma1".
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
|
||
__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)
|
||
{
|
||
return isl_multi_aff_align_params_multi_multi_and(ma1, ma2,
|
||
&isl_multi_aff_pullback_multi_aff_aligned);
|
||
}
|
||
|
||
/* Extend the local space of "dst" to include the divs
|
||
* in the local space of "src".
|
||
*
|
||
* If "src" does not have any divs or if the local spaces of "dst" and
|
||
* "src" are the same, then no extension is required.
|
||
*/
|
||
__isl_give isl_aff *isl_aff_align_divs(__isl_take isl_aff *dst,
|
||
__isl_keep isl_aff *src)
|
||
{
|
||
isl_ctx *ctx;
|
||
int src_n_div, dst_n_div;
|
||
int *exp1 = NULL;
|
||
int *exp2 = NULL;
|
||
isl_bool equal;
|
||
isl_mat *div;
|
||
|
||
if (!src || !dst)
|
||
return isl_aff_free(dst);
|
||
|
||
ctx = isl_aff_get_ctx(src);
|
||
equal = isl_local_space_has_equal_space(src->ls, dst->ls);
|
||
if (equal < 0)
|
||
return isl_aff_free(dst);
|
||
if (!equal)
|
||
isl_die(ctx, isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
|
||
src_n_div = isl_local_space_dim(src->ls, isl_dim_div);
|
||
if (src_n_div == 0)
|
||
return dst;
|
||
equal = isl_local_space_is_equal(src->ls, dst->ls);
|
||
if (equal < 0)
|
||
return isl_aff_free(dst);
|
||
if (equal)
|
||
return dst;
|
||
|
||
dst_n_div = isl_local_space_dim(dst->ls, isl_dim_div);
|
||
exp1 = isl_alloc_array(ctx, int, src_n_div);
|
||
exp2 = isl_alloc_array(ctx, int, dst_n_div);
|
||
if (!exp1 || (dst_n_div && !exp2))
|
||
goto error;
|
||
|
||
div = isl_merge_divs(src->ls->div, dst->ls->div, exp1, exp2);
|
||
dst = isl_aff_expand_divs(dst, div, exp2);
|
||
free(exp1);
|
||
free(exp2);
|
||
|
||
return dst;
|
||
error:
|
||
free(exp1);
|
||
free(exp2);
|
||
return isl_aff_free(dst);
|
||
}
|
||
|
||
/* Adjust the local spaces of the affine expressions in "maff"
|
||
* such that they all have the save divs.
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_align_divs(
|
||
__isl_take isl_multi_aff *maff)
|
||
{
|
||
int i;
|
||
|
||
if (!maff)
|
||
return NULL;
|
||
if (maff->n == 0)
|
||
return maff;
|
||
maff = isl_multi_aff_cow(maff);
|
||
if (!maff)
|
||
return NULL;
|
||
|
||
for (i = 1; i < maff->n; ++i)
|
||
maff->p[0] = isl_aff_align_divs(maff->p[0], maff->p[i]);
|
||
for (i = 1; i < maff->n; ++i) {
|
||
maff->p[i] = isl_aff_align_divs(maff->p[i], maff->p[0]);
|
||
if (!maff->p[i])
|
||
return isl_multi_aff_free(maff);
|
||
}
|
||
|
||
return maff;
|
||
}
|
||
|
||
__isl_give isl_aff *isl_aff_lift(__isl_take isl_aff *aff)
|
||
{
|
||
aff = isl_aff_cow(aff);
|
||
if (!aff)
|
||
return NULL;
|
||
|
||
aff->ls = isl_local_space_lift(aff->ls);
|
||
if (!aff->ls)
|
||
return isl_aff_free(aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Lift "maff" to a space with extra dimensions such that the result
|
||
* has no more existentially quantified variables.
|
||
* If "ls" is not NULL, then *ls is assigned the local space that lies
|
||
* at the basis of the lifting applied to "maff".
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_lift(__isl_take isl_multi_aff *maff,
|
||
__isl_give isl_local_space **ls)
|
||
{
|
||
int i;
|
||
isl_space *space;
|
||
unsigned n_div;
|
||
|
||
if (ls)
|
||
*ls = NULL;
|
||
|
||
if (!maff)
|
||
return NULL;
|
||
|
||
if (maff->n == 0) {
|
||
if (ls) {
|
||
isl_space *space = isl_multi_aff_get_domain_space(maff);
|
||
*ls = isl_local_space_from_space(space);
|
||
if (!*ls)
|
||
return isl_multi_aff_free(maff);
|
||
}
|
||
return maff;
|
||
}
|
||
|
||
maff = isl_multi_aff_cow(maff);
|
||
maff = isl_multi_aff_align_divs(maff);
|
||
if (!maff)
|
||
return NULL;
|
||
|
||
n_div = isl_aff_dim(maff->p[0], isl_dim_div);
|
||
space = isl_multi_aff_get_space(maff);
|
||
space = isl_space_lift(isl_space_domain(space), n_div);
|
||
space = isl_space_extend_domain_with_range(space,
|
||
isl_multi_aff_get_space(maff));
|
||
if (!space)
|
||
return isl_multi_aff_free(maff);
|
||
isl_space_free(maff->space);
|
||
maff->space = space;
|
||
|
||
if (ls) {
|
||
*ls = isl_aff_get_domain_local_space(maff->p[0]);
|
||
if (!*ls)
|
||
return isl_multi_aff_free(maff);
|
||
}
|
||
|
||
for (i = 0; i < maff->n; ++i) {
|
||
maff->p[i] = isl_aff_lift(maff->p[i]);
|
||
if (!maff->p[i])
|
||
goto error;
|
||
}
|
||
|
||
return maff;
|
||
error:
|
||
if (ls)
|
||
isl_local_space_free(*ls);
|
||
return isl_multi_aff_free(maff);
|
||
}
|
||
|
||
|
||
/* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
|
||
__isl_keep isl_pw_multi_aff *pma, int pos)
|
||
{
|
||
int i;
|
||
int n_out;
|
||
isl_space *space;
|
||
isl_pw_aff *pa;
|
||
|
||
if (!pma)
|
||
return NULL;
|
||
|
||
n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
|
||
if (pos < 0 || pos >= n_out)
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"index out of bounds", return NULL);
|
||
|
||
space = isl_pw_multi_aff_get_space(pma);
|
||
space = isl_space_drop_dims(space, isl_dim_out,
|
||
pos + 1, n_out - pos - 1);
|
||
space = isl_space_drop_dims(space, isl_dim_out, 0, pos);
|
||
|
||
pa = isl_pw_aff_alloc_size(space, pma->n);
|
||
for (i = 0; i < pma->n; ++i) {
|
||
isl_aff *aff;
|
||
aff = isl_multi_aff_get_aff(pma->p[i].maff, pos);
|
||
pa = isl_pw_aff_add_piece(pa, isl_set_copy(pma->p[i].set), aff);
|
||
}
|
||
|
||
return pa;
|
||
}
|
||
|
||
/* Return an isl_pw_multi_aff with the given "set" as domain and
|
||
* an unnamed zero-dimensional range.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
|
||
__isl_take isl_set *set)
|
||
{
|
||
isl_multi_aff *ma;
|
||
isl_space *space;
|
||
|
||
space = isl_set_get_space(set);
|
||
space = isl_space_from_domain(space);
|
||
ma = isl_multi_aff_zero(space);
|
||
return isl_pw_multi_aff_alloc(set, ma);
|
||
}
|
||
|
||
/* Add an isl_pw_multi_aff with the given "set" as domain and
|
||
* an unnamed zero-dimensional range to *user.
|
||
*/
|
||
static isl_stat add_pw_multi_aff_from_domain(__isl_take isl_set *set,
|
||
void *user)
|
||
{
|
||
isl_union_pw_multi_aff **upma = user;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
pma = isl_pw_multi_aff_from_domain(set);
|
||
*upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Return an isl_union_pw_multi_aff with the given "uset" as domain and
|
||
* an unnamed zero-dimensional range.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_domain(
|
||
__isl_take isl_union_set *uset)
|
||
{
|
||
isl_space *space;
|
||
isl_union_pw_multi_aff *upma;
|
||
|
||
if (!uset)
|
||
return NULL;
|
||
|
||
space = isl_union_set_get_space(uset);
|
||
upma = isl_union_pw_multi_aff_empty(space);
|
||
|
||
if (isl_union_set_foreach_set(uset,
|
||
&add_pw_multi_aff_from_domain, &upma) < 0)
|
||
goto error;
|
||
|
||
isl_union_set_free(uset);
|
||
return upma;
|
||
error:
|
||
isl_union_set_free(uset);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Convert "pma" to an isl_map and add it to *umap.
|
||
*/
|
||
static isl_stat map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma,
|
||
void *user)
|
||
{
|
||
isl_union_map **umap = user;
|
||
isl_map *map;
|
||
|
||
map = isl_map_from_pw_multi_aff(pma);
|
||
*umap = isl_union_map_add_map(*umap, map);
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Construct a union map mapping the domain of the union
|
||
* piecewise multi-affine expression to its range, with each dimension
|
||
* in the range equated to the corresponding affine expression on its cell.
|
||
*/
|
||
__isl_give isl_union_map *isl_union_map_from_union_pw_multi_aff(
|
||
__isl_take isl_union_pw_multi_aff *upma)
|
||
{
|
||
isl_space *space;
|
||
isl_union_map *umap;
|
||
|
||
if (!upma)
|
||
return NULL;
|
||
|
||
space = isl_union_pw_multi_aff_get_space(upma);
|
||
umap = isl_union_map_empty(space);
|
||
|
||
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
|
||
&map_from_pw_multi_aff, &umap) < 0)
|
||
goto error;
|
||
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return umap;
|
||
error:
|
||
isl_union_pw_multi_aff_free(upma);
|
||
isl_union_map_free(umap);
|
||
return NULL;
|
||
}
|
||
|
||
/* Local data for bin_entry and the callback "fn".
|
||
*/
|
||
struct isl_union_pw_multi_aff_bin_data {
|
||
isl_union_pw_multi_aff *upma2;
|
||
isl_union_pw_multi_aff *res;
|
||
isl_pw_multi_aff *pma;
|
||
isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user);
|
||
};
|
||
|
||
/* Given an isl_pw_multi_aff from upma1, store it in data->pma
|
||
* and call data->fn for each isl_pw_multi_aff in data->upma2.
|
||
*/
|
||
static isl_stat bin_entry(__isl_take isl_pw_multi_aff *pma, void *user)
|
||
{
|
||
struct isl_union_pw_multi_aff_bin_data *data = user;
|
||
isl_stat r;
|
||
|
||
data->pma = pma;
|
||
r = isl_union_pw_multi_aff_foreach_pw_multi_aff(data->upma2,
|
||
data->fn, data);
|
||
isl_pw_multi_aff_free(pma);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Call "fn" on each pair of isl_pw_multi_affs in "upma1" and "upma2".
|
||
* The isl_pw_multi_aff from upma1 is stored in data->pma (where data is
|
||
* passed as user field) and the isl_pw_multi_aff from upma2 is available
|
||
* as *entry. The callback should adjust data->res if desired.
|
||
*/
|
||
static __isl_give isl_union_pw_multi_aff *bin_op(
|
||
__isl_take isl_union_pw_multi_aff *upma1,
|
||
__isl_take isl_union_pw_multi_aff *upma2,
|
||
isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user))
|
||
{
|
||
isl_space *space;
|
||
struct isl_union_pw_multi_aff_bin_data data = { NULL, NULL, NULL, fn };
|
||
|
||
space = isl_union_pw_multi_aff_get_space(upma2);
|
||
upma1 = isl_union_pw_multi_aff_align_params(upma1, space);
|
||
space = isl_union_pw_multi_aff_get_space(upma1);
|
||
upma2 = isl_union_pw_multi_aff_align_params(upma2, space);
|
||
|
||
if (!upma1 || !upma2)
|
||
goto error;
|
||
|
||
data.upma2 = upma2;
|
||
data.res = isl_union_pw_multi_aff_alloc_same_size(upma1);
|
||
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma1,
|
||
&bin_entry, &data) < 0)
|
||
goto error;
|
||
|
||
isl_union_pw_multi_aff_free(upma1);
|
||
isl_union_pw_multi_aff_free(upma2);
|
||
return data.res;
|
||
error:
|
||
isl_union_pw_multi_aff_free(upma1);
|
||
isl_union_pw_multi_aff_free(upma2);
|
||
isl_union_pw_multi_aff_free(data.res);
|
||
return NULL;
|
||
}
|
||
|
||
/* Given two aligned isl_pw_multi_affs A -> B and C -> D,
|
||
* construct an isl_pw_multi_aff (A * C) -> [B -> D].
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_range_product(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
isl_space *space;
|
||
|
||
space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1),
|
||
isl_pw_multi_aff_get_space(pma2));
|
||
return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space,
|
||
&isl_multi_aff_range_product);
|
||
}
|
||
|
||
/* Given two isl_pw_multi_affs A -> B and C -> D,
|
||
* construct an isl_pw_multi_aff (A * C) -> [B -> D].
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_product(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_range_product);
|
||
}
|
||
|
||
/* Given two aligned isl_pw_multi_affs A -> B and C -> D,
|
||
* construct an isl_pw_multi_aff (A * C) -> (B, D).
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_flat_range_product(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
isl_space *space;
|
||
|
||
space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1),
|
||
isl_pw_multi_aff_get_space(pma2));
|
||
space = isl_space_flatten_range(space);
|
||
return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space,
|
||
&isl_multi_aff_flat_range_product);
|
||
}
|
||
|
||
/* Given two isl_pw_multi_affs A -> B and C -> D,
|
||
* construct an isl_pw_multi_aff (A * C) -> (B, D).
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_flat_range_product(
|
||
__isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2)
|
||
{
|
||
return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2,
|
||
&pw_multi_aff_flat_range_product);
|
||
}
|
||
|
||
/* If data->pma and "pma2" have the same domain space, then compute
|
||
* their flat range product and the result to data->res.
|
||
*/
|
||
static isl_stat flat_range_product_entry(__isl_take isl_pw_multi_aff *pma2,
|
||
void *user)
|
||
{
|
||
struct isl_union_pw_multi_aff_bin_data *data = user;
|
||
|
||
if (!isl_space_tuple_is_equal(data->pma->dim, isl_dim_in,
|
||
pma2->dim, isl_dim_in)) {
|
||
isl_pw_multi_aff_free(pma2);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
pma2 = isl_pw_multi_aff_flat_range_product(
|
||
isl_pw_multi_aff_copy(data->pma), pma2);
|
||
|
||
data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2);
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Given two isl_union_pw_multi_affs A -> B and C -> D,
|
||
* construct an isl_union_pw_multi_aff (A * C) -> (B, D).
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_flat_range_product(
|
||
__isl_take isl_union_pw_multi_aff *upma1,
|
||
__isl_take isl_union_pw_multi_aff *upma2)
|
||
{
|
||
return bin_op(upma1, upma2, &flat_range_product_entry);
|
||
}
|
||
|
||
/* Replace the affine expressions at position "pos" in "pma" by "pa".
|
||
* The parameters are assumed to have been aligned.
|
||
*
|
||
* The implementation essentially performs an isl_pw_*_on_shared_domain,
|
||
* except that it works on two different isl_pw_* types.
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *pw_multi_aff_set_pw_aff(
|
||
__isl_take isl_pw_multi_aff *pma, unsigned pos,
|
||
__isl_take isl_pw_aff *pa)
|
||
{
|
||
int i, j, n;
|
||
isl_pw_multi_aff *res = NULL;
|
||
|
||
if (!pma || !pa)
|
||
goto error;
|
||
|
||
if (!isl_space_tuple_is_equal(pma->dim, isl_dim_in,
|
||
pa->dim, isl_dim_in))
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"domains don't match", goto error);
|
||
if (pos >= isl_pw_multi_aff_dim(pma, isl_dim_out))
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"index out of bounds", goto error);
|
||
|
||
n = pma->n * pa->n;
|
||
res = isl_pw_multi_aff_alloc_size(isl_pw_multi_aff_get_space(pma), n);
|
||
|
||
for (i = 0; i < pma->n; ++i) {
|
||
for (j = 0; j < pa->n; ++j) {
|
||
isl_set *common;
|
||
isl_multi_aff *res_ij;
|
||
int empty;
|
||
|
||
common = isl_set_intersect(isl_set_copy(pma->p[i].set),
|
||
isl_set_copy(pa->p[j].set));
|
||
empty = isl_set_plain_is_empty(common);
|
||
if (empty < 0 || empty) {
|
||
isl_set_free(common);
|
||
if (empty < 0)
|
||
goto error;
|
||
continue;
|
||
}
|
||
|
||
res_ij = isl_multi_aff_set_aff(
|
||
isl_multi_aff_copy(pma->p[i].maff), pos,
|
||
isl_aff_copy(pa->p[j].aff));
|
||
res_ij = isl_multi_aff_gist(res_ij,
|
||
isl_set_copy(common));
|
||
|
||
res = isl_pw_multi_aff_add_piece(res, common, res_ij);
|
||
}
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
isl_pw_aff_free(pa);
|
||
return res;
|
||
error:
|
||
isl_pw_multi_aff_free(pma);
|
||
isl_pw_aff_free(pa);
|
||
return isl_pw_multi_aff_free(res);
|
||
}
|
||
|
||
/* Replace the affine expressions at position "pos" in "pma" by "pa".
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
|
||
__isl_take isl_pw_multi_aff *pma, unsigned pos,
|
||
__isl_take isl_pw_aff *pa)
|
||
{
|
||
if (!pma || !pa)
|
||
goto error;
|
||
if (isl_space_match(pma->dim, isl_dim_param, pa->dim, isl_dim_param))
|
||
return pw_multi_aff_set_pw_aff(pma, pos, pa);
|
||
if (!isl_space_has_named_params(pma->dim) ||
|
||
!isl_space_has_named_params(pa->dim))
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"unaligned unnamed parameters", goto error);
|
||
pma = isl_pw_multi_aff_align_params(pma, isl_pw_aff_get_space(pa));
|
||
pa = isl_pw_aff_align_params(pa, isl_pw_multi_aff_get_space(pma));
|
||
return pw_multi_aff_set_pw_aff(pma, pos, pa);
|
||
error:
|
||
isl_pw_multi_aff_free(pma);
|
||
isl_pw_aff_free(pa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Do the parameters of "pa" match those of "space"?
|
||
*/
|
||
int isl_pw_aff_matching_params(__isl_keep isl_pw_aff *pa,
|
||
__isl_keep isl_space *space)
|
||
{
|
||
isl_space *pa_space;
|
||
int match;
|
||
|
||
if (!pa || !space)
|
||
return -1;
|
||
|
||
pa_space = isl_pw_aff_get_space(pa);
|
||
|
||
match = isl_space_match(space, isl_dim_param, pa_space, isl_dim_param);
|
||
|
||
isl_space_free(pa_space);
|
||
return match;
|
||
}
|
||
|
||
/* Check that the domain space of "pa" matches "space".
|
||
*
|
||
* Return 0 on success and -1 on error.
|
||
*/
|
||
int isl_pw_aff_check_match_domain_space(__isl_keep isl_pw_aff *pa,
|
||
__isl_keep isl_space *space)
|
||
{
|
||
isl_space *pa_space;
|
||
int match;
|
||
|
||
if (!pa || !space)
|
||
return -1;
|
||
|
||
pa_space = isl_pw_aff_get_space(pa);
|
||
|
||
match = isl_space_match(space, isl_dim_param, pa_space, isl_dim_param);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
|
||
"parameters don't match", goto error);
|
||
match = isl_space_tuple_is_equal(space, isl_dim_in,
|
||
pa_space, isl_dim_in);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
|
||
"domains don't match", goto error);
|
||
isl_space_free(pa_space);
|
||
return 0;
|
||
error:
|
||
isl_space_free(pa_space);
|
||
return -1;
|
||
}
|
||
|
||
#undef BASE
|
||
#define BASE pw_aff
|
||
#undef DOMBASE
|
||
#define DOMBASE set
|
||
|
||
#include <isl_multi_templ.c>
|
||
#include <isl_multi_apply_set.c>
|
||
#include <isl_multi_coalesce.c>
|
||
#include <isl_multi_gist.c>
|
||
#include <isl_multi_hash.c>
|
||
#include <isl_multi_intersect.c>
|
||
|
||
/* Scale the elements of "pma" by the corresponding elements of "mv".
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_multi_val(
|
||
__isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_val *mv)
|
||
{
|
||
int i;
|
||
|
||
pma = isl_pw_multi_aff_cow(pma);
|
||
if (!pma || !mv)
|
||
goto error;
|
||
if (!isl_space_tuple_is_equal(pma->dim, isl_dim_out,
|
||
mv->space, isl_dim_set))
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
if (!isl_space_match(pma->dim, isl_dim_param,
|
||
mv->space, isl_dim_param)) {
|
||
pma = isl_pw_multi_aff_align_params(pma,
|
||
isl_multi_val_get_space(mv));
|
||
mv = isl_multi_val_align_params(mv,
|
||
isl_pw_multi_aff_get_space(pma));
|
||
if (!pma || !mv)
|
||
goto error;
|
||
}
|
||
|
||
for (i = 0; i < pma->n; ++i) {
|
||
pma->p[i].maff = isl_multi_aff_scale_multi_val(pma->p[i].maff,
|
||
isl_multi_val_copy(mv));
|
||
if (!pma->p[i].maff)
|
||
goto error;
|
||
}
|
||
|
||
isl_multi_val_free(mv);
|
||
return pma;
|
||
error:
|
||
isl_multi_val_free(mv);
|
||
isl_pw_multi_aff_free(pma);
|
||
return NULL;
|
||
}
|
||
|
||
/* This function is called for each entry of an isl_union_pw_multi_aff.
|
||
* If the space of the entry matches that of data->mv,
|
||
* then apply isl_pw_multi_aff_scale_multi_val and return the result.
|
||
* Otherwise, return an empty isl_pw_multi_aff.
|
||
*/
|
||
static __isl_give isl_pw_multi_aff *union_pw_multi_aff_scale_multi_val_entry(
|
||
__isl_take isl_pw_multi_aff *pma, void *user)
|
||
{
|
||
isl_multi_val *mv = user;
|
||
|
||
if (!pma)
|
||
return NULL;
|
||
if (!isl_space_tuple_is_equal(pma->dim, isl_dim_out,
|
||
mv->space, isl_dim_set)) {
|
||
isl_space *space = isl_pw_multi_aff_get_space(pma);
|
||
isl_pw_multi_aff_free(pma);
|
||
return isl_pw_multi_aff_empty(space);
|
||
}
|
||
|
||
return isl_pw_multi_aff_scale_multi_val(pma, isl_multi_val_copy(mv));
|
||
}
|
||
|
||
/* Scale the elements of "upma" by the corresponding elements of "mv",
|
||
* for those entries that match the space of "mv".
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_multi_val(
|
||
__isl_take isl_union_pw_multi_aff *upma, __isl_take isl_multi_val *mv)
|
||
{
|
||
upma = isl_union_pw_multi_aff_align_params(upma,
|
||
isl_multi_val_get_space(mv));
|
||
mv = isl_multi_val_align_params(mv,
|
||
isl_union_pw_multi_aff_get_space(upma));
|
||
if (!upma || !mv)
|
||
goto error;
|
||
|
||
return isl_union_pw_multi_aff_transform(upma,
|
||
&union_pw_multi_aff_scale_multi_val_entry, mv);
|
||
|
||
isl_multi_val_free(mv);
|
||
return upma;
|
||
error:
|
||
isl_multi_val_free(mv);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Construct and return a piecewise multi affine expression
|
||
* in the given space with value zero in each of the output dimensions and
|
||
* a universe domain.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(__isl_take isl_space *space)
|
||
{
|
||
return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space));
|
||
}
|
||
|
||
/* Construct and return a piecewise multi affine expression
|
||
* that is equal to the given piecewise affine expression.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
|
||
__isl_take isl_pw_aff *pa)
|
||
{
|
||
int i;
|
||
isl_space *space;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
if (!pa)
|
||
return NULL;
|
||
|
||
space = isl_pw_aff_get_space(pa);
|
||
pma = isl_pw_multi_aff_alloc_size(space, pa->n);
|
||
|
||
for (i = 0; i < pa->n; ++i) {
|
||
isl_set *set;
|
||
isl_multi_aff *ma;
|
||
|
||
set = isl_set_copy(pa->p[i].set);
|
||
ma = isl_multi_aff_from_aff(isl_aff_copy(pa->p[i].aff));
|
||
pma = isl_pw_multi_aff_add_piece(pma, set, ma);
|
||
}
|
||
|
||
isl_pw_aff_free(pa);
|
||
return pma;
|
||
}
|
||
|
||
/* Construct a set or map mapping the shared (parameter) domain
|
||
* of the piecewise affine expressions to the range of "mpa"
|
||
* with each dimension in the range equated to the
|
||
* corresponding piecewise affine expression.
|
||
*/
|
||
static __isl_give isl_map *map_from_multi_pw_aff(
|
||
__isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
int i;
|
||
isl_space *space;
|
||
isl_map *map;
|
||
|
||
if (!mpa)
|
||
return NULL;
|
||
|
||
if (isl_space_dim(mpa->space, isl_dim_out) != mpa->n)
|
||
isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal,
|
||
"invalid space", goto error);
|
||
|
||
space = isl_multi_pw_aff_get_domain_space(mpa);
|
||
map = isl_map_universe(isl_space_from_domain(space));
|
||
|
||
for (i = 0; i < mpa->n; ++i) {
|
||
isl_pw_aff *pa;
|
||
isl_map *map_i;
|
||
|
||
pa = isl_pw_aff_copy(mpa->p[i]);
|
||
map_i = map_from_pw_aff(pa);
|
||
|
||
map = isl_map_flat_range_product(map, map_i);
|
||
}
|
||
|
||
map = isl_map_reset_space(map, isl_multi_pw_aff_get_space(mpa));
|
||
|
||
isl_multi_pw_aff_free(mpa);
|
||
return map;
|
||
error:
|
||
isl_multi_pw_aff_free(mpa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Construct a map mapping the shared domain
|
||
* of the piecewise affine expressions to the range of "mpa"
|
||
* with each dimension in the range equated to the
|
||
* corresponding piecewise affine expression.
|
||
*/
|
||
__isl_give isl_map *isl_map_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
if (!mpa)
|
||
return NULL;
|
||
if (isl_space_is_set(mpa->space))
|
||
isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal,
|
||
"space of input is not a map", goto error);
|
||
|
||
return map_from_multi_pw_aff(mpa);
|
||
error:
|
||
isl_multi_pw_aff_free(mpa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Construct a set mapping the shared parameter domain
|
||
* of the piecewise affine expressions to the space of "mpa"
|
||
* with each dimension in the range equated to the
|
||
* corresponding piecewise affine expression.
|
||
*/
|
||
__isl_give isl_set *isl_set_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
if (!mpa)
|
||
return NULL;
|
||
if (!isl_space_is_set(mpa->space))
|
||
isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal,
|
||
"space of input is not a set", goto error);
|
||
|
||
return map_from_multi_pw_aff(mpa);
|
||
error:
|
||
isl_multi_pw_aff_free(mpa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Construct and return a piecewise multi affine expression
|
||
* that is equal to the given multi piecewise affine expression
|
||
* on the shared domain of the piecewise affine expressions.
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_pw_aff(
|
||
__isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
int i;
|
||
isl_space *space;
|
||
isl_pw_aff *pa;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
if (!mpa)
|
||
return NULL;
|
||
|
||
space = isl_multi_pw_aff_get_space(mpa);
|
||
|
||
if (mpa->n == 0) {
|
||
isl_multi_pw_aff_free(mpa);
|
||
return isl_pw_multi_aff_zero(space);
|
||
}
|
||
|
||
pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
|
||
pma = isl_pw_multi_aff_from_pw_aff(pa);
|
||
|
||
for (i = 1; i < mpa->n; ++i) {
|
||
isl_pw_multi_aff *pma_i;
|
||
|
||
pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
|
||
pma_i = isl_pw_multi_aff_from_pw_aff(pa);
|
||
pma = isl_pw_multi_aff_range_product(pma, pma_i);
|
||
}
|
||
|
||
pma = isl_pw_multi_aff_reset_space(pma, space);
|
||
|
||
isl_multi_pw_aff_free(mpa);
|
||
return pma;
|
||
}
|
||
|
||
/* Construct and return a multi piecewise affine expression
|
||
* that is equal to the given multi affine expression.
|
||
*/
|
||
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_multi_aff(
|
||
__isl_take isl_multi_aff *ma)
|
||
{
|
||
int i, n;
|
||
isl_multi_pw_aff *mpa;
|
||
|
||
if (!ma)
|
||
return NULL;
|
||
|
||
n = isl_multi_aff_dim(ma, isl_dim_out);
|
||
mpa = isl_multi_pw_aff_alloc(isl_multi_aff_get_space(ma));
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa;
|
||
|
||
pa = isl_pw_aff_from_aff(isl_multi_aff_get_aff(ma, i));
|
||
mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa);
|
||
}
|
||
|
||
isl_multi_aff_free(ma);
|
||
return mpa;
|
||
}
|
||
|
||
/* Construct and return a multi piecewise affine expression
|
||
* that is equal to the given piecewise multi affine expression.
|
||
*/
|
||
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_multi_aff(
|
||
__isl_take isl_pw_multi_aff *pma)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_multi_pw_aff *mpa;
|
||
|
||
if (!pma)
|
||
return NULL;
|
||
|
||
n = isl_pw_multi_aff_dim(pma, isl_dim_out);
|
||
space = isl_pw_multi_aff_get_space(pma);
|
||
mpa = isl_multi_pw_aff_alloc(space);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa;
|
||
|
||
pa = isl_pw_multi_aff_get_pw_aff(pma, i);
|
||
mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa);
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
return mpa;
|
||
}
|
||
|
||
/* Do "pa1" and "pa2" represent the same function?
|
||
*
|
||
* We first check if they are obviously equal.
|
||
* If not, we convert them to maps and check if those are equal.
|
||
*
|
||
* If "pa1" or "pa2" contain any NaNs, then they are considered
|
||
* not to be the same. A NaN is not equal to anything, not even
|
||
* to another NaN.
|
||
*/
|
||
int isl_pw_aff_is_equal(__isl_keep isl_pw_aff *pa1, __isl_keep isl_pw_aff *pa2)
|
||
{
|
||
int equal;
|
||
isl_bool has_nan;
|
||
isl_map *map1, *map2;
|
||
|
||
if (!pa1 || !pa2)
|
||
return -1;
|
||
|
||
equal = isl_pw_aff_plain_is_equal(pa1, pa2);
|
||
if (equal < 0 || equal)
|
||
return equal;
|
||
has_nan = isl_pw_aff_involves_nan(pa1);
|
||
if (has_nan >= 0 && !has_nan)
|
||
has_nan = isl_pw_aff_involves_nan(pa2);
|
||
if (has_nan < 0)
|
||
return -1;
|
||
if (has_nan)
|
||
return 0;
|
||
|
||
map1 = map_from_pw_aff(isl_pw_aff_copy(pa1));
|
||
map2 = map_from_pw_aff(isl_pw_aff_copy(pa2));
|
||
equal = isl_map_is_equal(map1, map2);
|
||
isl_map_free(map1);
|
||
isl_map_free(map2);
|
||
|
||
return equal;
|
||
}
|
||
|
||
/* Do "mpa1" and "mpa2" represent the same function?
|
||
*
|
||
* Note that we cannot convert the entire isl_multi_pw_aff
|
||
* to a map because the domains of the piecewise affine expressions
|
||
* may not be the same.
|
||
*/
|
||
isl_bool isl_multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff *mpa1,
|
||
__isl_keep isl_multi_pw_aff *mpa2)
|
||
{
|
||
int i;
|
||
isl_bool equal;
|
||
|
||
if (!mpa1 || !mpa2)
|
||
return isl_bool_error;
|
||
|
||
if (!isl_space_match(mpa1->space, isl_dim_param,
|
||
mpa2->space, isl_dim_param)) {
|
||
if (!isl_space_has_named_params(mpa1->space))
|
||
return isl_bool_false;
|
||
if (!isl_space_has_named_params(mpa2->space))
|
||
return isl_bool_false;
|
||
mpa1 = isl_multi_pw_aff_copy(mpa1);
|
||
mpa2 = isl_multi_pw_aff_copy(mpa2);
|
||
mpa1 = isl_multi_pw_aff_align_params(mpa1,
|
||
isl_multi_pw_aff_get_space(mpa2));
|
||
mpa2 = isl_multi_pw_aff_align_params(mpa2,
|
||
isl_multi_pw_aff_get_space(mpa1));
|
||
equal = isl_multi_pw_aff_is_equal(mpa1, mpa2);
|
||
isl_multi_pw_aff_free(mpa1);
|
||
isl_multi_pw_aff_free(mpa2);
|
||
return equal;
|
||
}
|
||
|
||
equal = isl_space_is_equal(mpa1->space, mpa2->space);
|
||
if (equal < 0 || !equal)
|
||
return equal;
|
||
|
||
for (i = 0; i < mpa1->n; ++i) {
|
||
equal = isl_pw_aff_is_equal(mpa1->p[i], mpa2->p[i]);
|
||
if (equal < 0 || !equal)
|
||
return equal;
|
||
}
|
||
|
||
return isl_bool_true;
|
||
}
|
||
|
||
/* Compute the pullback of "mpa" by the function represented by "ma".
|
||
* In other words, plug in "ma" in "mpa".
|
||
*
|
||
* The parameters of "mpa" and "ma" are assumed to have been aligned.
|
||
*/
|
||
static __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff_aligned(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma)
|
||
{
|
||
int i;
|
||
isl_space *space = NULL;
|
||
|
||
mpa = isl_multi_pw_aff_cow(mpa);
|
||
if (!mpa || !ma)
|
||
goto error;
|
||
|
||
space = isl_space_join(isl_multi_aff_get_space(ma),
|
||
isl_multi_pw_aff_get_space(mpa));
|
||
if (!space)
|
||
goto error;
|
||
|
||
for (i = 0; i < mpa->n; ++i) {
|
||
mpa->p[i] = isl_pw_aff_pullback_multi_aff(mpa->p[i],
|
||
isl_multi_aff_copy(ma));
|
||
if (!mpa->p[i])
|
||
goto error;
|
||
}
|
||
|
||
isl_multi_aff_free(ma);
|
||
isl_space_free(mpa->space);
|
||
mpa->space = space;
|
||
return mpa;
|
||
error:
|
||
isl_space_free(space);
|
||
isl_multi_pw_aff_free(mpa);
|
||
isl_multi_aff_free(ma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "mpa" by the function represented by "ma".
|
||
* In other words, plug in "ma" in "mpa".
|
||
*/
|
||
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma)
|
||
{
|
||
if (!mpa || !ma)
|
||
goto error;
|
||
if (isl_space_match(mpa->space, isl_dim_param,
|
||
ma->space, isl_dim_param))
|
||
return isl_multi_pw_aff_pullback_multi_aff_aligned(mpa, ma);
|
||
mpa = isl_multi_pw_aff_align_params(mpa, isl_multi_aff_get_space(ma));
|
||
ma = isl_multi_aff_align_params(ma, isl_multi_pw_aff_get_space(mpa));
|
||
return isl_multi_pw_aff_pullback_multi_aff_aligned(mpa, ma);
|
||
error:
|
||
isl_multi_pw_aff_free(mpa);
|
||
isl_multi_aff_free(ma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "mpa" by the function represented by "pma".
|
||
* In other words, plug in "pma" in "mpa".
|
||
*
|
||
* The parameters of "mpa" and "mpa" are assumed to have been aligned.
|
||
*/
|
||
static __isl_give isl_multi_pw_aff *
|
||
isl_multi_pw_aff_pullback_pw_multi_aff_aligned(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma)
|
||
{
|
||
int i;
|
||
isl_space *space = NULL;
|
||
|
||
mpa = isl_multi_pw_aff_cow(mpa);
|
||
if (!mpa || !pma)
|
||
goto error;
|
||
|
||
space = isl_space_join(isl_pw_multi_aff_get_space(pma),
|
||
isl_multi_pw_aff_get_space(mpa));
|
||
|
||
for (i = 0; i < mpa->n; ++i) {
|
||
mpa->p[i] = isl_pw_aff_pullback_pw_multi_aff_aligned(mpa->p[i],
|
||
isl_pw_multi_aff_copy(pma));
|
||
if (!mpa->p[i])
|
||
goto error;
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
isl_space_free(mpa->space);
|
||
mpa->space = space;
|
||
return mpa;
|
||
error:
|
||
isl_space_free(space);
|
||
isl_multi_pw_aff_free(mpa);
|
||
isl_pw_multi_aff_free(pma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "mpa" by the function represented by "pma".
|
||
* In other words, plug in "pma" in "mpa".
|
||
*/
|
||
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_pw_multi_aff(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma)
|
||
{
|
||
if (!mpa || !pma)
|
||
goto error;
|
||
if (isl_space_match(mpa->space, isl_dim_param, pma->dim, isl_dim_param))
|
||
return isl_multi_pw_aff_pullback_pw_multi_aff_aligned(mpa, pma);
|
||
mpa = isl_multi_pw_aff_align_params(mpa,
|
||
isl_pw_multi_aff_get_space(pma));
|
||
pma = isl_pw_multi_aff_align_params(pma,
|
||
isl_multi_pw_aff_get_space(mpa));
|
||
return isl_multi_pw_aff_pullback_pw_multi_aff_aligned(mpa, pma);
|
||
error:
|
||
isl_multi_pw_aff_free(mpa);
|
||
isl_pw_multi_aff_free(pma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "aff" to "mpa". The range of "mpa" needs to be compatible
|
||
* with the domain of "aff". The domain of the result is the same
|
||
* as that of "mpa".
|
||
* "mpa" and "aff" are assumed to have been aligned.
|
||
*
|
||
* We first extract the parametric constant from "aff", defined
|
||
* over the correct domain.
|
||
* Then we add the appropriate combinations of the members of "mpa".
|
||
* Finally, we add the integer divisions through recursive calls.
|
||
*/
|
||
static __isl_give isl_pw_aff *isl_multi_pw_aff_apply_aff_aligned(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_aff *aff)
|
||
{
|
||
int i, n_in, n_div;
|
||
isl_space *space;
|
||
isl_val *v;
|
||
isl_pw_aff *pa;
|
||
isl_aff *tmp;
|
||
|
||
n_in = isl_aff_dim(aff, isl_dim_in);
|
||
n_div = isl_aff_dim(aff, isl_dim_div);
|
||
|
||
space = isl_space_domain(isl_multi_pw_aff_get_space(mpa));
|
||
tmp = isl_aff_copy(aff);
|
||
tmp = isl_aff_drop_dims(tmp, isl_dim_div, 0, n_div);
|
||
tmp = isl_aff_drop_dims(tmp, isl_dim_in, 0, n_in);
|
||
tmp = isl_aff_add_dims(tmp, isl_dim_in,
|
||
isl_space_dim(space, isl_dim_set));
|
||
tmp = isl_aff_reset_domain_space(tmp, space);
|
||
pa = isl_pw_aff_from_aff(tmp);
|
||
|
||
for (i = 0; i < n_in; ++i) {
|
||
isl_pw_aff *pa_i;
|
||
|
||
if (!isl_aff_involves_dims(aff, isl_dim_in, i, 1))
|
||
continue;
|
||
v = isl_aff_get_coefficient_val(aff, isl_dim_in, i);
|
||
pa_i = isl_multi_pw_aff_get_pw_aff(mpa, i);
|
||
pa_i = isl_pw_aff_scale_val(pa_i, v);
|
||
pa = isl_pw_aff_add(pa, pa_i);
|
||
}
|
||
|
||
for (i = 0; i < n_div; ++i) {
|
||
isl_aff *div;
|
||
isl_pw_aff *pa_i;
|
||
|
||
if (!isl_aff_involves_dims(aff, isl_dim_div, i, 1))
|
||
continue;
|
||
div = isl_aff_get_div(aff, i);
|
||
pa_i = isl_multi_pw_aff_apply_aff_aligned(
|
||
isl_multi_pw_aff_copy(mpa), div);
|
||
pa_i = isl_pw_aff_floor(pa_i);
|
||
v = isl_aff_get_coefficient_val(aff, isl_dim_div, i);
|
||
pa_i = isl_pw_aff_scale_val(pa_i, v);
|
||
pa = isl_pw_aff_add(pa, pa_i);
|
||
}
|
||
|
||
isl_multi_pw_aff_free(mpa);
|
||
isl_aff_free(aff);
|
||
|
||
return pa;
|
||
}
|
||
|
||
/* Apply "aff" to "mpa". The range of "mpa" needs to be compatible
|
||
* with the domain of "aff". The domain of the result is the same
|
||
* as that of "mpa".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_multi_pw_aff_apply_aff(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_aff *aff)
|
||
{
|
||
if (!aff || !mpa)
|
||
goto error;
|
||
if (isl_space_match(aff->ls->dim, isl_dim_param,
|
||
mpa->space, isl_dim_param))
|
||
return isl_multi_pw_aff_apply_aff_aligned(mpa, aff);
|
||
|
||
aff = isl_aff_align_params(aff, isl_multi_pw_aff_get_space(mpa));
|
||
mpa = isl_multi_pw_aff_align_params(mpa, isl_aff_get_space(aff));
|
||
|
||
return isl_multi_pw_aff_apply_aff_aligned(mpa, aff);
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_multi_pw_aff_free(mpa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "pa" to "mpa". The range of "mpa" needs to be compatible
|
||
* with the domain of "pa". The domain of the result is the same
|
||
* as that of "mpa".
|
||
* "mpa" and "pa" are assumed to have been aligned.
|
||
*
|
||
* We consider each piece in turn. Note that the domains of the
|
||
* pieces are assumed to be disjoint and they remain disjoint
|
||
* after taking the preimage (over the same function).
|
||
*/
|
||
static __isl_give isl_pw_aff *isl_multi_pw_aff_apply_pw_aff_aligned(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_aff *pa)
|
||
{
|
||
isl_space *space;
|
||
isl_pw_aff *res;
|
||
int i;
|
||
|
||
if (!mpa || !pa)
|
||
goto error;
|
||
|
||
space = isl_space_join(isl_multi_pw_aff_get_space(mpa),
|
||
isl_pw_aff_get_space(pa));
|
||
res = isl_pw_aff_empty(space);
|
||
|
||
for (i = 0; i < pa->n; ++i) {
|
||
isl_pw_aff *pa_i;
|
||
isl_set *domain;
|
||
|
||
pa_i = isl_multi_pw_aff_apply_aff_aligned(
|
||
isl_multi_pw_aff_copy(mpa),
|
||
isl_aff_copy(pa->p[i].aff));
|
||
domain = isl_set_copy(pa->p[i].set);
|
||
domain = isl_set_preimage_multi_pw_aff(domain,
|
||
isl_multi_pw_aff_copy(mpa));
|
||
pa_i = isl_pw_aff_intersect_domain(pa_i, domain);
|
||
res = isl_pw_aff_add_disjoint(res, pa_i);
|
||
}
|
||
|
||
isl_pw_aff_free(pa);
|
||
isl_multi_pw_aff_free(mpa);
|
||
return res;
|
||
error:
|
||
isl_pw_aff_free(pa);
|
||
isl_multi_pw_aff_free(mpa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "pa" to "mpa". The range of "mpa" needs to be compatible
|
||
* with the domain of "pa". The domain of the result is the same
|
||
* as that of "mpa".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_multi_pw_aff_apply_pw_aff(
|
||
__isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_aff *pa)
|
||
{
|
||
if (!pa || !mpa)
|
||
goto error;
|
||
if (isl_space_match(pa->dim, isl_dim_param, mpa->space, isl_dim_param))
|
||
return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa);
|
||
|
||
pa = isl_pw_aff_align_params(pa, isl_multi_pw_aff_get_space(mpa));
|
||
mpa = isl_multi_pw_aff_align_params(mpa, isl_pw_aff_get_space(pa));
|
||
|
||
return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa);
|
||
error:
|
||
isl_pw_aff_free(pa);
|
||
isl_multi_pw_aff_free(mpa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "pa" by the function represented by "mpa".
|
||
* In other words, plug in "mpa" in "pa".
|
||
* "pa" and "mpa" are assumed to have been aligned.
|
||
*
|
||
* The pullback is computed by applying "pa" to "mpa".
|
||
*/
|
||
static __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff_aligned(
|
||
__isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa);
|
||
}
|
||
|
||
/* Compute the pullback of "pa" by the function represented by "mpa".
|
||
* In other words, plug in "mpa" in "pa".
|
||
*
|
||
* The pullback is computed by applying "pa" to "mpa".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
|
||
__isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
return isl_multi_pw_aff_apply_pw_aff(mpa, pa);
|
||
}
|
||
|
||
/* Compute the pullback of "mpa1" by the function represented by "mpa2".
|
||
* In other words, plug in "mpa2" in "mpa1".
|
||
*
|
||
* The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
|
||
*
|
||
* We pullback each member of "mpa1" in turn.
|
||
*/
|
||
static __isl_give isl_multi_pw_aff *
|
||
isl_multi_pw_aff_pullback_multi_pw_aff_aligned(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
|
||
{
|
||
int i;
|
||
isl_space *space = NULL;
|
||
|
||
mpa1 = isl_multi_pw_aff_cow(mpa1);
|
||
if (!mpa1 || !mpa2)
|
||
goto error;
|
||
|
||
space = isl_space_join(isl_multi_pw_aff_get_space(mpa2),
|
||
isl_multi_pw_aff_get_space(mpa1));
|
||
|
||
for (i = 0; i < mpa1->n; ++i) {
|
||
mpa1->p[i] = isl_pw_aff_pullback_multi_pw_aff_aligned(
|
||
mpa1->p[i], isl_multi_pw_aff_copy(mpa2));
|
||
if (!mpa1->p[i])
|
||
goto error;
|
||
}
|
||
|
||
mpa1 = isl_multi_pw_aff_reset_space(mpa1, space);
|
||
|
||
isl_multi_pw_aff_free(mpa2);
|
||
return mpa1;
|
||
error:
|
||
isl_space_free(space);
|
||
isl_multi_pw_aff_free(mpa1);
|
||
isl_multi_pw_aff_free(mpa2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "mpa1" by the function represented by "mpa2".
|
||
* In other words, plug in "mpa2" in "mpa1".
|
||
*/
|
||
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_pw_aff(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
|
||
{
|
||
return isl_multi_pw_aff_align_params_multi_multi_and(mpa1, mpa2,
|
||
&isl_multi_pw_aff_pullback_multi_pw_aff_aligned);
|
||
}
|
||
|
||
/* Align the parameters of "mpa1" and "mpa2", check that the ranges
|
||
* of "mpa1" and "mpa2" live in the same space, construct map space
|
||
* between the domain spaces of "mpa1" and "mpa2" and call "order"
|
||
* with this map space as extract argument.
|
||
*/
|
||
static __isl_give isl_map *isl_multi_pw_aff_order_map(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
|
||
__isl_give isl_map *(*order)(__isl_keep isl_multi_pw_aff *mpa1,
|
||
__isl_keep isl_multi_pw_aff *mpa2, __isl_take isl_space *space))
|
||
{
|
||
int match;
|
||
isl_space *space1, *space2;
|
||
isl_map *res;
|
||
|
||
mpa1 = isl_multi_pw_aff_align_params(mpa1,
|
||
isl_multi_pw_aff_get_space(mpa2));
|
||
mpa2 = isl_multi_pw_aff_align_params(mpa2,
|
||
isl_multi_pw_aff_get_space(mpa1));
|
||
if (!mpa1 || !mpa2)
|
||
goto error;
|
||
match = isl_space_tuple_is_equal(mpa1->space, isl_dim_out,
|
||
mpa2->space, isl_dim_out);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_multi_pw_aff_get_ctx(mpa1), isl_error_invalid,
|
||
"range spaces don't match", goto error);
|
||
space1 = isl_space_domain(isl_multi_pw_aff_get_space(mpa1));
|
||
space2 = isl_space_domain(isl_multi_pw_aff_get_space(mpa2));
|
||
space1 = isl_space_map_from_domain_and_range(space1, space2);
|
||
|
||
res = order(mpa1, mpa2, space1);
|
||
isl_multi_pw_aff_free(mpa1);
|
||
isl_multi_pw_aff_free(mpa2);
|
||
return res;
|
||
error:
|
||
isl_multi_pw_aff_free(mpa1);
|
||
isl_multi_pw_aff_free(mpa2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function values are equal. "space" is the space of the result.
|
||
* The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
|
||
*
|
||
* "mpa1" and "mpa2" are equal when each of the pairs of elements
|
||
* in the sequences are equal.
|
||
*/
|
||
static __isl_give isl_map *isl_multi_pw_aff_eq_map_on_space(
|
||
__isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2,
|
||
__isl_take isl_space *space)
|
||
{
|
||
int i, n;
|
||
isl_map *res;
|
||
|
||
res = isl_map_universe(space);
|
||
|
||
n = isl_multi_pw_aff_dim(mpa1, isl_dim_out);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa1, *pa2;
|
||
isl_map *map;
|
||
|
||
pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i);
|
||
pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i);
|
||
map = isl_pw_aff_eq_map(pa1, pa2);
|
||
res = isl_map_intersect(res, map);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function values are equal.
|
||
*/
|
||
__isl_give isl_map *isl_multi_pw_aff_eq_map(__isl_take isl_multi_pw_aff *mpa1,
|
||
__isl_take isl_multi_pw_aff *mpa2)
|
||
{
|
||
return isl_multi_pw_aff_order_map(mpa1, mpa2,
|
||
&isl_multi_pw_aff_eq_map_on_space);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function values of "mpa1" is lexicographically satisfies "base"
|
||
* compared to that of "mpa2". "space" is the space of the result.
|
||
* The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
|
||
*
|
||
* "mpa1" lexicographically satisfies "base" compared to "mpa2"
|
||
* if its i-th element satisfies "base" when compared to
|
||
* the i-th element of "mpa2" while all previous elements are
|
||
* pairwise equal.
|
||
*/
|
||
static __isl_give isl_map *isl_multi_pw_aff_lex_map_on_space(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
|
||
__isl_give isl_map *(*base)(__isl_take isl_pw_aff *pa1,
|
||
__isl_take isl_pw_aff *pa2),
|
||
__isl_take isl_space *space)
|
||
{
|
||
int i, n;
|
||
isl_map *res, *rest;
|
||
|
||
res = isl_map_empty(isl_space_copy(space));
|
||
rest = isl_map_universe(space);
|
||
|
||
n = isl_multi_pw_aff_dim(mpa1, isl_dim_out);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa1, *pa2;
|
||
isl_map *map;
|
||
|
||
pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i);
|
||
pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i);
|
||
map = base(pa1, pa2);
|
||
map = isl_map_intersect(map, isl_map_copy(rest));
|
||
res = isl_map_union(res, map);
|
||
|
||
if (i == n - 1)
|
||
continue;
|
||
|
||
pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i);
|
||
pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i);
|
||
map = isl_pw_aff_eq_map(pa1, pa2);
|
||
rest = isl_map_intersect(rest, map);
|
||
}
|
||
|
||
isl_map_free(rest);
|
||
return res;
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function value of "mpa1" is lexicographically less than that
|
||
* of "mpa2". "space" is the space of the result.
|
||
* The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
|
||
*
|
||
* "mpa1" is less than "mpa2" if its i-th element is smaller
|
||
* than the i-th element of "mpa2" while all previous elements are
|
||
* pairwise equal.
|
||
*/
|
||
__isl_give isl_map *isl_multi_pw_aff_lex_lt_map_on_space(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
|
||
__isl_take isl_space *space)
|
||
{
|
||
return isl_multi_pw_aff_lex_map_on_space(mpa1, mpa2,
|
||
&isl_pw_aff_lt_map, space);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function value of "mpa1" is lexicographically less than that
|
||
* of "mpa2".
|
||
*/
|
||
__isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
|
||
{
|
||
return isl_multi_pw_aff_order_map(mpa1, mpa2,
|
||
&isl_multi_pw_aff_lex_lt_map_on_space);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function value of "mpa1" is lexicographically greater than that
|
||
* of "mpa2". "space" is the space of the result.
|
||
* The parameters of "mpa1" and "mpa2" are assumed to have been aligned.
|
||
*
|
||
* "mpa1" is greater than "mpa2" if its i-th element is greater
|
||
* than the i-th element of "mpa2" while all previous elements are
|
||
* pairwise equal.
|
||
*/
|
||
__isl_give isl_map *isl_multi_pw_aff_lex_gt_map_on_space(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2,
|
||
__isl_take isl_space *space)
|
||
{
|
||
return isl_multi_pw_aff_lex_map_on_space(mpa1, mpa2,
|
||
&isl_pw_aff_gt_map, space);
|
||
}
|
||
|
||
/* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2"
|
||
* where the function value of "mpa1" is lexicographically greater than that
|
||
* of "mpa2".
|
||
*/
|
||
__isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
|
||
__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)
|
||
{
|
||
return isl_multi_pw_aff_order_map(mpa1, mpa2,
|
||
&isl_multi_pw_aff_lex_gt_map_on_space);
|
||
}
|
||
|
||
/* Compare two isl_affs.
|
||
*
|
||
* Return -1 if "aff1" is "smaller" than "aff2", 1 if "aff1" is "greater"
|
||
* than "aff2" and 0 if they are equal.
|
||
*
|
||
* The order is fairly arbitrary. We do consider expressions that only involve
|
||
* earlier dimensions as "smaller".
|
||
*/
|
||
int isl_aff_plain_cmp(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2)
|
||
{
|
||
int cmp;
|
||
int last1, last2;
|
||
|
||
if (aff1 == aff2)
|
||
return 0;
|
||
|
||
if (!aff1)
|
||
return -1;
|
||
if (!aff2)
|
||
return 1;
|
||
|
||
cmp = isl_local_space_cmp(aff1->ls, aff2->ls);
|
||
if (cmp != 0)
|
||
return cmp;
|
||
|
||
last1 = isl_seq_last_non_zero(aff1->v->el + 1, aff1->v->size - 1);
|
||
last2 = isl_seq_last_non_zero(aff2->v->el + 1, aff1->v->size - 1);
|
||
if (last1 != last2)
|
||
return last1 - last2;
|
||
|
||
return isl_seq_cmp(aff1->v->el, aff2->v->el, aff1->v->size);
|
||
}
|
||
|
||
/* Compare two isl_pw_affs.
|
||
*
|
||
* Return -1 if "pa1" is "smaller" than "pa2", 1 if "pa1" is "greater"
|
||
* than "pa2" and 0 if they are equal.
|
||
*
|
||
* The order is fairly arbitrary. We do consider expressions that only involve
|
||
* earlier dimensions as "smaller".
|
||
*/
|
||
int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
|
||
__isl_keep isl_pw_aff *pa2)
|
||
{
|
||
int i;
|
||
int cmp;
|
||
|
||
if (pa1 == pa2)
|
||
return 0;
|
||
|
||
if (!pa1)
|
||
return -1;
|
||
if (!pa2)
|
||
return 1;
|
||
|
||
cmp = isl_space_cmp(pa1->dim, pa2->dim);
|
||
if (cmp != 0)
|
||
return cmp;
|
||
|
||
if (pa1->n != pa2->n)
|
||
return pa1->n - pa2->n;
|
||
|
||
for (i = 0; i < pa1->n; ++i) {
|
||
cmp = isl_set_plain_cmp(pa1->p[i].set, pa2->p[i].set);
|
||
if (cmp != 0)
|
||
return cmp;
|
||
cmp = isl_aff_plain_cmp(pa1->p[i].aff, pa2->p[i].aff);
|
||
if (cmp != 0)
|
||
return cmp;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a piecewise affine expression that is equal to "v" on "domain".
|
||
*/
|
||
__isl_give isl_pw_aff *isl_pw_aff_val_on_domain(__isl_take isl_set *domain,
|
||
__isl_take isl_val *v)
|
||
{
|
||
isl_space *space;
|
||
isl_local_space *ls;
|
||
isl_aff *aff;
|
||
|
||
space = isl_set_get_space(domain);
|
||
ls = isl_local_space_from_space(space);
|
||
aff = isl_aff_val_on_domain(ls, v);
|
||
|
||
return isl_pw_aff_alloc(domain, aff);
|
||
}
|
||
|
||
/* Return a multi affine expression that is equal to "mv" on domain
|
||
* space "space".
|
||
*/
|
||
__isl_give isl_multi_aff *isl_multi_aff_multi_val_on_space(
|
||
__isl_take isl_space *space, __isl_take isl_multi_val *mv)
|
||
{
|
||
int i, n;
|
||
isl_space *space2;
|
||
isl_local_space *ls;
|
||
isl_multi_aff *ma;
|
||
|
||
if (!space || !mv)
|
||
goto error;
|
||
|
||
n = isl_multi_val_dim(mv, isl_dim_set);
|
||
space2 = isl_multi_val_get_space(mv);
|
||
space2 = isl_space_align_params(space2, isl_space_copy(space));
|
||
space = isl_space_align_params(space, isl_space_copy(space2));
|
||
space = isl_space_map_from_domain_and_range(space, space2);
|
||
ma = isl_multi_aff_alloc(isl_space_copy(space));
|
||
ls = isl_local_space_from_space(isl_space_domain(space));
|
||
for (i = 0; i < n; ++i) {
|
||
isl_val *v;
|
||
isl_aff *aff;
|
||
|
||
v = isl_multi_val_get_val(mv, i);
|
||
aff = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
|
||
ma = isl_multi_aff_set_aff(ma, i, aff);
|
||
}
|
||
isl_local_space_free(ls);
|
||
|
||
isl_multi_val_free(mv);
|
||
return ma;
|
||
error:
|
||
isl_space_free(space);
|
||
isl_multi_val_free(mv);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a piecewise multi-affine expression
|
||
* that is equal to "mv" on "domain".
|
||
*/
|
||
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_multi_val_on_domain(
|
||
__isl_take isl_set *domain, __isl_take isl_multi_val *mv)
|
||
{
|
||
isl_space *space;
|
||
isl_multi_aff *ma;
|
||
|
||
space = isl_set_get_space(domain);
|
||
ma = isl_multi_aff_multi_val_on_space(space, mv);
|
||
|
||
return isl_pw_multi_aff_alloc(domain, ma);
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_multi_aff_multi_val_on_domain.
|
||
* mv is the value that should be attained on each domain set
|
||
* res collects the results
|
||
*/
|
||
struct isl_union_pw_multi_aff_multi_val_on_domain_data {
|
||
isl_multi_val *mv;
|
||
isl_union_pw_multi_aff *res;
|
||
};
|
||
|
||
/* Create an isl_pw_multi_aff equal to data->mv on "domain"
|
||
* and add it to data->res.
|
||
*/
|
||
static isl_stat pw_multi_aff_multi_val_on_domain(__isl_take isl_set *domain,
|
||
void *user)
|
||
{
|
||
struct isl_union_pw_multi_aff_multi_val_on_domain_data *data = user;
|
||
isl_pw_multi_aff *pma;
|
||
isl_multi_val *mv;
|
||
|
||
mv = isl_multi_val_copy(data->mv);
|
||
pma = isl_pw_multi_aff_multi_val_on_domain(domain, mv);
|
||
data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Return a union piecewise multi-affine expression
|
||
* that is equal to "mv" on "domain".
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_multi_val_on_domain(
|
||
__isl_take isl_union_set *domain, __isl_take isl_multi_val *mv)
|
||
{
|
||
struct isl_union_pw_multi_aff_multi_val_on_domain_data data;
|
||
isl_space *space;
|
||
|
||
space = isl_union_set_get_space(domain);
|
||
data.res = isl_union_pw_multi_aff_empty(space);
|
||
data.mv = mv;
|
||
if (isl_union_set_foreach_set(domain,
|
||
&pw_multi_aff_multi_val_on_domain, &data) < 0)
|
||
data.res = isl_union_pw_multi_aff_free(data.res);
|
||
isl_union_set_free(domain);
|
||
isl_multi_val_free(mv);
|
||
return data.res;
|
||
}
|
||
|
||
/* Compute the pullback of data->pma by the function represented by "pma2",
|
||
* provided the spaces match, and add the results to data->res.
|
||
*/
|
||
static isl_stat pullback_entry(__isl_take isl_pw_multi_aff *pma2, void *user)
|
||
{
|
||
struct isl_union_pw_multi_aff_bin_data *data = user;
|
||
|
||
if (!isl_space_tuple_is_equal(data->pma->dim, isl_dim_in,
|
||
pma2->dim, isl_dim_out)) {
|
||
isl_pw_multi_aff_free(pma2);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(
|
||
isl_pw_multi_aff_copy(data->pma), pma2);
|
||
|
||
data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2);
|
||
if (!data->res)
|
||
return isl_stat_error;
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Compute the pullback of "upma1" by the function represented by "upma2".
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *
|
||
isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
|
||
__isl_take isl_union_pw_multi_aff *upma1,
|
||
__isl_take isl_union_pw_multi_aff *upma2)
|
||
{
|
||
return bin_op(upma1, upma2, &pullback_entry);
|
||
}
|
||
|
||
/* Check that the domain space of "upa" matches "space".
|
||
*
|
||
* Return 0 on success and -1 on error.
|
||
*
|
||
* This function is called from isl_multi_union_pw_aff_set_union_pw_aff and
|
||
* can in principle never fail since the space "space" is that
|
||
* of the isl_multi_union_pw_aff and is a set space such that
|
||
* there is no domain space to match.
|
||
*
|
||
* We check the parameters and double-check that "space" is
|
||
* indeed that of a set.
|
||
*/
|
||
static int isl_union_pw_aff_check_match_domain_space(
|
||
__isl_keep isl_union_pw_aff *upa, __isl_keep isl_space *space)
|
||
{
|
||
isl_space *upa_space;
|
||
int match;
|
||
|
||
if (!upa || !space)
|
||
return -1;
|
||
|
||
match = isl_space_is_set(space);
|
||
if (match < 0)
|
||
return -1;
|
||
if (!match)
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"expecting set space", return -1);
|
||
|
||
upa_space = isl_union_pw_aff_get_space(upa);
|
||
match = isl_space_match(space, isl_dim_param, upa_space, isl_dim_param);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"parameters don't match", goto error);
|
||
|
||
isl_space_free(upa_space);
|
||
return 0;
|
||
error:
|
||
isl_space_free(upa_space);
|
||
return -1;
|
||
}
|
||
|
||
/* Do the parameters of "upa" match those of "space"?
|
||
*/
|
||
static int isl_union_pw_aff_matching_params(__isl_keep isl_union_pw_aff *upa,
|
||
__isl_keep isl_space *space)
|
||
{
|
||
isl_space *upa_space;
|
||
int match;
|
||
|
||
if (!upa || !space)
|
||
return -1;
|
||
|
||
upa_space = isl_union_pw_aff_get_space(upa);
|
||
|
||
match = isl_space_match(space, isl_dim_param, upa_space, isl_dim_param);
|
||
|
||
isl_space_free(upa_space);
|
||
return match;
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_aff_reset_domain_space.
|
||
* space represents the new parameters.
|
||
* res collects the results.
|
||
*/
|
||
struct isl_union_pw_aff_reset_params_data {
|
||
isl_space *space;
|
||
isl_union_pw_aff *res;
|
||
};
|
||
|
||
/* Replace the parameters of "pa" by data->space and
|
||
* add the result to data->res.
|
||
*/
|
||
static isl_stat reset_params(__isl_take isl_pw_aff *pa, void *user)
|
||
{
|
||
struct isl_union_pw_aff_reset_params_data *data = user;
|
||
isl_space *space;
|
||
|
||
space = isl_pw_aff_get_space(pa);
|
||
space = isl_space_replace(space, isl_dim_param, data->space);
|
||
pa = isl_pw_aff_reset_space(pa, space);
|
||
data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Replace the domain space of "upa" by "space".
|
||
* Since a union expression does not have a (single) domain space,
|
||
* "space" is necessarily a parameter space.
|
||
*
|
||
* Since the order and the names of the parameters determine
|
||
* the hash value, we need to create a new hash table.
|
||
*/
|
||
static __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_domain_space(
|
||
__isl_take isl_union_pw_aff *upa, __isl_take isl_space *space)
|
||
{
|
||
struct isl_union_pw_aff_reset_params_data data = { space };
|
||
int match;
|
||
|
||
match = isl_union_pw_aff_matching_params(upa, space);
|
||
if (match < 0)
|
||
upa = isl_union_pw_aff_free(upa);
|
||
else if (match) {
|
||
isl_space_free(space);
|
||
return upa;
|
||
}
|
||
|
||
data.res = isl_union_pw_aff_empty(isl_space_copy(space));
|
||
if (isl_union_pw_aff_foreach_pw_aff(upa, &reset_params, &data) < 0)
|
||
data.res = isl_union_pw_aff_free(data.res);
|
||
|
||
isl_union_pw_aff_free(upa);
|
||
isl_space_free(space);
|
||
return data.res;
|
||
}
|
||
|
||
/* Return the floor of "pa".
|
||
*/
|
||
static __isl_give isl_pw_aff *floor_entry(__isl_take isl_pw_aff *pa, void *user)
|
||
{
|
||
return isl_pw_aff_floor(pa);
|
||
}
|
||
|
||
/* Given f, return floor(f).
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
|
||
__isl_take isl_union_pw_aff *upa)
|
||
{
|
||
return isl_union_pw_aff_transform_inplace(upa, &floor_entry, NULL);
|
||
}
|
||
|
||
/* Compute
|
||
*
|
||
* upa mod m = upa - m * floor(upa/m)
|
||
*
|
||
* with m an integer value.
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
|
||
__isl_take isl_union_pw_aff *upa, __isl_take isl_val *m)
|
||
{
|
||
isl_union_pw_aff *res;
|
||
|
||
if (!upa || !m)
|
||
goto error;
|
||
|
||
if (!isl_val_is_int(m))
|
||
isl_die(isl_val_get_ctx(m), isl_error_invalid,
|
||
"expecting integer modulo", goto error);
|
||
if (!isl_val_is_pos(m))
|
||
isl_die(isl_val_get_ctx(m), isl_error_invalid,
|
||
"expecting positive modulo", goto error);
|
||
|
||
res = isl_union_pw_aff_copy(upa);
|
||
upa = isl_union_pw_aff_scale_down_val(upa, isl_val_copy(m));
|
||
upa = isl_union_pw_aff_floor(upa);
|
||
upa = isl_union_pw_aff_scale_val(upa, m);
|
||
res = isl_union_pw_aff_sub(res, upa);
|
||
|
||
return res;
|
||
error:
|
||
isl_val_free(m);
|
||
isl_union_pw_aff_free(upa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_aff_aff_on_domain.
|
||
* "aff" is the symbolic value that the resulting isl_union_pw_aff
|
||
* needs to attain.
|
||
* "res" collects the results.
|
||
*/
|
||
struct isl_union_pw_aff_aff_on_domain_data {
|
||
isl_aff *aff;
|
||
isl_union_pw_aff *res;
|
||
};
|
||
|
||
/* Construct a piecewise affine expression that is equal to data->aff
|
||
* on "domain" and add the result to data->res.
|
||
*/
|
||
static isl_stat pw_aff_aff_on_domain(__isl_take isl_set *domain, void *user)
|
||
{
|
||
struct isl_union_pw_aff_aff_on_domain_data *data = user;
|
||
isl_pw_aff *pa;
|
||
isl_aff *aff;
|
||
int dim;
|
||
|
||
aff = isl_aff_copy(data->aff);
|
||
dim = isl_set_dim(domain, isl_dim_set);
|
||
aff = isl_aff_add_dims(aff, isl_dim_in, dim);
|
||
aff = isl_aff_reset_domain_space(aff, isl_set_get_space(domain));
|
||
pa = isl_pw_aff_alloc(domain, aff);
|
||
data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_multi_aff_get_union_pw_aff.
|
||
* pos is the output position that needs to be extracted.
|
||
* res collects the results.
|
||
*/
|
||
struct isl_union_pw_multi_aff_get_union_pw_aff_data {
|
||
int pos;
|
||
isl_union_pw_aff *res;
|
||
};
|
||
|
||
/* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma"
|
||
* (assuming it has such a dimension) and add it to data->res.
|
||
*/
|
||
static isl_stat get_union_pw_aff(__isl_take isl_pw_multi_aff *pma, void *user)
|
||
{
|
||
struct isl_union_pw_multi_aff_get_union_pw_aff_data *data = user;
|
||
int n_out;
|
||
isl_pw_aff *pa;
|
||
|
||
if (!pma)
|
||
return isl_stat_error;
|
||
|
||
n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
|
||
if (data->pos >= n_out) {
|
||
isl_pw_multi_aff_free(pma);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
pa = isl_pw_multi_aff_get_pw_aff(pma, data->pos);
|
||
isl_pw_multi_aff_free(pma);
|
||
|
||
data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Extract an isl_union_pw_aff corresponding to
|
||
* output dimension "pos" of "upma".
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_multi_aff_get_union_pw_aff(
|
||
__isl_keep isl_union_pw_multi_aff *upma, int pos)
|
||
{
|
||
struct isl_union_pw_multi_aff_get_union_pw_aff_data data;
|
||
isl_space *space;
|
||
|
||
if (!upma)
|
||
return NULL;
|
||
|
||
if (pos < 0)
|
||
isl_die(isl_union_pw_multi_aff_get_ctx(upma), isl_error_invalid,
|
||
"cannot extract at negative position", return NULL);
|
||
|
||
space = isl_union_pw_multi_aff_get_space(upma);
|
||
data.res = isl_union_pw_aff_empty(space);
|
||
data.pos = pos;
|
||
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
|
||
&get_union_pw_aff, &data) < 0)
|
||
data.res = isl_union_pw_aff_free(data.res);
|
||
|
||
return data.res;
|
||
}
|
||
|
||
/* Return a union piecewise affine expression
|
||
* that is equal to "aff" on "domain".
|
||
*
|
||
* Construct an isl_pw_aff on each of the sets in "domain" and
|
||
* collect the results.
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_aff_aff_on_domain(
|
||
__isl_take isl_union_set *domain, __isl_take isl_aff *aff)
|
||
{
|
||
struct isl_union_pw_aff_aff_on_domain_data data;
|
||
isl_space *space;
|
||
|
||
if (!domain || !aff)
|
||
goto error;
|
||
if (!isl_local_space_is_params(aff->ls))
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"expecting parametric expression", goto error);
|
||
|
||
space = isl_union_set_get_space(domain);
|
||
data.res = isl_union_pw_aff_empty(space);
|
||
data.aff = aff;
|
||
if (isl_union_set_foreach_set(domain, &pw_aff_aff_on_domain, &data) < 0)
|
||
data.res = isl_union_pw_aff_free(data.res);
|
||
isl_union_set_free(domain);
|
||
isl_aff_free(aff);
|
||
return data.res;
|
||
error:
|
||
isl_union_set_free(domain);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_aff_val_on_domain.
|
||
* "v" is the value that the resulting isl_union_pw_aff needs to attain.
|
||
* "res" collects the results.
|
||
*/
|
||
struct isl_union_pw_aff_val_on_domain_data {
|
||
isl_val *v;
|
||
isl_union_pw_aff *res;
|
||
};
|
||
|
||
/* Construct a piecewise affine expression that is equal to data->v
|
||
* on "domain" and add the result to data->res.
|
||
*/
|
||
static isl_stat pw_aff_val_on_domain(__isl_take isl_set *domain, void *user)
|
||
{
|
||
struct isl_union_pw_aff_val_on_domain_data *data = user;
|
||
isl_pw_aff *pa;
|
||
isl_val *v;
|
||
|
||
v = isl_val_copy(data->v);
|
||
pa = isl_pw_aff_val_on_domain(domain, v);
|
||
data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Return a union piecewise affine expression
|
||
* that is equal to "v" on "domain".
|
||
*
|
||
* Construct an isl_pw_aff on each of the sets in "domain" and
|
||
* collect the results.
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_aff_val_on_domain(
|
||
__isl_take isl_union_set *domain, __isl_take isl_val *v)
|
||
{
|
||
struct isl_union_pw_aff_val_on_domain_data data;
|
||
isl_space *space;
|
||
|
||
space = isl_union_set_get_space(domain);
|
||
data.res = isl_union_pw_aff_empty(space);
|
||
data.v = v;
|
||
if (isl_union_set_foreach_set(domain, &pw_aff_val_on_domain, &data) < 0)
|
||
data.res = isl_union_pw_aff_free(data.res);
|
||
isl_union_set_free(domain);
|
||
isl_val_free(v);
|
||
return data.res;
|
||
}
|
||
|
||
/* Construct a piecewise multi affine expression
|
||
* that is equal to "pa" and add it to upma.
|
||
*/
|
||
static isl_stat pw_multi_aff_from_pw_aff_entry(__isl_take isl_pw_aff *pa,
|
||
void *user)
|
||
{
|
||
isl_union_pw_multi_aff **upma = user;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
pma = isl_pw_multi_aff_from_pw_aff(pa);
|
||
*upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma);
|
||
|
||
return *upma ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Construct and return a union piecewise multi affine expression
|
||
* that is equal to the given union piecewise affine expression.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_pw_aff(
|
||
__isl_take isl_union_pw_aff *upa)
|
||
{
|
||
isl_space *space;
|
||
isl_union_pw_multi_aff *upma;
|
||
|
||
if (!upa)
|
||
return NULL;
|
||
|
||
space = isl_union_pw_aff_get_space(upa);
|
||
upma = isl_union_pw_multi_aff_empty(space);
|
||
|
||
if (isl_union_pw_aff_foreach_pw_aff(upa,
|
||
&pw_multi_aff_from_pw_aff_entry, &upma) < 0)
|
||
upma = isl_union_pw_multi_aff_free(upma);
|
||
|
||
isl_union_pw_aff_free(upa);
|
||
return upma;
|
||
}
|
||
|
||
/* Compute the set of elements in the domain of "pa" where it is zero and
|
||
* add this set to "uset".
|
||
*/
|
||
static isl_stat zero_union_set(__isl_take isl_pw_aff *pa, void *user)
|
||
{
|
||
isl_union_set **uset = (isl_union_set **)user;
|
||
|
||
*uset = isl_union_set_add_set(*uset, isl_pw_aff_zero_set(pa));
|
||
|
||
return *uset ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Return a union set containing those elements in the domain
|
||
* of "upa" where it is zero.
|
||
*/
|
||
__isl_give isl_union_set *isl_union_pw_aff_zero_union_set(
|
||
__isl_take isl_union_pw_aff *upa)
|
||
{
|
||
isl_union_set *zero;
|
||
|
||
zero = isl_union_set_empty(isl_union_pw_aff_get_space(upa));
|
||
if (isl_union_pw_aff_foreach_pw_aff(upa, &zero_union_set, &zero) < 0)
|
||
zero = isl_union_set_free(zero);
|
||
|
||
isl_union_pw_aff_free(upa);
|
||
return zero;
|
||
}
|
||
|
||
/* Convert "pa" to an isl_map and add it to *umap.
|
||
*/
|
||
static isl_stat map_from_pw_aff_entry(__isl_take isl_pw_aff *pa, void *user)
|
||
{
|
||
isl_union_map **umap = user;
|
||
isl_map *map;
|
||
|
||
map = isl_map_from_pw_aff(pa);
|
||
*umap = isl_union_map_add_map(*umap, map);
|
||
|
||
return *umap ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Construct a union map mapping the domain of the union
|
||
* piecewise affine expression to its range, with the single output dimension
|
||
* equated to the corresponding affine expressions on their cells.
|
||
*/
|
||
__isl_give isl_union_map *isl_union_map_from_union_pw_aff(
|
||
__isl_take isl_union_pw_aff *upa)
|
||
{
|
||
isl_space *space;
|
||
isl_union_map *umap;
|
||
|
||
if (!upa)
|
||
return NULL;
|
||
|
||
space = isl_union_pw_aff_get_space(upa);
|
||
umap = isl_union_map_empty(space);
|
||
|
||
if (isl_union_pw_aff_foreach_pw_aff(upa, &map_from_pw_aff_entry,
|
||
&umap) < 0)
|
||
umap = isl_union_map_free(umap);
|
||
|
||
isl_union_pw_aff_free(upa);
|
||
return umap;
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_aff_pullback_union_pw_multi_aff.
|
||
* upma is the function that is plugged in.
|
||
* pa is the current part of the function in which upma is plugged in.
|
||
* res collects the results.
|
||
*/
|
||
struct isl_union_pw_aff_pullback_upma_data {
|
||
isl_union_pw_multi_aff *upma;
|
||
isl_pw_aff *pa;
|
||
isl_union_pw_aff *res;
|
||
};
|
||
|
||
/* Check if "pma" can be plugged into data->pa.
|
||
* If so, perform the pullback and add the result to data->res.
|
||
*/
|
||
static isl_stat pa_pb_pma(__isl_take isl_pw_multi_aff *pma, void *user)
|
||
{
|
||
struct isl_union_pw_aff_pullback_upma_data *data = user;
|
||
isl_pw_aff *pa;
|
||
|
||
if (!isl_space_tuple_is_equal(data->pa->dim, isl_dim_in,
|
||
pma->dim, isl_dim_out)) {
|
||
isl_pw_multi_aff_free(pma);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
pa = isl_pw_aff_copy(data->pa);
|
||
pa = isl_pw_aff_pullback_pw_multi_aff(pa, pma);
|
||
|
||
data->res = isl_union_pw_aff_add_pw_aff(data->res, pa);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Check if any of the elements of data->upma can be plugged into pa,
|
||
* add if so add the result to data->res.
|
||
*/
|
||
static isl_stat upa_pb_upma(__isl_take isl_pw_aff *pa, void *user)
|
||
{
|
||
struct isl_union_pw_aff_pullback_upma_data *data = user;
|
||
isl_stat r;
|
||
|
||
data->pa = pa;
|
||
r = isl_union_pw_multi_aff_foreach_pw_multi_aff(data->upma,
|
||
&pa_pb_pma, data);
|
||
isl_pw_aff_free(pa);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Compute the pullback of "upa" by the function represented by "upma".
|
||
* In other words, plug in "upma" in "upa". The result contains
|
||
* expressions defined over the domain space of "upma".
|
||
*
|
||
* Run over all pairs of elements in "upa" and "upma", perform
|
||
* the pullback when appropriate and collect the results.
|
||
* If the hash value were based on the domain space rather than
|
||
* the function space, then we could run through all elements
|
||
* of "upma" and directly pick out the corresponding element of "upa".
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_union_pw_aff_pullback_union_pw_multi_aff(
|
||
__isl_take isl_union_pw_aff *upa,
|
||
__isl_take isl_union_pw_multi_aff *upma)
|
||
{
|
||
struct isl_union_pw_aff_pullback_upma_data data = { NULL, NULL };
|
||
isl_space *space;
|
||
|
||
space = isl_union_pw_multi_aff_get_space(upma);
|
||
upa = isl_union_pw_aff_align_params(upa, space);
|
||
space = isl_union_pw_aff_get_space(upa);
|
||
upma = isl_union_pw_multi_aff_align_params(upma, space);
|
||
|
||
if (!upa || !upma)
|
||
goto error;
|
||
|
||
data.upma = upma;
|
||
data.res = isl_union_pw_aff_alloc_same_size(upa);
|
||
if (isl_union_pw_aff_foreach_pw_aff(upa, &upa_pb_upma, &data) < 0)
|
||
data.res = isl_union_pw_aff_free(data.res);
|
||
|
||
isl_union_pw_aff_free(upa);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return data.res;
|
||
error:
|
||
isl_union_pw_aff_free(upa);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return NULL;
|
||
}
|
||
|
||
#undef BASE
|
||
#define BASE union_pw_aff
|
||
#undef DOMBASE
|
||
#define DOMBASE union_set
|
||
|
||
#define NO_MOVE_DIMS
|
||
#define NO_DIMS
|
||
#define NO_DOMAIN
|
||
#define NO_PRODUCT
|
||
#define NO_SPLICE
|
||
#define NO_ZERO
|
||
#define NO_IDENTITY
|
||
#define NO_GIST
|
||
|
||
#include <isl_multi_templ.c>
|
||
#include <isl_multi_apply_set.c>
|
||
#include <isl_multi_apply_union_set.c>
|
||
#include <isl_multi_coalesce.c>
|
||
#include <isl_multi_floor.c>
|
||
#include <isl_multi_gist.c>
|
||
#include <isl_multi_intersect.c>
|
||
|
||
/* Construct a multiple union piecewise affine expression
|
||
* in the given space with value zero in each of the output dimensions.
|
||
*
|
||
* Since there is no canonical zero value for
|
||
* a union piecewise affine expression, we can only construct
|
||
* zero-dimensional "zero" value.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_zero(
|
||
__isl_take isl_space *space)
|
||
{
|
||
if (!space)
|
||
return NULL;
|
||
|
||
if (!isl_space_is_set(space))
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"expecting set space", goto error);
|
||
if (isl_space_dim(space , isl_dim_out) != 0)
|
||
isl_die(isl_space_get_ctx(space), isl_error_invalid,
|
||
"expecting 0D space", goto error);
|
||
|
||
return isl_multi_union_pw_aff_alloc(space);
|
||
error:
|
||
isl_space_free(space);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the sum of "mupa1" and "mupa2" on the union of their domains,
|
||
* with the actual sum on the shared domain and
|
||
* the defined expression on the symmetric difference of the domains.
|
||
*
|
||
* We simply iterate over the elements in both arguments and
|
||
* call isl_union_pw_aff_union_add on each of them.
|
||
*/
|
||
static __isl_give isl_multi_union_pw_aff *
|
||
isl_multi_union_pw_aff_union_add_aligned(
|
||
__isl_take isl_multi_union_pw_aff *mupa1,
|
||
__isl_take isl_multi_union_pw_aff *mupa2)
|
||
{
|
||
return isl_multi_union_pw_aff_bin_op(mupa1, mupa2,
|
||
&isl_union_pw_aff_union_add);
|
||
}
|
||
|
||
/* Compute the sum of "mupa1" and "mupa2" on the union of their domains,
|
||
* with the actual sum on the shared domain and
|
||
* the defined expression on the symmetric difference of the domains.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_union_add(
|
||
__isl_take isl_multi_union_pw_aff *mupa1,
|
||
__isl_take isl_multi_union_pw_aff *mupa2)
|
||
{
|
||
return isl_multi_union_pw_aff_align_params_multi_multi_and(mupa1, mupa2,
|
||
&isl_multi_union_pw_aff_union_add_aligned);
|
||
}
|
||
|
||
/* Construct and return a multi union piecewise affine expression
|
||
* that is equal to the given multi affine expression.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_aff(
|
||
__isl_take isl_multi_aff *ma)
|
||
{
|
||
isl_multi_pw_aff *mpa;
|
||
|
||
mpa = isl_multi_pw_aff_from_multi_aff(ma);
|
||
return isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
|
||
}
|
||
|
||
/* Construct and return a multi union piecewise affine expression
|
||
* that is equal to the given multi piecewise affine expression.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_pw_aff(
|
||
__isl_take isl_multi_pw_aff *mpa)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_multi_union_pw_aff *mupa;
|
||
|
||
if (!mpa)
|
||
return NULL;
|
||
|
||
space = isl_multi_pw_aff_get_space(mpa);
|
||
space = isl_space_range(space);
|
||
mupa = isl_multi_union_pw_aff_alloc(space);
|
||
|
||
n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa;
|
||
isl_union_pw_aff *upa;
|
||
|
||
pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
|
||
upa = isl_union_pw_aff_from_pw_aff(pa);
|
||
mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
|
||
}
|
||
|
||
isl_multi_pw_aff_free(mpa);
|
||
|
||
return mupa;
|
||
}
|
||
|
||
/* Extract the range space of "pma" and assign it to *space.
|
||
* If *space has already been set (through a previous call to this function),
|
||
* then check that the range space is the same.
|
||
*/
|
||
static isl_stat extract_space(__isl_take isl_pw_multi_aff *pma, void *user)
|
||
{
|
||
isl_space **space = user;
|
||
isl_space *pma_space;
|
||
isl_bool equal;
|
||
|
||
pma_space = isl_space_range(isl_pw_multi_aff_get_space(pma));
|
||
isl_pw_multi_aff_free(pma);
|
||
|
||
if (!pma_space)
|
||
return isl_stat_error;
|
||
if (!*space) {
|
||
*space = pma_space;
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
equal = isl_space_is_equal(pma_space, *space);
|
||
isl_space_free(pma_space);
|
||
|
||
if (equal < 0)
|
||
return isl_stat_error;
|
||
if (!equal)
|
||
isl_die(isl_space_get_ctx(*space), isl_error_invalid,
|
||
"range spaces not the same", return isl_stat_error);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Construct and return a multi union piecewise affine expression
|
||
* that is equal to the given union piecewise multi affine expression.
|
||
*
|
||
* In order to be able to perform the conversion, the input
|
||
* needs to be non-empty and may only involve a single range space.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *
|
||
isl_multi_union_pw_aff_from_union_pw_multi_aff(
|
||
__isl_take isl_union_pw_multi_aff *upma)
|
||
{
|
||
isl_space *space = NULL;
|
||
isl_multi_union_pw_aff *mupa;
|
||
int i, n;
|
||
|
||
if (!upma)
|
||
return NULL;
|
||
if (isl_union_pw_multi_aff_n_pw_multi_aff(upma) == 0)
|
||
isl_die(isl_union_pw_multi_aff_get_ctx(upma), isl_error_invalid,
|
||
"cannot extract range space from empty input",
|
||
goto error);
|
||
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &extract_space,
|
||
&space) < 0)
|
||
goto error;
|
||
|
||
if (!space)
|
||
goto error;
|
||
|
||
n = isl_space_dim(space, isl_dim_set);
|
||
mupa = isl_multi_union_pw_aff_alloc(space);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_union_pw_aff *upa;
|
||
|
||
upa = isl_union_pw_multi_aff_get_union_pw_aff(upma, i);
|
||
mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
|
||
}
|
||
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return mupa;
|
||
error:
|
||
isl_space_free(space);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Try and create an isl_multi_union_pw_aff that is equivalent
|
||
* to the given isl_union_map.
|
||
* The isl_union_map is required to be single-valued in each space.
|
||
* Moreover, it cannot be empty and all range spaces need to be the same.
|
||
* Otherwise, an error is produced.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_union_map(
|
||
__isl_take isl_union_map *umap)
|
||
{
|
||
isl_union_pw_multi_aff *upma;
|
||
|
||
upma = isl_union_pw_multi_aff_from_union_map(umap);
|
||
return isl_multi_union_pw_aff_from_union_pw_multi_aff(upma);
|
||
}
|
||
|
||
/* Return a multiple union piecewise affine expression
|
||
* that is equal to "mv" on "domain", assuming "domain" and "mv"
|
||
* have been aligned.
|
||
*/
|
||
static __isl_give isl_multi_union_pw_aff *
|
||
isl_multi_union_pw_aff_multi_val_on_domain_aligned(
|
||
__isl_take isl_union_set *domain, __isl_take isl_multi_val *mv)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_multi_union_pw_aff *mupa;
|
||
|
||
if (!domain || !mv)
|
||
goto error;
|
||
|
||
n = isl_multi_val_dim(mv, isl_dim_set);
|
||
space = isl_multi_val_get_space(mv);
|
||
mupa = isl_multi_union_pw_aff_alloc(space);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_val *v;
|
||
isl_union_pw_aff *upa;
|
||
|
||
v = isl_multi_val_get_val(mv, i);
|
||
upa = isl_union_pw_aff_val_on_domain(isl_union_set_copy(domain),
|
||
v);
|
||
mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
|
||
}
|
||
|
||
isl_union_set_free(domain);
|
||
isl_multi_val_free(mv);
|
||
return mupa;
|
||
error:
|
||
isl_union_set_free(domain);
|
||
isl_multi_val_free(mv);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a multiple union piecewise affine expression
|
||
* that is equal to "mv" on "domain".
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_val_on_domain(
|
||
__isl_take isl_union_set *domain, __isl_take isl_multi_val *mv)
|
||
{
|
||
if (!domain || !mv)
|
||
goto error;
|
||
if (isl_space_match(domain->dim, isl_dim_param,
|
||
mv->space, isl_dim_param))
|
||
return isl_multi_union_pw_aff_multi_val_on_domain_aligned(
|
||
domain, mv);
|
||
domain = isl_union_set_align_params(domain,
|
||
isl_multi_val_get_space(mv));
|
||
mv = isl_multi_val_align_params(mv, isl_union_set_get_space(domain));
|
||
return isl_multi_union_pw_aff_multi_val_on_domain_aligned(domain, mv);
|
||
error:
|
||
isl_union_set_free(domain);
|
||
isl_multi_val_free(mv);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a multiple union piecewise affine expression
|
||
* that is equal to "ma" on "domain", assuming "domain" and "ma"
|
||
* have been aligned.
|
||
*/
|
||
static __isl_give isl_multi_union_pw_aff *
|
||
isl_multi_union_pw_aff_multi_aff_on_domain_aligned(
|
||
__isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_multi_union_pw_aff *mupa;
|
||
|
||
if (!domain || !ma)
|
||
goto error;
|
||
|
||
n = isl_multi_aff_dim(ma, isl_dim_set);
|
||
space = isl_multi_aff_get_space(ma);
|
||
mupa = isl_multi_union_pw_aff_alloc(space);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_aff *aff;
|
||
isl_union_pw_aff *upa;
|
||
|
||
aff = isl_multi_aff_get_aff(ma, i);
|
||
upa = isl_union_pw_aff_aff_on_domain(isl_union_set_copy(domain),
|
||
aff);
|
||
mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
|
||
}
|
||
|
||
isl_union_set_free(domain);
|
||
isl_multi_aff_free(ma);
|
||
return mupa;
|
||
error:
|
||
isl_union_set_free(domain);
|
||
isl_multi_aff_free(ma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a multiple union piecewise affine expression
|
||
* that is equal to "ma" on "domain".
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_aff_on_domain(
|
||
__isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma)
|
||
{
|
||
if (!domain || !ma)
|
||
goto error;
|
||
if (isl_space_match(domain->dim, isl_dim_param,
|
||
ma->space, isl_dim_param))
|
||
return isl_multi_union_pw_aff_multi_aff_on_domain_aligned(
|
||
domain, ma);
|
||
domain = isl_union_set_align_params(domain,
|
||
isl_multi_aff_get_space(ma));
|
||
ma = isl_multi_aff_align_params(ma, isl_union_set_get_space(domain));
|
||
return isl_multi_union_pw_aff_multi_aff_on_domain_aligned(domain, ma);
|
||
error:
|
||
isl_union_set_free(domain);
|
||
isl_multi_aff_free(ma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a union set containing those elements in the domains
|
||
* of the elements of "mupa" where they are all zero.
|
||
*/
|
||
__isl_give isl_union_set *isl_multi_union_pw_aff_zero_union_set(
|
||
__isl_take isl_multi_union_pw_aff *mupa)
|
||
{
|
||
int i, n;
|
||
isl_union_pw_aff *upa;
|
||
isl_union_set *zero;
|
||
|
||
if (!mupa)
|
||
return NULL;
|
||
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
if (n == 0)
|
||
isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
|
||
"cannot determine zero set "
|
||
"of zero-dimensional function", goto error);
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
|
||
zero = isl_union_pw_aff_zero_union_set(upa);
|
||
|
||
for (i = 1; i < n; ++i) {
|
||
isl_union_set *zero_i;
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
zero_i = isl_union_pw_aff_zero_union_set(upa);
|
||
|
||
zero = isl_union_set_intersect(zero, zero_i);
|
||
}
|
||
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return zero;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Construct a union map mapping the shared domain
|
||
* of the union piecewise affine expressions to the range of "mupa"
|
||
* with each dimension in the range equated to the
|
||
* corresponding union piecewise affine expression.
|
||
*
|
||
* The input cannot be zero-dimensional as there is
|
||
* no way to extract a domain from a zero-dimensional isl_multi_union_pw_aff.
|
||
*/
|
||
__isl_give isl_union_map *isl_union_map_from_multi_union_pw_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_union_map *umap;
|
||
isl_union_pw_aff *upa;
|
||
|
||
if (!mupa)
|
||
return NULL;
|
||
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
if (n == 0)
|
||
isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
|
||
"cannot determine domain of zero-dimensional "
|
||
"isl_multi_union_pw_aff", goto error);
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
|
||
umap = isl_union_map_from_union_pw_aff(upa);
|
||
|
||
for (i = 1; i < n; ++i) {
|
||
isl_union_map *umap_i;
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
umap_i = isl_union_map_from_union_pw_aff(upa);
|
||
umap = isl_union_map_flat_range_product(umap, umap_i);
|
||
}
|
||
|
||
space = isl_multi_union_pw_aff_get_space(mupa);
|
||
umap = isl_union_map_reset_range_space(umap, space);
|
||
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return umap;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Internal data structure for isl_union_pw_multi_aff_reset_range_space.
|
||
* "range" is the space from which to set the range space.
|
||
* "res" collects the results.
|
||
*/
|
||
struct isl_union_pw_multi_aff_reset_range_space_data {
|
||
isl_space *range;
|
||
isl_union_pw_multi_aff *res;
|
||
};
|
||
|
||
/* Replace the range space of "pma" by the range space of data->range and
|
||
* add the result to data->res.
|
||
*/
|
||
static isl_stat reset_range_space(__isl_take isl_pw_multi_aff *pma, void *user)
|
||
{
|
||
struct isl_union_pw_multi_aff_reset_range_space_data *data = user;
|
||
isl_space *space;
|
||
|
||
space = isl_pw_multi_aff_get_space(pma);
|
||
space = isl_space_domain(space);
|
||
space = isl_space_extend_domain_with_range(space,
|
||
isl_space_copy(data->range));
|
||
pma = isl_pw_multi_aff_reset_space(pma, space);
|
||
data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma);
|
||
|
||
return data->res ? isl_stat_ok : isl_stat_error;
|
||
}
|
||
|
||
/* Replace the range space of all the piecewise affine expressions in "upma" by
|
||
* the range space of "space".
|
||
*
|
||
* This assumes that all these expressions have the same output dimension.
|
||
*
|
||
* Since the spaces of the expressions change, so do their hash values.
|
||
* We therefore need to create a new isl_union_pw_multi_aff.
|
||
* Note that the hash value is currently computed based on the entire
|
||
* space even though there can only be a single expression with a given
|
||
* domain space.
|
||
*/
|
||
static __isl_give isl_union_pw_multi_aff *
|
||
isl_union_pw_multi_aff_reset_range_space(
|
||
__isl_take isl_union_pw_multi_aff *upma, __isl_take isl_space *space)
|
||
{
|
||
struct isl_union_pw_multi_aff_reset_range_space_data data = { space };
|
||
isl_space *space_upma;
|
||
|
||
space_upma = isl_union_pw_multi_aff_get_space(upma);
|
||
data.res = isl_union_pw_multi_aff_empty(space_upma);
|
||
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
|
||
&reset_range_space, &data) < 0)
|
||
data.res = isl_union_pw_multi_aff_free(data.res);
|
||
|
||
isl_space_free(space);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return data.res;
|
||
}
|
||
|
||
/* Construct and return a union piecewise multi affine expression
|
||
* that is equal to the given multi union piecewise affine expression.
|
||
*
|
||
* In order to be able to perform the conversion, the input
|
||
* needs to have a least one output dimension.
|
||
*/
|
||
__isl_give isl_union_pw_multi_aff *
|
||
isl_union_pw_multi_aff_from_multi_union_pw_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_union_pw_multi_aff *upma;
|
||
isl_union_pw_aff *upa;
|
||
|
||
if (!mupa)
|
||
return NULL;
|
||
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
if (n == 0)
|
||
isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
|
||
"cannot determine domain of zero-dimensional "
|
||
"isl_multi_union_pw_aff", goto error);
|
||
|
||
space = isl_multi_union_pw_aff_get_space(mupa);
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
|
||
upma = isl_union_pw_multi_aff_from_union_pw_aff(upa);
|
||
|
||
for (i = 1; i < n; ++i) {
|
||
isl_union_pw_multi_aff *upma_i;
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
upma_i = isl_union_pw_multi_aff_from_union_pw_aff(upa);
|
||
upma = isl_union_pw_multi_aff_flat_range_product(upma, upma_i);
|
||
}
|
||
|
||
upma = isl_union_pw_multi_aff_reset_range_space(upma, space);
|
||
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return upma;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Intersect the range of "mupa" with "range".
|
||
* That is, keep only those domain elements that have a function value
|
||
* in "range".
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_intersect_range(
|
||
__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *range)
|
||
{
|
||
isl_union_pw_multi_aff *upma;
|
||
isl_union_set *domain;
|
||
isl_space *space;
|
||
int n;
|
||
int match;
|
||
|
||
if (!mupa || !range)
|
||
goto error;
|
||
|
||
space = isl_set_get_space(range);
|
||
match = isl_space_tuple_is_equal(mupa->space, isl_dim_set,
|
||
space, isl_dim_set);
|
||
isl_space_free(space);
|
||
if (match < 0)
|
||
goto error;
|
||
if (!match)
|
||
isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
|
||
"space don't match", goto error);
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
if (n == 0)
|
||
isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
|
||
"cannot intersect range of zero-dimensional "
|
||
"isl_multi_union_pw_aff", goto error);
|
||
|
||
upma = isl_union_pw_multi_aff_from_multi_union_pw_aff(
|
||
isl_multi_union_pw_aff_copy(mupa));
|
||
domain = isl_union_set_from_set(range);
|
||
domain = isl_union_set_preimage_union_pw_multi_aff(domain, upma);
|
||
mupa = isl_multi_union_pw_aff_intersect_domain(mupa, domain);
|
||
|
||
return mupa;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_set_free(range);
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the shared domain of the elements of "mupa".
|
||
*/
|
||
__isl_give isl_union_set *isl_multi_union_pw_aff_domain(
|
||
__isl_take isl_multi_union_pw_aff *mupa)
|
||
{
|
||
int i, n;
|
||
isl_union_pw_aff *upa;
|
||
isl_union_set *dom;
|
||
|
||
if (!mupa)
|
||
return NULL;
|
||
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
if (n == 0)
|
||
isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid,
|
||
"cannot determine domain", goto error);
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0);
|
||
dom = isl_union_pw_aff_domain(upa);
|
||
for (i = 1; i < n; ++i) {
|
||
isl_union_set *dom_i;
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
dom_i = isl_union_pw_aff_domain(upa);
|
||
dom = isl_union_set_intersect(dom, dom_i);
|
||
}
|
||
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return dom;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "aff" to "mupa". The space of "mupa" is equal to the domain of "aff".
|
||
* In particular, the spaces have been aligned.
|
||
* The result is defined over the shared domain of the elements of "mupa"
|
||
*
|
||
* We first extract the parametric constant part of "aff" and
|
||
* define that over the shared domain.
|
||
* Then we iterate over all input dimensions of "aff" and add the corresponding
|
||
* multiples of the elements of "mupa".
|
||
* Finally, we consider the integer divisions, calling the function
|
||
* recursively to obtain an isl_union_pw_aff corresponding to the
|
||
* integer division argument.
|
||
*/
|
||
static __isl_give isl_union_pw_aff *multi_union_pw_aff_apply_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff)
|
||
{
|
||
int i, n_in, n_div;
|
||
isl_union_pw_aff *upa;
|
||
isl_union_set *uset;
|
||
isl_val *v;
|
||
isl_aff *cst;
|
||
|
||
n_in = isl_aff_dim(aff, isl_dim_in);
|
||
n_div = isl_aff_dim(aff, isl_dim_div);
|
||
|
||
uset = isl_multi_union_pw_aff_domain(isl_multi_union_pw_aff_copy(mupa));
|
||
cst = isl_aff_copy(aff);
|
||
cst = isl_aff_drop_dims(cst, isl_dim_div, 0, n_div);
|
||
cst = isl_aff_drop_dims(cst, isl_dim_in, 0, n_in);
|
||
cst = isl_aff_project_domain_on_params(cst);
|
||
upa = isl_union_pw_aff_aff_on_domain(uset, cst);
|
||
|
||
for (i = 0; i < n_in; ++i) {
|
||
isl_union_pw_aff *upa_i;
|
||
|
||
if (!isl_aff_involves_dims(aff, isl_dim_in, i, 1))
|
||
continue;
|
||
v = isl_aff_get_coefficient_val(aff, isl_dim_in, i);
|
||
upa_i = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
upa_i = isl_union_pw_aff_scale_val(upa_i, v);
|
||
upa = isl_union_pw_aff_add(upa, upa_i);
|
||
}
|
||
|
||
for (i = 0; i < n_div; ++i) {
|
||
isl_aff *div;
|
||
isl_union_pw_aff *upa_i;
|
||
|
||
if (!isl_aff_involves_dims(aff, isl_dim_div, i, 1))
|
||
continue;
|
||
div = isl_aff_get_div(aff, i);
|
||
upa_i = multi_union_pw_aff_apply_aff(
|
||
isl_multi_union_pw_aff_copy(mupa), div);
|
||
upa_i = isl_union_pw_aff_floor(upa_i);
|
||
v = isl_aff_get_coefficient_val(aff, isl_dim_div, i);
|
||
upa_i = isl_union_pw_aff_scale_val(upa_i, v);
|
||
upa = isl_union_pw_aff_add(upa, upa_i);
|
||
}
|
||
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_aff_free(aff);
|
||
|
||
return upa;
|
||
}
|
||
|
||
/* Apply "aff" to "mupa". The space of "mupa" needs to be compatible
|
||
* with the domain of "aff".
|
||
* Furthermore, the dimension of this space needs to be greater than zero.
|
||
* The result is defined over the shared domain of the elements of "mupa"
|
||
*
|
||
* We perform these checks and then hand over control to
|
||
* multi_union_pw_aff_apply_aff.
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff)
|
||
{
|
||
isl_space *space1, *space2;
|
||
int equal;
|
||
|
||
mupa = isl_multi_union_pw_aff_align_params(mupa,
|
||
isl_aff_get_space(aff));
|
||
aff = isl_aff_align_params(aff, isl_multi_union_pw_aff_get_space(mupa));
|
||
if (!mupa || !aff)
|
||
goto error;
|
||
|
||
space1 = isl_multi_union_pw_aff_get_space(mupa);
|
||
space2 = isl_aff_get_domain_space(aff);
|
||
equal = isl_space_is_equal(space1, space2);
|
||
isl_space_free(space1);
|
||
isl_space_free(space2);
|
||
if (equal < 0)
|
||
goto error;
|
||
if (!equal)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
if (isl_aff_dim(aff, isl_dim_in) == 0)
|
||
isl_die(isl_aff_get_ctx(aff), isl_error_invalid,
|
||
"cannot determine domains", goto error);
|
||
|
||
return multi_union_pw_aff_apply_aff(mupa, aff);
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_aff_free(aff);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "ma" to "mupa". The space of "mupa" needs to be compatible
|
||
* with the domain of "ma".
|
||
* Furthermore, the dimension of this space needs to be greater than zero,
|
||
* unless the dimension of the target space of "ma" is also zero.
|
||
* The result is defined over the shared domain of the elements of "mupa"
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_multi_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_aff *ma)
|
||
{
|
||
isl_space *space1, *space2;
|
||
isl_multi_union_pw_aff *res;
|
||
int equal;
|
||
int i, n_out;
|
||
|
||
mupa = isl_multi_union_pw_aff_align_params(mupa,
|
||
isl_multi_aff_get_space(ma));
|
||
ma = isl_multi_aff_align_params(ma,
|
||
isl_multi_union_pw_aff_get_space(mupa));
|
||
if (!mupa || !ma)
|
||
goto error;
|
||
|
||
space1 = isl_multi_union_pw_aff_get_space(mupa);
|
||
space2 = isl_multi_aff_get_domain_space(ma);
|
||
equal = isl_space_is_equal(space1, space2);
|
||
isl_space_free(space1);
|
||
isl_space_free(space2);
|
||
if (equal < 0)
|
||
goto error;
|
||
if (!equal)
|
||
isl_die(isl_multi_aff_get_ctx(ma), isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
n_out = isl_multi_aff_dim(ma, isl_dim_out);
|
||
if (isl_multi_aff_dim(ma, isl_dim_in) == 0 && n_out != 0)
|
||
isl_die(isl_multi_aff_get_ctx(ma), isl_error_invalid,
|
||
"cannot determine domains", goto error);
|
||
|
||
space1 = isl_space_range(isl_multi_aff_get_space(ma));
|
||
res = isl_multi_union_pw_aff_alloc(space1);
|
||
|
||
for (i = 0; i < n_out; ++i) {
|
||
isl_aff *aff;
|
||
isl_union_pw_aff *upa;
|
||
|
||
aff = isl_multi_aff_get_aff(ma, i);
|
||
upa = multi_union_pw_aff_apply_aff(
|
||
isl_multi_union_pw_aff_copy(mupa), aff);
|
||
res = isl_multi_union_pw_aff_set_union_pw_aff(res, i, upa);
|
||
}
|
||
|
||
isl_multi_aff_free(ma);
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return res;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_multi_aff_free(ma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "pa" to "mupa". The space of "mupa" needs to be compatible
|
||
* with the domain of "pa".
|
||
* Furthermore, the dimension of this space needs to be greater than zero.
|
||
* The result is defined over the shared domain of the elements of "mupa"
|
||
*/
|
||
__isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_pw_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_aff *pa)
|
||
{
|
||
int i;
|
||
int equal;
|
||
isl_space *space, *space2;
|
||
isl_union_pw_aff *upa;
|
||
|
||
mupa = isl_multi_union_pw_aff_align_params(mupa,
|
||
isl_pw_aff_get_space(pa));
|
||
pa = isl_pw_aff_align_params(pa,
|
||
isl_multi_union_pw_aff_get_space(mupa));
|
||
if (!mupa || !pa)
|
||
goto error;
|
||
|
||
space = isl_multi_union_pw_aff_get_space(mupa);
|
||
space2 = isl_pw_aff_get_domain_space(pa);
|
||
equal = isl_space_is_equal(space, space2);
|
||
isl_space_free(space);
|
||
isl_space_free(space2);
|
||
if (equal < 0)
|
||
goto error;
|
||
if (!equal)
|
||
isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
if (isl_pw_aff_dim(pa, isl_dim_in) == 0)
|
||
isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid,
|
||
"cannot determine domains", goto error);
|
||
|
||
space = isl_space_params(isl_multi_union_pw_aff_get_space(mupa));
|
||
upa = isl_union_pw_aff_empty(space);
|
||
|
||
for (i = 0; i < pa->n; ++i) {
|
||
isl_aff *aff;
|
||
isl_set *domain;
|
||
isl_multi_union_pw_aff *mupa_i;
|
||
isl_union_pw_aff *upa_i;
|
||
|
||
mupa_i = isl_multi_union_pw_aff_copy(mupa);
|
||
domain = isl_set_copy(pa->p[i].set);
|
||
mupa_i = isl_multi_union_pw_aff_intersect_range(mupa_i, domain);
|
||
aff = isl_aff_copy(pa->p[i].aff);
|
||
upa_i = multi_union_pw_aff_apply_aff(mupa_i, aff);
|
||
upa = isl_union_pw_aff_union_add(upa, upa_i);
|
||
}
|
||
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_pw_aff_free(pa);
|
||
return upa;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_pw_aff_free(pa);
|
||
return NULL;
|
||
}
|
||
|
||
/* Apply "pma" to "mupa". The space of "mupa" needs to be compatible
|
||
* with the domain of "pma".
|
||
* Furthermore, the dimension of this space needs to be greater than zero,
|
||
* unless the dimension of the target space of "pma" is also zero.
|
||
* The result is defined over the shared domain of the elements of "mupa"
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_pw_multi_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa,
|
||
__isl_take isl_pw_multi_aff *pma)
|
||
{
|
||
isl_space *space1, *space2;
|
||
isl_multi_union_pw_aff *res;
|
||
int equal;
|
||
int i, n_out;
|
||
|
||
mupa = isl_multi_union_pw_aff_align_params(mupa,
|
||
isl_pw_multi_aff_get_space(pma));
|
||
pma = isl_pw_multi_aff_align_params(pma,
|
||
isl_multi_union_pw_aff_get_space(mupa));
|
||
if (!mupa || !pma)
|
||
goto error;
|
||
|
||
space1 = isl_multi_union_pw_aff_get_space(mupa);
|
||
space2 = isl_pw_multi_aff_get_domain_space(pma);
|
||
equal = isl_space_is_equal(space1, space2);
|
||
isl_space_free(space1);
|
||
isl_space_free(space2);
|
||
if (equal < 0)
|
||
goto error;
|
||
if (!equal)
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"spaces don't match", goto error);
|
||
n_out = isl_pw_multi_aff_dim(pma, isl_dim_out);
|
||
if (isl_pw_multi_aff_dim(pma, isl_dim_in) == 0 && n_out != 0)
|
||
isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid,
|
||
"cannot determine domains", goto error);
|
||
|
||
space1 = isl_space_range(isl_pw_multi_aff_get_space(pma));
|
||
res = isl_multi_union_pw_aff_alloc(space1);
|
||
|
||
for (i = 0; i < n_out; ++i) {
|
||
isl_pw_aff *pa;
|
||
isl_union_pw_aff *upa;
|
||
|
||
pa = isl_pw_multi_aff_get_pw_aff(pma, i);
|
||
upa = isl_multi_union_pw_aff_apply_pw_aff(
|
||
isl_multi_union_pw_aff_copy(mupa), pa);
|
||
res = isl_multi_union_pw_aff_set_union_pw_aff(res, i, upa);
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
return res;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_pw_multi_aff_free(pma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the pullback of "mupa" by the function represented by "upma".
|
||
* In other words, plug in "upma" in "mupa". The result contains
|
||
* expressions defined over the domain space of "upma".
|
||
*
|
||
* Run over all elements of "mupa" and plug in "upma" in each of them.
|
||
*/
|
||
__isl_give isl_multi_union_pw_aff *
|
||
isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
|
||
__isl_take isl_multi_union_pw_aff *mupa,
|
||
__isl_take isl_union_pw_multi_aff *upma)
|
||
{
|
||
int i, n;
|
||
|
||
mupa = isl_multi_union_pw_aff_align_params(mupa,
|
||
isl_union_pw_multi_aff_get_space(upma));
|
||
upma = isl_union_pw_multi_aff_align_params(upma,
|
||
isl_multi_union_pw_aff_get_space(mupa));
|
||
if (!mupa || !upma)
|
||
goto error;
|
||
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_union_pw_aff *upa;
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
upa = isl_union_pw_aff_pullback_union_pw_multi_aff(upa,
|
||
isl_union_pw_multi_aff_copy(upma));
|
||
mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa);
|
||
}
|
||
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return mupa;
|
||
error:
|
||
isl_multi_union_pw_aff_free(mupa);
|
||
isl_union_pw_multi_aff_free(upma);
|
||
return NULL;
|
||
}
|
||
|
||
/* Extract the sequence of elements in "mupa" with domain space "space"
|
||
* (ignoring parameters).
|
||
*
|
||
* For the elements of "mupa" that are not defined on the specified space,
|
||
* the corresponding element in the result is empty.
|
||
*/
|
||
__isl_give isl_multi_pw_aff *isl_multi_union_pw_aff_extract_multi_pw_aff(
|
||
__isl_keep isl_multi_union_pw_aff *mupa, __isl_take isl_space *space)
|
||
{
|
||
int i, n;
|
||
isl_space *space_mpa = NULL;
|
||
isl_multi_pw_aff *mpa;
|
||
|
||
if (!mupa || !space)
|
||
goto error;
|
||
|
||
space_mpa = isl_multi_union_pw_aff_get_space(mupa);
|
||
if (!isl_space_match(space_mpa, isl_dim_param, space, isl_dim_param)) {
|
||
space = isl_space_drop_dims(space, isl_dim_param,
|
||
0, isl_space_dim(space, isl_dim_param));
|
||
space = isl_space_align_params(space,
|
||
isl_space_copy(space_mpa));
|
||
if (!space)
|
||
goto error;
|
||
}
|
||
space_mpa = isl_space_map_from_domain_and_range(isl_space_copy(space),
|
||
space_mpa);
|
||
mpa = isl_multi_pw_aff_alloc(space_mpa);
|
||
|
||
space = isl_space_from_domain(space);
|
||
space = isl_space_add_dims(space, isl_dim_out, 1);
|
||
n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_union_pw_aff *upa;
|
||
isl_pw_aff *pa;
|
||
|
||
upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
|
||
pa = isl_union_pw_aff_extract_pw_aff(upa,
|
||
isl_space_copy(space));
|
||
mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa);
|
||
isl_union_pw_aff_free(upa);
|
||
}
|
||
|
||
isl_space_free(space);
|
||
return mpa;
|
||
error:
|
||
isl_space_free(space_mpa);
|
||
isl_space_free(space);
|
||
return NULL;
|
||
}
|