forked from OSchip/llvm-project
3257 lines
74 KiB
C
3257 lines
74 KiB
C
/*
|
|
Name: imath.c
|
|
Purpose: Arbitrary precision integer arithmetic routines.
|
|
Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
|
|
|
|
Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
|
|
#include "imath.h"
|
|
|
|
#if DEBUG
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#if DEBUG
|
|
#define STATIC /* public */
|
|
#else
|
|
#define STATIC static
|
|
#endif
|
|
|
|
const mp_result MP_OK = 0; /* no error, all is well */
|
|
const mp_result MP_FALSE = 0; /* boolean false */
|
|
const mp_result MP_TRUE = -1; /* boolean true */
|
|
const mp_result MP_MEMORY = -2; /* out of memory */
|
|
const mp_result MP_RANGE = -3; /* argument out of range */
|
|
const mp_result MP_UNDEF = -4; /* result undefined */
|
|
const mp_result MP_TRUNC = -5; /* output truncated */
|
|
const mp_result MP_BADARG = -6; /* invalid null argument */
|
|
const mp_result MP_MINERR = -6;
|
|
|
|
const mp_sign MP_NEG = 1; /* value is strictly negative */
|
|
const mp_sign MP_ZPOS = 0; /* value is non-negative */
|
|
|
|
STATIC const char *s_unknown_err = "unknown result code";
|
|
STATIC const char *s_error_msg[] = {
|
|
"error code 0",
|
|
"boolean true",
|
|
"out of memory",
|
|
"argument out of range",
|
|
"result undefined",
|
|
"output truncated",
|
|
"invalid argument",
|
|
NULL
|
|
};
|
|
|
|
/* Argument checking macros
|
|
Use CHECK() where a return value is required; NRCHECK() elsewhere */
|
|
#define CHECK(TEST) assert(TEST)
|
|
#define NRCHECK(TEST) assert(TEST)
|
|
|
|
/* The ith entry of this table gives the value of log_i(2).
|
|
|
|
An integer value n requires ceil(log_i(n)) digits to be represented
|
|
in base i. Since it is easy to compute lg(n), by counting bits, we
|
|
can compute log_i(n) = lg(n) * log_i(2).
|
|
|
|
The use of this table eliminates a dependency upon linkage against
|
|
the standard math libraries.
|
|
|
|
If MP_MAX_RADIX is increased, this table should be expanded too.
|
|
*/
|
|
STATIC const double s_log2[] = {
|
|
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */
|
|
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
|
|
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
|
|
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
|
|
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
|
|
0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
|
|
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
|
|
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
|
|
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
|
|
0.193426404, /* 36 */
|
|
};
|
|
|
|
|
|
|
|
/* Return the number of digits needed to represent a static value */
|
|
#define MP_VALUE_DIGITS(V) \
|
|
((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
|
|
|
|
/* Round precision P to nearest word boundary */
|
|
#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
|
|
|
|
/* Set array P of S digits to zero */
|
|
#define ZERO(P, S) \
|
|
do{ \
|
|
mp_size i__ = (S) * sizeof(mp_digit); \
|
|
mp_digit *p__ = (P); \
|
|
memset(p__, 0, i__); \
|
|
} while(0)
|
|
|
|
/* Copy S digits from array P to array Q */
|
|
#define COPY(P, Q, S) \
|
|
do{ \
|
|
mp_size i__ = (S) * sizeof(mp_digit); \
|
|
mp_digit *p__ = (P), *q__ = (Q); \
|
|
memcpy(q__, p__, i__); \
|
|
} while(0)
|
|
|
|
/* Reverse N elements of type T in array A */
|
|
#define REV(T, A, N) \
|
|
do{ \
|
|
T *u_ = (A), *v_ = u_ + (N) - 1; \
|
|
while (u_ < v_) { \
|
|
T xch = *u_; \
|
|
*u_++ = *v_; \
|
|
*v_-- = xch; \
|
|
} \
|
|
} while(0)
|
|
|
|
#define CLAMP(Z) \
|
|
do{ \
|
|
mp_int z_ = (Z); \
|
|
mp_size uz_ = MP_USED(z_); \
|
|
mp_digit *dz_ = MP_DIGITS(z_) + uz_ -1; \
|
|
while (uz_ > 1 && (*dz_-- == 0)) \
|
|
--uz_; \
|
|
MP_USED(z_) = uz_; \
|
|
} while(0)
|
|
|
|
/* Select min/max. Do not provide expressions for which multiple
|
|
evaluation would be problematic, e.g. x++ */
|
|
#define MIN(A, B) ((B)<(A)?(B):(A))
|
|
#define MAX(A, B) ((B)>(A)?(B):(A))
|
|
|
|
/* Exchange lvalues A and B of type T, e.g.
|
|
SWAP(int, x, y) where x and y are variables of type int. */
|
|
#define SWAP(T, A, B) \
|
|
do{ \
|
|
T t_ = (A); \
|
|
A = (B); \
|
|
B = t_; \
|
|
} while(0)
|
|
|
|
/* Used to set up and access simple temp stacks within functions. */
|
|
#define DECLARE_TEMP(N) \
|
|
mpz_t temp[(N)]; \
|
|
int last__ = 0
|
|
#define CLEANUP_TEMP() \
|
|
CLEANUP: \
|
|
while (--last__ >= 0) \
|
|
mp_int_clear(TEMP(last__))
|
|
#define TEMP(K) (temp + (K))
|
|
#define LAST_TEMP() TEMP(last__)
|
|
#define SETUP(E) \
|
|
do{ \
|
|
if ((res = (E)) != MP_OK) \
|
|
goto CLEANUP; \
|
|
++(last__); \
|
|
} while(0)
|
|
|
|
/* Compare value to zero. */
|
|
#define CMPZ(Z) \
|
|
(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
|
|
|
|
/* Multiply X by Y into Z, ignoring signs. Requires that Z have
|
|
enough storage preallocated to hold the result. */
|
|
#define UMUL(X, Y, Z) \
|
|
do{ \
|
|
mp_size ua_ = MP_USED(X), ub_ = MP_USED(Y); \
|
|
mp_size o_ = ua_ + ub_; \
|
|
ZERO(MP_DIGITS(Z), o_); \
|
|
(void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_); \
|
|
MP_USED(Z) = o_; \
|
|
CLAMP(Z); \
|
|
} while(0)
|
|
|
|
/* Square X into Z. Requires that Z have enough storage to hold the
|
|
result. */
|
|
#define USQR(X, Z) \
|
|
do{ \
|
|
mp_size ua_ = MP_USED(X), o_ = ua_ + ua_; \
|
|
ZERO(MP_DIGITS(Z), o_); \
|
|
(void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_); \
|
|
MP_USED(Z) = o_; \
|
|
CLAMP(Z); \
|
|
} while(0)
|
|
|
|
#define UPPER_HALF(W) ((mp_word)((W) >> MP_DIGIT_BIT))
|
|
#define LOWER_HALF(W) ((mp_digit)(W))
|
|
#define HIGH_BIT_SET(W) ((W) >> (MP_WORD_BIT - 1))
|
|
#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
|
|
|
|
|
|
|
|
/* Default number of digits allocated to a new mp_int */
|
|
#if IMATH_TEST
|
|
mp_size default_precision = MP_DEFAULT_PREC;
|
|
#else
|
|
STATIC const mp_size default_precision = MP_DEFAULT_PREC;
|
|
#endif
|
|
|
|
/* Minimum number of digits to invoke recursive multiply */
|
|
#if IMATH_TEST
|
|
mp_size multiply_threshold = MP_MULT_THRESH;
|
|
#else
|
|
STATIC const mp_size multiply_threshold = MP_MULT_THRESH;
|
|
#endif
|
|
|
|
/* Allocate a buffer of (at least) num digits, or return
|
|
NULL if that couldn't be done. */
|
|
STATIC mp_digit *s_alloc(mp_size num);
|
|
|
|
/* Release a buffer of digits allocated by s_alloc(). */
|
|
STATIC void s_free(void *ptr);
|
|
|
|
/* Insure that z has at least min digits allocated, resizing if
|
|
necessary. Returns true if successful, false if out of memory. */
|
|
STATIC int s_pad(mp_int z, mp_size min);
|
|
|
|
/* Fill in a "fake" mp_int on the stack with a given value */
|
|
STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
|
|
STATIC void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
|
|
|
|
/* Compare two runs of digits of given length, returns <0, 0, >0 */
|
|
STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
|
|
|
|
/* Pack the unsigned digits of v into array t */
|
|
STATIC int s_uvpack(mp_usmall v, mp_digit t[]);
|
|
|
|
/* Compare magnitudes of a and b, returns <0, 0, >0 */
|
|
STATIC int s_ucmp(mp_int a, mp_int b);
|
|
|
|
/* Compare magnitudes of a and v, returns <0, 0, >0 */
|
|
STATIC int s_vcmp(mp_int a, mp_small v);
|
|
STATIC int s_uvcmp(mp_int a, mp_usmall uv);
|
|
|
|
/* Unsigned magnitude addition; assumes dc is big enough.
|
|
Carry out is returned (no memory allocated). */
|
|
STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b);
|
|
|
|
/* Unsigned magnitude subtraction. Assumes dc is big enough. */
|
|
STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b);
|
|
|
|
/* Unsigned recursive multiplication. Assumes dc is big enough. */
|
|
STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b);
|
|
|
|
/* Unsigned magnitude multiplication. Assumes dc is big enough. */
|
|
STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b);
|
|
|
|
/* Unsigned recursive squaring. Assumes dc is big enough. */
|
|
STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
|
|
|
|
/* Unsigned magnitude squaring. Assumes dc is big enough. */
|
|
STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
|
|
|
|
/* Single digit addition. Assumes a is big enough. */
|
|
STATIC void s_dadd(mp_int a, mp_digit b);
|
|
|
|
/* Single digit multiplication. Assumes a is big enough. */
|
|
STATIC void s_dmul(mp_int a, mp_digit b);
|
|
|
|
/* Single digit multiplication on buffers; assumes dc is big enough. */
|
|
STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
|
|
mp_size size_a);
|
|
|
|
/* Single digit division. Replaces a with the quotient,
|
|
returns the remainder. */
|
|
STATIC mp_digit s_ddiv(mp_int a, mp_digit b);
|
|
|
|
/* Quick division by a power of 2, replaces z (no allocation) */
|
|
STATIC void s_qdiv(mp_int z, mp_size p2);
|
|
|
|
/* Quick remainder by a power of 2, replaces z (no allocation) */
|
|
STATIC void s_qmod(mp_int z, mp_size p2);
|
|
|
|
/* Quick multiplication by a power of 2, replaces z.
|
|
Allocates if necessary; returns false in case this fails. */
|
|
STATIC int s_qmul(mp_int z, mp_size p2);
|
|
|
|
/* Quick subtraction from a power of 2, replaces z.
|
|
Allocates if necessary; returns false in case this fails. */
|
|
STATIC int s_qsub(mp_int z, mp_size p2);
|
|
|
|
/* Return maximum k such that 2^k divides z. */
|
|
STATIC int s_dp2k(mp_int z);
|
|
|
|
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
|
|
STATIC int s_isp2(mp_int z);
|
|
|
|
/* Set z to 2^k. May allocate; returns false in case this fails. */
|
|
STATIC int s_2expt(mp_int z, mp_small k);
|
|
|
|
/* Normalize a and b for division, returns normalization constant */
|
|
STATIC int s_norm(mp_int a, mp_int b);
|
|
|
|
/* Compute constant mu for Barrett reduction, given modulus m, result
|
|
replaces z, m is untouched. */
|
|
STATIC mp_result s_brmu(mp_int z, mp_int m);
|
|
|
|
/* Reduce a modulo m, using Barrett's algorithm. */
|
|
STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
|
|
|
|
/* Modular exponentiation, using Barrett reduction */
|
|
STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
|
|
|
|
/* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries;
|
|
overwrites a with quotient, b with remainder. */
|
|
STATIC mp_result s_udiv_knuth(mp_int a, mp_int b);
|
|
|
|
/* Compute the number of digits in radix r required to represent the given
|
|
value. Does not account for sign flags, terminators, etc. */
|
|
STATIC int s_outlen(mp_int z, mp_size r);
|
|
|
|
/* Guess how many digits of precision will be needed to represent a radix r
|
|
value of the specified number of digits. Returns a value guaranteed to be
|
|
no smaller than the actual number required. */
|
|
STATIC mp_size s_inlen(int len, mp_size r);
|
|
|
|
/* Convert a character to a digit value in radix r, or
|
|
-1 if out of range */
|
|
STATIC int s_ch2val(char c, int r);
|
|
|
|
/* Convert a digit value to a character */
|
|
STATIC char s_val2ch(int v, int caps);
|
|
|
|
/* Take 2's complement of a buffer in place */
|
|
STATIC void s_2comp(unsigned char *buf, int len);
|
|
|
|
/* Convert a value to binary, ignoring sign. On input, *limpos is the bound on
|
|
how many bytes should be written to buf; on output, *limpos is set to the
|
|
number of bytes actually written. */
|
|
STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
|
|
|
|
#if DEBUG
|
|
/* Dump a representation of the mp_int to standard output */
|
|
void s_print(char *tag, mp_int z);
|
|
void s_print_buf(char *tag, mp_digit *buf, mp_size num);
|
|
#endif
|
|
|
|
mp_result mp_int_init(mp_int z)
|
|
{
|
|
if (z == NULL)
|
|
return MP_BADARG;
|
|
|
|
z->single = 0;
|
|
z->digits = &(z->single);
|
|
z->alloc = 1;
|
|
z->used = 1;
|
|
z->sign = MP_ZPOS;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_int mp_int_alloc(void)
|
|
{
|
|
mp_int out = malloc(sizeof(mpz_t));
|
|
|
|
if (out != NULL)
|
|
mp_int_init(out);
|
|
|
|
return out;
|
|
}
|
|
|
|
mp_result mp_int_init_size(mp_int z, mp_size prec)
|
|
{
|
|
CHECK(z != NULL);
|
|
|
|
if (prec == 0)
|
|
prec = default_precision;
|
|
else if (prec == 1)
|
|
return mp_int_init(z);
|
|
else
|
|
prec = (mp_size) ROUND_PREC(prec);
|
|
|
|
if ((MP_DIGITS(z) = s_alloc(prec)) == NULL)
|
|
return MP_MEMORY;
|
|
|
|
z->digits[0] = 0;
|
|
MP_USED(z) = 1;
|
|
MP_ALLOC(z) = prec;
|
|
MP_SIGN(z) = MP_ZPOS;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_init_copy(mp_int z, mp_int old)
|
|
{
|
|
mp_result res;
|
|
mp_size uold;
|
|
|
|
CHECK(z != NULL && old != NULL);
|
|
|
|
uold = MP_USED(old);
|
|
if (uold == 1) {
|
|
mp_int_init(z);
|
|
}
|
|
else {
|
|
mp_size target = MAX(uold, default_precision);
|
|
|
|
if ((res = mp_int_init_size(z, target)) != MP_OK)
|
|
return res;
|
|
}
|
|
|
|
MP_USED(z) = uold;
|
|
MP_SIGN(z) = MP_SIGN(old);
|
|
COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_init_value(mp_int z, mp_small value)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
return mp_int_init_copy(z, &vtmp);
|
|
}
|
|
|
|
mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
|
|
|
|
s_ufake(&vtmp, uvalue, vbuf);
|
|
return mp_int_init_copy(z, &vtmp);
|
|
}
|
|
|
|
mp_result mp_int_set_value(mp_int z, mp_small value)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
return mp_int_copy(&vtmp, z);
|
|
}
|
|
|
|
mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
|
|
|
|
s_ufake(&vtmp, uvalue, vbuf);
|
|
return mp_int_copy(&vtmp, z);
|
|
}
|
|
|
|
void mp_int_clear(mp_int z)
|
|
{
|
|
if (z == NULL)
|
|
return;
|
|
|
|
if (MP_DIGITS(z) != NULL) {
|
|
if (MP_DIGITS(z) != &(z->single))
|
|
s_free(MP_DIGITS(z));
|
|
|
|
MP_DIGITS(z) = NULL;
|
|
}
|
|
}
|
|
|
|
void mp_int_free(mp_int z)
|
|
{
|
|
NRCHECK(z != NULL);
|
|
|
|
mp_int_clear(z);
|
|
free(z); /* note: NOT s_free() */
|
|
}
|
|
|
|
mp_result mp_int_copy(mp_int a, mp_int c)
|
|
{
|
|
CHECK(a != NULL && c != NULL);
|
|
|
|
if (a != c) {
|
|
mp_size ua = MP_USED(a);
|
|
mp_digit *da, *dc;
|
|
|
|
if (!s_pad(c, ua))
|
|
return MP_MEMORY;
|
|
|
|
da = MP_DIGITS(a); dc = MP_DIGITS(c);
|
|
COPY(da, dc, ua);
|
|
|
|
MP_USED(c) = ua;
|
|
MP_SIGN(c) = MP_SIGN(a);
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
void mp_int_swap(mp_int a, mp_int c)
|
|
{
|
|
if (a != c) {
|
|
mpz_t tmp = *a;
|
|
|
|
*a = *c;
|
|
*c = tmp;
|
|
|
|
if (MP_DIGITS(a) == &(c->single))
|
|
MP_DIGITS(a) = &(a->single);
|
|
if (MP_DIGITS(c) == &(a->single))
|
|
MP_DIGITS(c) = &(c->single);
|
|
}
|
|
}
|
|
|
|
void mp_int_zero(mp_int z)
|
|
{
|
|
NRCHECK(z != NULL);
|
|
|
|
z->digits[0] = 0;
|
|
MP_USED(z) = 1;
|
|
MP_SIGN(z) = MP_ZPOS;
|
|
}
|
|
|
|
mp_result mp_int_abs(mp_int a, mp_int c)
|
|
{
|
|
mp_result res;
|
|
|
|
CHECK(a != NULL && c != NULL);
|
|
|
|
if ((res = mp_int_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
MP_SIGN(c) = MP_ZPOS;
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_neg(mp_int a, mp_int c)
|
|
{
|
|
mp_result res;
|
|
|
|
CHECK(a != NULL && c != NULL);
|
|
|
|
if ((res = mp_int_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
if (CMPZ(c) != 0)
|
|
MP_SIGN(c) = 1 - MP_SIGN(a);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
mp_size ua, ub, uc, max;
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL);
|
|
|
|
ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
|
|
max = MAX(ua, ub);
|
|
|
|
if (MP_SIGN(a) == MP_SIGN(b)) {
|
|
/* Same sign -- add magnitudes, preserve sign of addends */
|
|
mp_digit carry;
|
|
|
|
if (!s_pad(c, max))
|
|
return MP_MEMORY;
|
|
|
|
carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
|
|
uc = max;
|
|
|
|
if (carry) {
|
|
if (!s_pad(c, max + 1))
|
|
return MP_MEMORY;
|
|
|
|
c->digits[max] = carry;
|
|
++uc;
|
|
}
|
|
|
|
MP_USED(c) = uc;
|
|
MP_SIGN(c) = MP_SIGN(a);
|
|
|
|
}
|
|
else {
|
|
/* Different signs -- subtract magnitudes, preserve sign of greater */
|
|
mp_int x, y;
|
|
int cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
|
|
|
|
/* Set x to max(a, b), y to min(a, b) to simplify later code.
|
|
A special case yields zero for equal magnitudes.
|
|
*/
|
|
if (cmp == 0) {
|
|
mp_int_zero(c);
|
|
return MP_OK;
|
|
}
|
|
else if (cmp < 0) {
|
|
x = b; y = a;
|
|
}
|
|
else {
|
|
x = a; y = b;
|
|
}
|
|
|
|
if (!s_pad(c, MP_USED(x)))
|
|
return MP_MEMORY;
|
|
|
|
/* Subtract smaller from larger */
|
|
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
|
|
MP_USED(c) = MP_USED(x);
|
|
CLAMP(c);
|
|
|
|
/* Give result the sign of the larger */
|
|
MP_SIGN(c) = MP_SIGN(x);
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_add(a, &vtmp, c);
|
|
}
|
|
|
|
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
mp_size ua, ub, uc, max;
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL);
|
|
|
|
ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
|
|
max = MAX(ua, ub);
|
|
|
|
if (MP_SIGN(a) != MP_SIGN(b)) {
|
|
/* Different signs -- add magnitudes and keep sign of a */
|
|
mp_digit carry;
|
|
|
|
if (!s_pad(c, max))
|
|
return MP_MEMORY;
|
|
|
|
carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
|
|
uc = max;
|
|
|
|
if (carry) {
|
|
if (!s_pad(c, max + 1))
|
|
return MP_MEMORY;
|
|
|
|
c->digits[max] = carry;
|
|
++uc;
|
|
}
|
|
|
|
MP_USED(c) = uc;
|
|
MP_SIGN(c) = MP_SIGN(a);
|
|
|
|
}
|
|
else {
|
|
/* Same signs -- subtract magnitudes */
|
|
mp_int x, y;
|
|
mp_sign osign;
|
|
int cmp = s_ucmp(a, b);
|
|
|
|
if (!s_pad(c, max))
|
|
return MP_MEMORY;
|
|
|
|
if (cmp >= 0) {
|
|
x = a; y = b; osign = MP_ZPOS;
|
|
}
|
|
else {
|
|
x = b; y = a; osign = MP_NEG;
|
|
}
|
|
|
|
if (MP_SIGN(a) == MP_NEG && cmp != 0)
|
|
osign = 1 - osign;
|
|
|
|
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
|
|
MP_USED(c) = MP_USED(x);
|
|
CLAMP(c);
|
|
|
|
MP_SIGN(c) = osign;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_sub(a, &vtmp, c);
|
|
}
|
|
|
|
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
mp_digit *out;
|
|
mp_size osize, ua, ub, p = 0;
|
|
mp_sign osign;
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL);
|
|
|
|
/* If either input is zero, we can shortcut multiplication */
|
|
if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) {
|
|
mp_int_zero(c);
|
|
return MP_OK;
|
|
}
|
|
|
|
/* Output is positive if inputs have same sign, otherwise negative */
|
|
osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
|
|
|
|
/* If the output is not identical to any of the inputs, we'll write the
|
|
results directly; otherwise, allocate a temporary space. */
|
|
ua = MP_USED(a); ub = MP_USED(b);
|
|
osize = MAX(ua, ub);
|
|
osize = 4 * ((osize + 1) / 2);
|
|
|
|
if (c == a || c == b) {
|
|
p = ROUND_PREC(osize);
|
|
p = MAX(p, default_precision);
|
|
|
|
if ((out = s_alloc(p)) == NULL)
|
|
return MP_MEMORY;
|
|
}
|
|
else {
|
|
if (!s_pad(c, osize))
|
|
return MP_MEMORY;
|
|
|
|
out = MP_DIGITS(c);
|
|
}
|
|
ZERO(out, osize);
|
|
|
|
if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
|
|
return MP_MEMORY;
|
|
|
|
/* If we allocated a new buffer, get rid of whatever memory c was already
|
|
using, and fix up its fields to reflect that.
|
|
*/
|
|
if (out != MP_DIGITS(c)) {
|
|
if ((void *) MP_DIGITS(c) != (void *) c)
|
|
s_free(MP_DIGITS(c));
|
|
MP_DIGITS(c) = out;
|
|
MP_ALLOC(c) = p;
|
|
}
|
|
|
|
MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
|
|
CLAMP(c); /* ... right here */
|
|
MP_SIGN(c) = osign;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_mul(a, &vtmp, c);
|
|
}
|
|
|
|
mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
|
|
{
|
|
mp_result res;
|
|
CHECK(a != NULL && c != NULL && p2 >= 0);
|
|
|
|
if ((res = mp_int_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
if (s_qmul(c, (mp_size) p2))
|
|
return MP_OK;
|
|
else
|
|
return MP_MEMORY;
|
|
}
|
|
|
|
mp_result mp_int_sqr(mp_int a, mp_int c)
|
|
{
|
|
mp_digit *out;
|
|
mp_size osize, p = 0;
|
|
|
|
CHECK(a != NULL && c != NULL);
|
|
|
|
/* Get a temporary buffer big enough to hold the result */
|
|
osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
|
|
if (a == c) {
|
|
p = ROUND_PREC(osize);
|
|
p = MAX(p, default_precision);
|
|
|
|
if ((out = s_alloc(p)) == NULL)
|
|
return MP_MEMORY;
|
|
}
|
|
else {
|
|
if (!s_pad(c, osize))
|
|
return MP_MEMORY;
|
|
|
|
out = MP_DIGITS(c);
|
|
}
|
|
ZERO(out, osize);
|
|
|
|
s_ksqr(MP_DIGITS(a), out, MP_USED(a));
|
|
|
|
/* Get rid of whatever memory c was already using, and fix up its fields to
|
|
reflect the new digit array it's using
|
|
*/
|
|
if (out != MP_DIGITS(c)) {
|
|
if ((void *) MP_DIGITS(c) != (void *) c)
|
|
s_free(MP_DIGITS(c));
|
|
MP_DIGITS(c) = out;
|
|
MP_ALLOC(c) = p;
|
|
}
|
|
|
|
MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
|
|
CLAMP(c); /* ... right here */
|
|
MP_SIGN(c) = MP_ZPOS;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
|
|
{
|
|
int cmp, lg;
|
|
mp_result res = MP_OK;
|
|
mp_int qout, rout;
|
|
mp_sign sa = MP_SIGN(a), sb = MP_SIGN(b);
|
|
DECLARE_TEMP(2);
|
|
|
|
CHECK(a != NULL && b != NULL && q != r);
|
|
|
|
if (CMPZ(b) == 0)
|
|
return MP_UNDEF;
|
|
else if ((cmp = s_ucmp(a, b)) < 0) {
|
|
/* If |a| < |b|, no division is required:
|
|
q = 0, r = a
|
|
*/
|
|
if (r && (res = mp_int_copy(a, r)) != MP_OK)
|
|
return res;
|
|
|
|
if (q)
|
|
mp_int_zero(q);
|
|
|
|
return MP_OK;
|
|
}
|
|
else if (cmp == 0) {
|
|
/* If |a| = |b|, no division is required:
|
|
q = 1 or -1, r = 0
|
|
*/
|
|
if (r)
|
|
mp_int_zero(r);
|
|
|
|
if (q) {
|
|
mp_int_zero(q);
|
|
q->digits[0] = 1;
|
|
|
|
if (sa != sb)
|
|
MP_SIGN(q) = MP_NEG;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
/* When |a| > |b|, real division is required. We need someplace to store
|
|
quotient and remainder, but q and r are allowed to be NULL or to overlap
|
|
with the inputs.
|
|
*/
|
|
if ((lg = s_isp2(b)) < 0) {
|
|
if (q && b != q) {
|
|
if ((res = mp_int_copy(a, q)) != MP_OK)
|
|
goto CLEANUP;
|
|
else
|
|
qout = q;
|
|
}
|
|
else {
|
|
qout = LAST_TEMP();
|
|
SETUP(mp_int_init_copy(LAST_TEMP(), a));
|
|
}
|
|
|
|
if (r && a != r) {
|
|
if ((res = mp_int_copy(b, r)) != MP_OK)
|
|
goto CLEANUP;
|
|
else
|
|
rout = r;
|
|
}
|
|
else {
|
|
rout = LAST_TEMP();
|
|
SETUP(mp_int_init_copy(LAST_TEMP(), b));
|
|
}
|
|
|
|
if ((res = s_udiv_knuth(qout, rout)) != MP_OK) goto CLEANUP;
|
|
}
|
|
else {
|
|
if (q && (res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP;
|
|
if (r && (res = mp_int_copy(a, r)) != MP_OK) goto CLEANUP;
|
|
|
|
if (q) s_qdiv(q, (mp_size) lg); qout = q;
|
|
if (r) s_qmod(r, (mp_size) lg); rout = r;
|
|
}
|
|
|
|
/* Recompute signs for output */
|
|
if (rout) {
|
|
MP_SIGN(rout) = sa;
|
|
if (CMPZ(rout) == 0)
|
|
MP_SIGN(rout) = MP_ZPOS;
|
|
}
|
|
if (qout) {
|
|
MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
|
|
if (CMPZ(qout) == 0)
|
|
MP_SIGN(qout) = MP_ZPOS;
|
|
}
|
|
|
|
if (q && (res = mp_int_copy(qout, q)) != MP_OK) goto CLEANUP;
|
|
if (r && (res = mp_int_copy(rout, r)) != MP_OK) goto CLEANUP;
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c)
|
|
{
|
|
mp_result res;
|
|
mpz_t tmp;
|
|
mp_int out;
|
|
|
|
if (m == c) {
|
|
mp_int_init(&tmp);
|
|
out = &tmp;
|
|
}
|
|
else {
|
|
out = c;
|
|
}
|
|
|
|
if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if (CMPZ(out) < 0)
|
|
res = mp_int_add(out, m, c);
|
|
else
|
|
res = mp_int_copy(out, c);
|
|
|
|
CLEANUP:
|
|
if (out != c)
|
|
mp_int_clear(&tmp);
|
|
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r)
|
|
{
|
|
mpz_t vtmp, rtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
mp_result res;
|
|
|
|
mp_int_init(&rtmp);
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if (r)
|
|
(void) mp_int_to_int(&rtmp, r); /* can't fail */
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&rtmp);
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
|
|
{
|
|
mp_result res = MP_OK;
|
|
|
|
CHECK(a != NULL && p2 >= 0 && q != r);
|
|
|
|
if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
|
|
s_qdiv(q, (mp_size) p2);
|
|
|
|
if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
|
|
s_qmod(r, (mp_size) p2);
|
|
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_expt(mp_int a, mp_small b, mp_int c)
|
|
{
|
|
mpz_t t;
|
|
mp_result res;
|
|
unsigned int v = abs(b);
|
|
|
|
CHECK(c != NULL);
|
|
if (b < 0)
|
|
return MP_RANGE;
|
|
|
|
if ((res = mp_int_init_copy(&t, a)) != MP_OK)
|
|
return res;
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
while (v != 0) {
|
|
if (v & 1) {
|
|
if ((res = mp_int_mul(c, &t, c)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
v >>= 1;
|
|
if (v == 0) break;
|
|
|
|
if ((res = mp_int_sqr(&t, &t)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&t);
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
|
|
{
|
|
mpz_t t;
|
|
mp_result res;
|
|
unsigned int v = abs(b);
|
|
|
|
CHECK(c != NULL);
|
|
if (b < 0)
|
|
return MP_RANGE;
|
|
|
|
if ((res = mp_int_init_value(&t, a)) != MP_OK)
|
|
return res;
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
while (v != 0) {
|
|
if (v & 1) {
|
|
if ((res = mp_int_mul(c, &t, c)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
v >>= 1;
|
|
if (v == 0) break;
|
|
|
|
if ((res = mp_int_sqr(&t, &t)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&t);
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
mpz_t t;
|
|
mp_result res;
|
|
unsigned ix, jx;
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL);
|
|
if (MP_SIGN(b) == MP_NEG)
|
|
return MP_RANGE;
|
|
|
|
if ((res = mp_int_init_copy(&t, a)) != MP_OK)
|
|
return res;
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
for (ix = 0; ix < MP_USED(b); ++ix) {
|
|
mp_digit d = b->digits[ix];
|
|
|
|
for (jx = 0; jx < MP_DIGIT_BIT; ++jx) {
|
|
if (d & 1) {
|
|
if ((res = mp_int_mul(c, &t, c)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d >>= 1;
|
|
if (d == 0 && ix + 1 == MP_USED(b))
|
|
break;
|
|
if ((res = mp_int_sqr(&t, &t)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
}
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&t);
|
|
return res;
|
|
}
|
|
|
|
int mp_int_compare(mp_int a, mp_int b)
|
|
{
|
|
mp_sign sa;
|
|
|
|
CHECK(a != NULL && b != NULL);
|
|
|
|
sa = MP_SIGN(a);
|
|
if (sa == MP_SIGN(b)) {
|
|
int cmp = s_ucmp(a, b);
|
|
|
|
/* If they're both zero or positive, the normal comparison applies; if both
|
|
negative, the sense is reversed. */
|
|
if (sa == MP_ZPOS)
|
|
return cmp;
|
|
else
|
|
return -cmp;
|
|
|
|
}
|
|
else {
|
|
if (sa == MP_ZPOS)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int mp_int_compare_unsigned(mp_int a, mp_int b)
|
|
{
|
|
NRCHECK(a != NULL && b != NULL);
|
|
|
|
return s_ucmp(a, b);
|
|
}
|
|
|
|
int mp_int_compare_zero(mp_int z)
|
|
{
|
|
NRCHECK(z != NULL);
|
|
|
|
if (MP_USED(z) == 1 && z->digits[0] == 0)
|
|
return 0;
|
|
else if (MP_SIGN(z) == MP_ZPOS)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int mp_int_compare_value(mp_int z, mp_small value)
|
|
{
|
|
mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
|
|
int cmp;
|
|
|
|
CHECK(z != NULL);
|
|
|
|
if (vsign == MP_SIGN(z)) {
|
|
cmp = s_vcmp(z, value);
|
|
|
|
return (vsign == MP_ZPOS) ? cmp : -cmp;
|
|
}
|
|
else {
|
|
return (value < 0) ? 1 : -1;
|
|
}
|
|
}
|
|
|
|
int mp_int_compare_uvalue(mp_int z, mp_usmall uv)
|
|
{
|
|
CHECK(z != NULL);
|
|
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
return -1;
|
|
else
|
|
return s_uvcmp(z, uv);
|
|
}
|
|
|
|
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
|
|
{
|
|
mp_result res;
|
|
mp_size um;
|
|
mp_int s;
|
|
DECLARE_TEMP(3);
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
|
|
|
|
/* Zero moduli and negative exponents are not considered. */
|
|
if (CMPZ(m) == 0)
|
|
return MP_UNDEF;
|
|
if (CMPZ(b) < 0)
|
|
return MP_RANGE;
|
|
|
|
um = MP_USED(m);
|
|
SETUP(mp_int_init_size(TEMP(0), 2 * um));
|
|
SETUP(mp_int_init_size(TEMP(1), 2 * um));
|
|
|
|
if (c == b || c == m) {
|
|
SETUP(mp_int_init_size(TEMP(2), 2 * um));
|
|
s = TEMP(2);
|
|
}
|
|
else {
|
|
s = c;
|
|
}
|
|
|
|
if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
|
|
|
|
if ((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP;
|
|
|
|
if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
res = mp_int_copy(s, c);
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_exptmod(a, &vtmp, m, c);
|
|
}
|
|
|
|
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
|
|
mp_int m, mp_int c)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vbuf[MP_VALUE_DIGITS(value)];
|
|
|
|
s_fake(&vtmp, value, vbuf);
|
|
|
|
return mp_int_exptmod(&vtmp, b, m, c);
|
|
}
|
|
|
|
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
|
|
{
|
|
mp_result res;
|
|
mp_size um;
|
|
mp_int s;
|
|
DECLARE_TEMP(2);
|
|
|
|
CHECK(a && b && m && c);
|
|
|
|
/* Zero moduli and negative exponents are not considered. */
|
|
if (CMPZ(m) == 0)
|
|
return MP_UNDEF;
|
|
if (CMPZ(b) < 0)
|
|
return MP_RANGE;
|
|
|
|
um = MP_USED(m);
|
|
SETUP(mp_int_init_size(TEMP(0), 2 * um));
|
|
|
|
if (c == b || c == m) {
|
|
SETUP(mp_int_init_size(TEMP(1), 2 * um));
|
|
s = TEMP(1);
|
|
}
|
|
else {
|
|
s = c;
|
|
}
|
|
|
|
if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
|
|
|
|
if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
res = mp_int_copy(s, c);
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_redux_const(mp_int m, mp_int c)
|
|
{
|
|
CHECK(m != NULL && c != NULL && m != c);
|
|
|
|
return s_brmu(c, m);
|
|
}
|
|
|
|
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
|
|
{
|
|
mp_result res;
|
|
mp_sign sa;
|
|
DECLARE_TEMP(2);
|
|
|
|
CHECK(a != NULL && m != NULL && c != NULL);
|
|
|
|
if (CMPZ(a) == 0 || CMPZ(m) <= 0)
|
|
return MP_RANGE;
|
|
|
|
sa = MP_SIGN(a); /* need this for the result later */
|
|
|
|
for (last__ = 0; last__ < 2; ++last__)
|
|
mp_int_init(LAST_TEMP());
|
|
|
|
if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if (mp_int_compare_value(TEMP(0), 1) != 0) {
|
|
res = MP_UNDEF;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* It is first necessary to constrain the value to the proper range */
|
|
if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
/* Now, if 'a' was originally negative, the value we have is actually the
|
|
magnitude of the negative representative; to get the positive value we
|
|
have to subtract from the modulus. Otherwise, the value is okay as it
|
|
stands.
|
|
*/
|
|
if (sa == MP_NEG)
|
|
res = mp_int_sub(m, TEMP(1), c);
|
|
else
|
|
res = mp_int_copy(TEMP(1), c);
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
/* Binary GCD algorithm due to Josef Stein, 1961 */
|
|
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
int ca, cb, k = 0;
|
|
mpz_t u, v, t;
|
|
mp_result res;
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL);
|
|
|
|
ca = CMPZ(a);
|
|
cb = CMPZ(b);
|
|
if (ca == 0 && cb == 0)
|
|
return MP_UNDEF;
|
|
else if (ca == 0)
|
|
return mp_int_abs(b, c);
|
|
else if (cb == 0)
|
|
return mp_int_abs(a, c);
|
|
|
|
mp_int_init(&t);
|
|
if ((res = mp_int_init_copy(&u, a)) != MP_OK)
|
|
goto U;
|
|
if ((res = mp_int_init_copy(&v, b)) != MP_OK)
|
|
goto V;
|
|
|
|
MP_SIGN(&u) = MP_ZPOS; MP_SIGN(&v) = MP_ZPOS;
|
|
|
|
{ /* Divide out common factors of 2 from u and v */
|
|
int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v);
|
|
|
|
k = MIN(div2_u, div2_v);
|
|
s_qdiv(&u, (mp_size) k);
|
|
s_qdiv(&v, (mp_size) k);
|
|
}
|
|
|
|
if (mp_int_is_odd(&u)) {
|
|
if ((res = mp_int_neg(&v, &t)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
else {
|
|
if ((res = mp_int_copy(&u, &t)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
for (;;) {
|
|
s_qdiv(&t, s_dp2k(&t));
|
|
|
|
if (CMPZ(&t) > 0) {
|
|
if ((res = mp_int_copy(&t, &u)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
else {
|
|
if ((res = mp_int_neg(&t, &v)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if (CMPZ(&t) == 0)
|
|
break;
|
|
}
|
|
|
|
if ((res = mp_int_abs(&u, c)) != MP_OK)
|
|
goto CLEANUP;
|
|
if (!s_qmul(c, (mp_size) k))
|
|
res = MP_MEMORY;
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&v);
|
|
V: mp_int_clear(&u);
|
|
U: mp_int_clear(&t);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* This is the binary GCD algorithm again, but this time we keep track of the
|
|
elementary matrix operations as we go, so we can get values x and y
|
|
satisfying c = ax + by.
|
|
*/
|
|
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
|
|
mp_int x, mp_int y)
|
|
{
|
|
int k, ca, cb;
|
|
mp_result res;
|
|
DECLARE_TEMP(8);
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL &&
|
|
(x != NULL || y != NULL));
|
|
|
|
ca = CMPZ(a);
|
|
cb = CMPZ(b);
|
|
if (ca == 0 && cb == 0)
|
|
return MP_UNDEF;
|
|
else if (ca == 0) {
|
|
if ((res = mp_int_abs(b, c)) != MP_OK) return res;
|
|
mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK;
|
|
}
|
|
else if (cb == 0) {
|
|
if ((res = mp_int_abs(a, c)) != MP_OK) return res;
|
|
(void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK;
|
|
}
|
|
|
|
/* Initialize temporaries:
|
|
A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
|
|
for (last__ = 0; last__ < 4; ++last__)
|
|
mp_int_init(LAST_TEMP());
|
|
TEMP(0)->digits[0] = 1;
|
|
TEMP(3)->digits[0] = 1;
|
|
|
|
SETUP(mp_int_init_copy(TEMP(4), a));
|
|
SETUP(mp_int_init_copy(TEMP(5), b));
|
|
|
|
/* We will work with absolute values here */
|
|
MP_SIGN(TEMP(4)) = MP_ZPOS;
|
|
MP_SIGN(TEMP(5)) = MP_ZPOS;
|
|
|
|
{ /* Divide out common factors of 2 from u and v */
|
|
int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
|
|
|
|
k = MIN(div2_u, div2_v);
|
|
s_qdiv(TEMP(4), k);
|
|
s_qdiv(TEMP(5), k);
|
|
}
|
|
|
|
SETUP(mp_int_init_copy(TEMP(6), TEMP(4)));
|
|
SETUP(mp_int_init_copy(TEMP(7), TEMP(5)));
|
|
|
|
for (;;) {
|
|
while (mp_int_is_even(TEMP(4))) {
|
|
s_qdiv(TEMP(4), 1);
|
|
|
|
if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
|
|
if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
s_qdiv(TEMP(0), 1);
|
|
s_qdiv(TEMP(1), 1);
|
|
}
|
|
|
|
while (mp_int_is_even(TEMP(5))) {
|
|
s_qdiv(TEMP(5), 1);
|
|
|
|
if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
|
|
if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
s_qdiv(TEMP(2), 1);
|
|
s_qdiv(TEMP(3), 1);
|
|
}
|
|
|
|
if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
|
|
if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP;
|
|
}
|
|
else {
|
|
if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK) goto CLEANUP;
|
|
}
|
|
|
|
if (CMPZ(TEMP(4)) == 0) {
|
|
if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK) goto CLEANUP;
|
|
if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK) goto CLEANUP;
|
|
if (c) {
|
|
if (!s_qmul(TEMP(5), k)) {
|
|
res = MP_MEMORY;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
res = mp_int_copy(TEMP(5), c);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c)
|
|
{
|
|
mpz_t lcm;
|
|
mp_result res;
|
|
|
|
CHECK(a != NULL && b != NULL && c != NULL);
|
|
|
|
/* Since a * b = gcd(a, b) * lcm(a, b), we can compute
|
|
lcm(a, b) = (a / gcd(a, b)) * b.
|
|
|
|
This formulation insures everything works even if the input
|
|
variables share space.
|
|
*/
|
|
if ((res = mp_int_init(&lcm)) != MP_OK)
|
|
return res;
|
|
if ((res = mp_int_gcd(a, b, &lcm)) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_div(a, &lcm, &lcm, NULL)) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_mul(&lcm, b, &lcm)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
res = mp_int_copy(&lcm, c);
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&lcm);
|
|
|
|
return res;
|
|
}
|
|
|
|
int mp_int_divisible_value(mp_int a, mp_small v)
|
|
{
|
|
mp_small rem = 0;
|
|
|
|
if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
|
|
return 0;
|
|
|
|
return rem == 0;
|
|
}
|
|
|
|
int mp_int_is_pow2(mp_int z)
|
|
{
|
|
CHECK(z != NULL);
|
|
|
|
return s_isp2(z);
|
|
}
|
|
|
|
/* Implementation of Newton's root finding method, based loosely on a patch
|
|
contributed by Hal Finkel <half@halssoftware.com>
|
|
modified by M. J. Fromberger.
|
|
*/
|
|
mp_result mp_int_root(mp_int a, mp_small b, mp_int c)
|
|
{
|
|
mp_result res = MP_OK;
|
|
int flips = 0;
|
|
DECLARE_TEMP(5);
|
|
|
|
CHECK(a != NULL && c != NULL && b > 0);
|
|
|
|
if (b == 1) {
|
|
return mp_int_copy(a, c);
|
|
}
|
|
if (MP_SIGN(a) == MP_NEG) {
|
|
if (b % 2 == 0)
|
|
return MP_UNDEF; /* root does not exist for negative a with even b */
|
|
else
|
|
flips = 1;
|
|
}
|
|
|
|
SETUP(mp_int_init_copy(LAST_TEMP(), a));
|
|
SETUP(mp_int_init_copy(LAST_TEMP(), a));
|
|
SETUP(mp_int_init(LAST_TEMP()));
|
|
SETUP(mp_int_init(LAST_TEMP()));
|
|
SETUP(mp_int_init(LAST_TEMP()));
|
|
|
|
(void) mp_int_abs(TEMP(0), TEMP(0));
|
|
(void) mp_int_abs(TEMP(1), TEMP(1));
|
|
|
|
for (;;) {
|
|
if ((res = mp_int_expt(TEMP(1), b, TEMP(2))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
|
|
break;
|
|
|
|
if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_expt(TEMP(1), b - 1, TEMP(3))) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_mul_value(TEMP(3), b, TEMP(3))) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)) != MP_OK)
|
|
goto CLEANUP;
|
|
if ((res = mp_int_sub(TEMP(1), TEMP(4), TEMP(4))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) {
|
|
if ((res = mp_int_sub_value(TEMP(4), 1, TEMP(4))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
if ((res = mp_int_copy(TEMP(4), TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
if ((res = mp_int_copy(TEMP(1), c)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
/* If the original value of a was negative, flip the output sign. */
|
|
if (flips)
|
|
(void) mp_int_neg(c, c); /* cannot fail */
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_to_int(mp_int z, mp_small *out)
|
|
{
|
|
mp_usmall uv = 0;
|
|
mp_size uz;
|
|
mp_digit *dz;
|
|
mp_sign sz;
|
|
|
|
CHECK(z != NULL);
|
|
|
|
/* Make sure the value is representable as a small integer */
|
|
sz = MP_SIGN(z);
|
|
if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
|
|
mp_int_compare_value(z, MP_SMALL_MIN) < 0)
|
|
return MP_RANGE;
|
|
|
|
uz = MP_USED(z);
|
|
dz = MP_DIGITS(z) + uz - 1;
|
|
|
|
while (uz > 0) {
|
|
uv <<= MP_DIGIT_BIT/2;
|
|
uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
|
|
--uz;
|
|
}
|
|
|
|
if (out)
|
|
*out = (sz == MP_NEG) ? -(mp_small)uv : (mp_small)uv;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_to_uint(mp_int z, mp_usmall *out)
|
|
{
|
|
mp_usmall uv = 0;
|
|
mp_size uz;
|
|
mp_digit *dz;
|
|
mp_sign sz;
|
|
|
|
CHECK(z != NULL);
|
|
|
|
/* Make sure the value is representable as an unsigned small integer */
|
|
sz = MP_SIGN(z);
|
|
if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0)
|
|
return MP_RANGE;
|
|
|
|
uz = MP_USED(z);
|
|
dz = MP_DIGITS(z) + uz - 1;
|
|
|
|
while (uz > 0) {
|
|
uv <<= MP_DIGIT_BIT/2;
|
|
uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
|
|
--uz;
|
|
}
|
|
|
|
if (out)
|
|
*out = uv;
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_to_string(mp_int z, mp_size radix,
|
|
char *str, int limit)
|
|
{
|
|
mp_result res;
|
|
int cmp = 0;
|
|
|
|
CHECK(z != NULL && str != NULL && limit >= 2);
|
|
|
|
if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
|
|
return MP_RANGE;
|
|
|
|
if (CMPZ(z) == 0) {
|
|
*str++ = s_val2ch(0, 1);
|
|
}
|
|
else {
|
|
mpz_t tmp;
|
|
char *h, *t;
|
|
|
|
if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
|
|
return res;
|
|
|
|
if (MP_SIGN(z) == MP_NEG) {
|
|
*str++ = '-';
|
|
--limit;
|
|
}
|
|
h = str;
|
|
|
|
/* Generate digits in reverse order until finished or limit reached */
|
|
for (/* */; limit > 0; --limit) {
|
|
mp_digit d;
|
|
|
|
if ((cmp = CMPZ(&tmp)) == 0)
|
|
break;
|
|
|
|
d = s_ddiv(&tmp, (mp_digit)radix);
|
|
*str++ = s_val2ch(d, 1);
|
|
}
|
|
t = str - 1;
|
|
|
|
/* Put digits back in correct output order */
|
|
while (h < t) {
|
|
char tc = *h;
|
|
*h++ = *t;
|
|
*t-- = tc;
|
|
}
|
|
|
|
mp_int_clear(&tmp);
|
|
}
|
|
|
|
*str = '\0';
|
|
if (cmp == 0)
|
|
return MP_OK;
|
|
else
|
|
return MP_TRUNC;
|
|
}
|
|
|
|
mp_result mp_int_string_len(mp_int z, mp_size radix)
|
|
{
|
|
int len;
|
|
|
|
CHECK(z != NULL);
|
|
|
|
if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
|
|
return MP_RANGE;
|
|
|
|
len = s_outlen(z, radix) + 1; /* for terminator */
|
|
|
|
/* Allow for sign marker on negatives */
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
len += 1;
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Read zero-terminated string into z */
|
|
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str)
|
|
{
|
|
return mp_int_read_cstring(z, radix, str, NULL);
|
|
}
|
|
|
|
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
|
|
{
|
|
int ch;
|
|
|
|
CHECK(z != NULL && str != NULL);
|
|
|
|
if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
|
|
return MP_RANGE;
|
|
|
|
/* Skip leading whitespace */
|
|
while (isspace((int)*str))
|
|
++str;
|
|
|
|
/* Handle leading sign tag (+/-, positive default) */
|
|
switch (*str) {
|
|
case '-':
|
|
MP_SIGN(z) = MP_NEG;
|
|
++str;
|
|
break;
|
|
case '+':
|
|
++str; /* fallthrough */
|
|
default:
|
|
MP_SIGN(z) = MP_ZPOS;
|
|
break;
|
|
}
|
|
|
|
/* Skip leading zeroes */
|
|
while ((ch = s_ch2val(*str, radix)) == 0)
|
|
++str;
|
|
|
|
/* Make sure there is enough space for the value */
|
|
if (!s_pad(z, s_inlen(strlen(str), radix)))
|
|
return MP_MEMORY;
|
|
|
|
MP_USED(z) = 1; z->digits[0] = 0;
|
|
|
|
while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) {
|
|
s_dmul(z, (mp_digit)radix);
|
|
s_dadd(z, (mp_digit)ch);
|
|
++str;
|
|
}
|
|
|
|
CLAMP(z);
|
|
|
|
/* Override sign for zero, even if negative specified. */
|
|
if (CMPZ(z) == 0)
|
|
MP_SIGN(z) = MP_ZPOS;
|
|
|
|
if (end != NULL)
|
|
*end = (char *)str;
|
|
|
|
/* Return a truncation error if the string has unprocessed characters
|
|
remaining, so the caller can tell if the whole string was done */
|
|
if (*str != '\0')
|
|
return MP_TRUNC;
|
|
else
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_count_bits(mp_int z)
|
|
{
|
|
mp_size nbits = 0, uz;
|
|
mp_digit d;
|
|
|
|
CHECK(z != NULL);
|
|
|
|
uz = MP_USED(z);
|
|
if (uz == 1 && z->digits[0] == 0)
|
|
return 1;
|
|
|
|
--uz;
|
|
nbits = uz * MP_DIGIT_BIT;
|
|
d = z->digits[uz];
|
|
|
|
while (d != 0) {
|
|
d >>= 1;
|
|
++nbits;
|
|
}
|
|
|
|
return nbits;
|
|
}
|
|
|
|
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
|
|
{
|
|
static const int PAD_FOR_2C = 1;
|
|
|
|
mp_result res;
|
|
int limpos = limit;
|
|
|
|
CHECK(z != NULL && buf != NULL);
|
|
|
|
res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
|
|
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
s_2comp(buf, limpos);
|
|
|
|
return res;
|
|
}
|
|
|
|
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
|
|
{
|
|
mp_size need, i;
|
|
unsigned char *tmp;
|
|
mp_digit *dz;
|
|
|
|
CHECK(z != NULL && buf != NULL && len > 0);
|
|
|
|
/* Figure out how many digits are needed to represent this value */
|
|
need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
|
|
if (!s_pad(z, need))
|
|
return MP_MEMORY;
|
|
|
|
mp_int_zero(z);
|
|
|
|
/* If the high-order bit is set, take the 2's complement before reading the
|
|
value (it will be restored afterward) */
|
|
if (buf[0] >> (CHAR_BIT - 1)) {
|
|
MP_SIGN(z) = MP_NEG;
|
|
s_2comp(buf, len);
|
|
}
|
|
|
|
dz = MP_DIGITS(z);
|
|
for (tmp = buf, i = len; i > 0; --i, ++tmp) {
|
|
s_qmul(z, (mp_size) CHAR_BIT);
|
|
*dz |= *tmp;
|
|
}
|
|
|
|
/* Restore 2's complement if we took it before */
|
|
if (MP_SIGN(z) == MP_NEG)
|
|
s_2comp(buf, len);
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_binary_len(mp_int z)
|
|
{
|
|
mp_result res = mp_int_count_bits(z);
|
|
int bytes = mp_int_unsigned_len(z);
|
|
|
|
if (res <= 0)
|
|
return res;
|
|
|
|
bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
|
|
|
|
/* If the highest-order bit falls exactly on a byte boundary, we need to pad
|
|
with an extra byte so that the sign will be read correctly when reading it
|
|
back in. */
|
|
if (bytes * CHAR_BIT == res)
|
|
++bytes;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
|
|
{
|
|
static const int NO_PADDING = 0;
|
|
|
|
CHECK(z != NULL && buf != NULL);
|
|
|
|
return s_tobin(z, buf, &limit, NO_PADDING);
|
|
}
|
|
|
|
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
|
|
{
|
|
mp_size need, i;
|
|
unsigned char *tmp;
|
|
|
|
CHECK(z != NULL && buf != NULL && len > 0);
|
|
|
|
/* Figure out how many digits are needed to represent this value */
|
|
need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
|
|
if (!s_pad(z, need))
|
|
return MP_MEMORY;
|
|
|
|
mp_int_zero(z);
|
|
|
|
for (tmp = buf, i = len; i > 0; --i, ++tmp) {
|
|
(void) s_qmul(z, CHAR_BIT);
|
|
*MP_DIGITS(z) |= *tmp;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
mp_result mp_int_unsigned_len(mp_int z)
|
|
{
|
|
mp_result res = mp_int_count_bits(z);
|
|
int bytes;
|
|
|
|
if (res <= 0)
|
|
return res;
|
|
|
|
bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
const char *mp_error_string(mp_result res)
|
|
{
|
|
int ix;
|
|
if (res > 0)
|
|
return s_unknown_err;
|
|
|
|
res = -res;
|
|
for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
|
|
;
|
|
|
|
if (s_error_msg[ix] != NULL)
|
|
return s_error_msg[ix];
|
|
else
|
|
return s_unknown_err;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* Private functions for internal use. These make assumptions. */
|
|
|
|
STATIC mp_digit *s_alloc(mp_size num)
|
|
{
|
|
mp_digit *out = malloc(num * sizeof(mp_digit));
|
|
|
|
assert(out != NULL); /* for debugging */
|
|
#if DEBUG > 1
|
|
{
|
|
mp_digit v = (mp_digit) 0xdeadbeef;
|
|
int ix;
|
|
|
|
for (ix = 0; ix < num; ++ix)
|
|
out[ix] = v;
|
|
}
|
|
#endif
|
|
|
|
return out;
|
|
}
|
|
|
|
STATIC mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
|
|
{
|
|
#if DEBUG > 1
|
|
mp_digit *new = s_alloc(nsize);
|
|
int ix;
|
|
|
|
for (ix = 0; ix < nsize; ++ix)
|
|
new[ix] = (mp_digit) 0xdeadbeef;
|
|
|
|
memcpy(new, old, osize * sizeof(mp_digit));
|
|
#else
|
|
mp_digit *new = realloc(old, nsize * sizeof(mp_digit));
|
|
|
|
assert(new != NULL); /* for debugging */
|
|
#endif
|
|
return new;
|
|
}
|
|
|
|
STATIC void s_free(void *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
|
|
STATIC int s_pad(mp_int z, mp_size min)
|
|
{
|
|
if (MP_ALLOC(z) < min) {
|
|
mp_size nsize = ROUND_PREC(min);
|
|
mp_digit *tmp;
|
|
|
|
if ((void *)z->digits == (void *)z) {
|
|
if ((tmp = s_alloc(nsize)) == NULL)
|
|
return 0;
|
|
|
|
COPY(MP_DIGITS(z), tmp, MP_USED(z));
|
|
}
|
|
else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
|
|
return 0;
|
|
|
|
MP_DIGITS(z) = tmp;
|
|
MP_ALLOC(z) = nsize;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Note: This will not work correctly when value == MP_SMALL_MIN */
|
|
STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[])
|
|
{
|
|
mp_usmall uv = (mp_usmall) (value < 0) ? -value : value;
|
|
s_ufake(z, uv, vbuf);
|
|
if (value < 0)
|
|
z->sign = MP_NEG;
|
|
}
|
|
|
|
STATIC void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[])
|
|
{
|
|
mp_size ndig = (mp_size) s_uvpack(value, vbuf);
|
|
|
|
z->used = ndig;
|
|
z->alloc = MP_VALUE_DIGITS(value);
|
|
z->sign = MP_ZPOS;
|
|
z->digits = vbuf;
|
|
}
|
|
|
|
STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len)
|
|
{
|
|
mp_digit *dat = da + len - 1, *dbt = db + len - 1;
|
|
|
|
for (/* */; len != 0; --len, --dat, --dbt) {
|
|
if (*dat > *dbt)
|
|
return 1;
|
|
else if (*dat < *dbt)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int s_uvpack(mp_usmall uv, mp_digit t[])
|
|
{
|
|
int ndig = 0;
|
|
|
|
if (uv == 0)
|
|
t[ndig++] = 0;
|
|
else {
|
|
while (uv != 0) {
|
|
t[ndig++] = (mp_digit) uv;
|
|
uv >>= MP_DIGIT_BIT/2;
|
|
uv >>= MP_DIGIT_BIT/2;
|
|
}
|
|
}
|
|
|
|
return ndig;
|
|
}
|
|
|
|
STATIC int s_ucmp(mp_int a, mp_int b)
|
|
{
|
|
mp_size ua = MP_USED(a), ub = MP_USED(b);
|
|
|
|
if (ua > ub)
|
|
return 1;
|
|
else if (ub > ua)
|
|
return -1;
|
|
else
|
|
return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
|
|
}
|
|
|
|
STATIC int s_vcmp(mp_int a, mp_small v)
|
|
{
|
|
mp_usmall uv = (mp_usmall) (v < 0) ? -v : v;
|
|
return s_uvcmp(a, uv);
|
|
}
|
|
|
|
STATIC int s_uvcmp(mp_int a, mp_usmall uv)
|
|
{
|
|
mpz_t vtmp;
|
|
mp_digit vdig[MP_VALUE_DIGITS(uv)];
|
|
|
|
s_ufake(&vtmp, uv, vdig);
|
|
return s_ucmp(a, &vtmp);
|
|
}
|
|
|
|
STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b)
|
|
{
|
|
mp_size pos;
|
|
mp_word w = 0;
|
|
|
|
/* Insure that da is the longer of the two to simplify later code */
|
|
if (size_b > size_a) {
|
|
SWAP(mp_digit *, da, db);
|
|
SWAP(mp_size, size_a, size_b);
|
|
}
|
|
|
|
/* Add corresponding digits until the shorter number runs out */
|
|
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
|
|
w = w + (mp_word) *da + (mp_word) *db;
|
|
*dc = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
/* Propagate carries as far as necessary */
|
|
for (/* */; pos < size_a; ++pos, ++da, ++dc) {
|
|
w = w + *da;
|
|
|
|
*dc = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
/* Return carry out */
|
|
return (mp_digit)w;
|
|
}
|
|
|
|
STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b)
|
|
{
|
|
mp_size pos;
|
|
mp_word w = 0;
|
|
|
|
/* We assume that |a| >= |b| so this should definitely hold */
|
|
assert(size_a >= size_b);
|
|
|
|
/* Subtract corresponding digits and propagate borrow */
|
|
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
|
|
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
|
|
(mp_word)*da) - w - (mp_word)*db;
|
|
|
|
*dc = LOWER_HALF(w);
|
|
w = (UPPER_HALF(w) == 0);
|
|
}
|
|
|
|
/* Finish the subtraction for remaining upper digits of da */
|
|
for (/* */; pos < size_a; ++pos, ++da, ++dc) {
|
|
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
|
|
(mp_word)*da) - w;
|
|
|
|
*dc = LOWER_HALF(w);
|
|
w = (UPPER_HALF(w) == 0);
|
|
}
|
|
|
|
/* If there is a borrow out at the end, it violates the precondition */
|
|
assert(w == 0);
|
|
}
|
|
|
|
STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b)
|
|
{
|
|
mp_size bot_size;
|
|
|
|
/* Make sure b is the smaller of the two input values */
|
|
if (size_b > size_a) {
|
|
SWAP(mp_digit *, da, db);
|
|
SWAP(mp_size, size_a, size_b);
|
|
}
|
|
|
|
/* Insure that the bottom is the larger half in an odd-length split; the code
|
|
below relies on this being true.
|
|
*/
|
|
bot_size = (size_a + 1) / 2;
|
|
|
|
/* If the values are big enough to bother with recursion, use the Karatsuba
|
|
algorithm to compute the product; otherwise use the normal multiplication
|
|
algorithm
|
|
*/
|
|
if (multiply_threshold &&
|
|
size_a >= multiply_threshold &&
|
|
size_b > bot_size) {
|
|
|
|
mp_digit *t1, *t2, *t3, carry;
|
|
|
|
mp_digit *a_top = da + bot_size;
|
|
mp_digit *b_top = db + bot_size;
|
|
|
|
mp_size at_size = size_a - bot_size;
|
|
mp_size bt_size = size_b - bot_size;
|
|
mp_size buf_size = 2 * bot_size;
|
|
|
|
/* Do a single allocation for all three temporary buffers needed; each
|
|
buffer must be big enough to hold the product of two bottom halves, and
|
|
one buffer needs space for the completed product; twice the space is
|
|
plenty.
|
|
*/
|
|
if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
|
|
t2 = t1 + buf_size;
|
|
t3 = t2 + buf_size;
|
|
ZERO(t1, 4 * buf_size);
|
|
|
|
/* t1 and t2 are initially used as temporaries to compute the inner product
|
|
(a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
|
|
*/
|
|
carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
|
|
t1[bot_size] = carry;
|
|
|
|
carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
|
|
t2[bot_size] = carry;
|
|
|
|
(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
|
|
|
|
/* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
|
|
we're left with only the pieces we want: t3 = a1b0 + a0b1
|
|
*/
|
|
ZERO(t1, buf_size);
|
|
ZERO(t2, buf_size);
|
|
(void) s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */
|
|
(void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
|
|
|
|
/* Subtract out t1 and t2 to get the inner product */
|
|
s_usub(t3, t1, t3, buf_size + 2, buf_size);
|
|
s_usub(t3, t2, t3, buf_size + 2, buf_size);
|
|
|
|
/* Assemble the output value */
|
|
COPY(t1, dc, buf_size);
|
|
carry = s_uadd(t3, dc + bot_size, dc + bot_size,
|
|
buf_size + 1, buf_size);
|
|
assert(carry == 0);
|
|
|
|
carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
|
|
buf_size, buf_size);
|
|
assert(carry == 0);
|
|
|
|
s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
|
|
}
|
|
else {
|
|
s_umul(da, db, dc, size_a, size_b);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
|
|
mp_size size_a, mp_size size_b)
|
|
{
|
|
mp_size a, b;
|
|
mp_word w;
|
|
|
|
for (a = 0; a < size_a; ++a, ++dc, ++da) {
|
|
mp_digit *dct = dc;
|
|
mp_digit *dbt = db;
|
|
|
|
if (*da == 0)
|
|
continue;
|
|
|
|
w = 0;
|
|
for (b = 0; b < size_b; ++b, ++dbt, ++dct) {
|
|
w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
|
|
|
|
*dct = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
*dct = (mp_digit)w;
|
|
}
|
|
}
|
|
|
|
STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
|
|
{
|
|
if (multiply_threshold && size_a > multiply_threshold) {
|
|
mp_size bot_size = (size_a + 1) / 2;
|
|
mp_digit *a_top = da + bot_size;
|
|
mp_digit *t1, *t2, *t3, carry;
|
|
mp_size at_size = size_a - bot_size;
|
|
mp_size buf_size = 2 * bot_size;
|
|
|
|
if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
|
|
t2 = t1 + buf_size;
|
|
t3 = t2 + buf_size;
|
|
ZERO(t1, 4 * buf_size);
|
|
|
|
(void) s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */
|
|
(void) s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */
|
|
|
|
(void) s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */
|
|
|
|
/* Quick multiply t3 by 2, shifting left (can't overflow) */
|
|
{
|
|
int i, top = bot_size + at_size;
|
|
mp_word w, save = 0;
|
|
|
|
for (i = 0; i < top; ++i) {
|
|
w = t3[i];
|
|
w = (w << 1) | save;
|
|
t3[i] = LOWER_HALF(w);
|
|
save = UPPER_HALF(w);
|
|
}
|
|
t3[i] = LOWER_HALF(save);
|
|
}
|
|
|
|
/* Assemble the output value */
|
|
COPY(t1, dc, 2 * bot_size);
|
|
carry = s_uadd(t3, dc + bot_size, dc + bot_size,
|
|
buf_size + 1, buf_size);
|
|
assert(carry == 0);
|
|
|
|
carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
|
|
buf_size, buf_size);
|
|
assert(carry == 0);
|
|
|
|
s_free(t1); /* note that t2 and t2 are internal pointers only */
|
|
|
|
}
|
|
else {
|
|
s_usqr(da, dc, size_a);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
|
|
{
|
|
mp_size i, j;
|
|
mp_word w;
|
|
|
|
for (i = 0; i < size_a; ++i, dc += 2, ++da) {
|
|
mp_digit *dct = dc, *dat = da;
|
|
|
|
if (*da == 0)
|
|
continue;
|
|
|
|
/* Take care of the first digit, no rollover */
|
|
w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
|
|
*dct = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
++dat; ++dct;
|
|
|
|
for (j = i + 1; j < size_a; ++j, ++dat, ++dct) {
|
|
mp_word t = (mp_word)*da * (mp_word)*dat;
|
|
mp_word u = w + (mp_word)*dct, ov = 0;
|
|
|
|
/* Check if doubling t will overflow a word */
|
|
if (HIGH_BIT_SET(t))
|
|
ov = 1;
|
|
|
|
w = t + t;
|
|
|
|
/* Check if adding u to w will overflow a word */
|
|
if (ADD_WILL_OVERFLOW(w, u))
|
|
ov = 1;
|
|
|
|
w += u;
|
|
|
|
*dct = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
if (ov) {
|
|
w += MP_DIGIT_MAX; /* MP_RADIX */
|
|
++w;
|
|
}
|
|
}
|
|
|
|
w = w + *dct;
|
|
*dct = (mp_digit)w;
|
|
while ((w = UPPER_HALF(w)) != 0) {
|
|
++dct; w = w + *dct;
|
|
*dct = LOWER_HALF(w);
|
|
}
|
|
|
|
assert(w == 0);
|
|
}
|
|
}
|
|
|
|
STATIC void s_dadd(mp_int a, mp_digit b)
|
|
{
|
|
mp_word w = 0;
|
|
mp_digit *da = MP_DIGITS(a);
|
|
mp_size ua = MP_USED(a);
|
|
|
|
w = (mp_word)*da + b;
|
|
*da++ = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
|
|
for (ua -= 1; ua > 0; --ua, ++da) {
|
|
w = (mp_word)*da + w;
|
|
|
|
*da = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
}
|
|
|
|
if (w) {
|
|
*da = (mp_digit)w;
|
|
MP_USED(a) += 1;
|
|
}
|
|
}
|
|
|
|
STATIC void s_dmul(mp_int a, mp_digit b)
|
|
{
|
|
mp_word w = 0;
|
|
mp_digit *da = MP_DIGITS(a);
|
|
mp_size ua = MP_USED(a);
|
|
|
|
while (ua > 0) {
|
|
w = (mp_word)*da * b + w;
|
|
*da++ = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
--ua;
|
|
}
|
|
|
|
if (w) {
|
|
*da = (mp_digit)w;
|
|
MP_USED(a) += 1;
|
|
}
|
|
}
|
|
|
|
STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
|
|
{
|
|
mp_word w = 0;
|
|
|
|
while (size_a > 0) {
|
|
w = (mp_word)*da++ * (mp_word)b + w;
|
|
|
|
*dc++ = LOWER_HALF(w);
|
|
w = UPPER_HALF(w);
|
|
--size_a;
|
|
}
|
|
|
|
if (w)
|
|
*dc = LOWER_HALF(w);
|
|
}
|
|
|
|
STATIC mp_digit s_ddiv(mp_int a, mp_digit b)
|
|
{
|
|
mp_word w = 0, qdigit;
|
|
mp_size ua = MP_USED(a);
|
|
mp_digit *da = MP_DIGITS(a) + ua - 1;
|
|
|
|
for (/* */; ua > 0; --ua, --da) {
|
|
w = (w << MP_DIGIT_BIT) | *da;
|
|
|
|
if (w >= b) {
|
|
qdigit = w / b;
|
|
w = w % b;
|
|
}
|
|
else {
|
|
qdigit = 0;
|
|
}
|
|
|
|
*da = (mp_digit)qdigit;
|
|
}
|
|
|
|
CLAMP(a);
|
|
return (mp_digit)w;
|
|
}
|
|
|
|
STATIC void s_qdiv(mp_int z, mp_size p2)
|
|
{
|
|
mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
|
|
mp_size uz = MP_USED(z);
|
|
|
|
if (ndig) {
|
|
mp_size mark;
|
|
mp_digit *to, *from;
|
|
|
|
if (ndig >= uz) {
|
|
mp_int_zero(z);
|
|
return;
|
|
}
|
|
|
|
to = MP_DIGITS(z); from = to + ndig;
|
|
|
|
for (mark = ndig; mark < uz; ++mark)
|
|
*to++ = *from++;
|
|
|
|
MP_USED(z) = uz - ndig;
|
|
}
|
|
|
|
if (nbits) {
|
|
mp_digit d = 0, *dz, save;
|
|
mp_size up = MP_DIGIT_BIT - nbits;
|
|
|
|
uz = MP_USED(z);
|
|
dz = MP_DIGITS(z) + uz - 1;
|
|
|
|
for (/* */; uz > 0; --uz, --dz) {
|
|
save = *dz;
|
|
|
|
*dz = (*dz >> nbits) | (d << up);
|
|
d = save;
|
|
}
|
|
|
|
CLAMP(z);
|
|
}
|
|
|
|
if (MP_USED(z) == 1 && z->digits[0] == 0)
|
|
MP_SIGN(z) = MP_ZPOS;
|
|
}
|
|
|
|
STATIC void s_qmod(mp_int z, mp_size p2)
|
|
{
|
|
mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
|
|
mp_size uz = MP_USED(z);
|
|
mp_digit mask = (1 << rest) - 1;
|
|
|
|
if (start <= uz) {
|
|
MP_USED(z) = start;
|
|
z->digits[start - 1] &= mask;
|
|
CLAMP(z);
|
|
}
|
|
}
|
|
|
|
STATIC int s_qmul(mp_int z, mp_size p2)
|
|
{
|
|
mp_size uz, need, rest, extra, i;
|
|
mp_digit *from, *to, d;
|
|
|
|
if (p2 == 0)
|
|
return 1;
|
|
|
|
uz = MP_USED(z);
|
|
need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT;
|
|
|
|
/* Figure out if we need an extra digit at the top end; this occurs if the
|
|
topmost `rest' bits of the high-order digit of z are not zero, meaning
|
|
they will be shifted off the end if not preserved */
|
|
extra = 0;
|
|
if (rest != 0) {
|
|
mp_digit *dz = MP_DIGITS(z) + uz - 1;
|
|
|
|
if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
|
|
extra = 1;
|
|
}
|
|
|
|
if (!s_pad(z, uz + need + extra))
|
|
return 0;
|
|
|
|
/* If we need to shift by whole digits, do that in one pass, then
|
|
to back and shift by partial digits.
|
|
*/
|
|
if (need > 0) {
|
|
from = MP_DIGITS(z) + uz - 1;
|
|
to = from + need;
|
|
|
|
for (i = 0; i < uz; ++i)
|
|
*to-- = *from--;
|
|
|
|
ZERO(MP_DIGITS(z), need);
|
|
uz += need;
|
|
}
|
|
|
|
if (rest) {
|
|
d = 0;
|
|
for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
|
|
mp_digit save = *from;
|
|
|
|
*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
|
|
d = save;
|
|
}
|
|
|
|
d >>= (MP_DIGIT_BIT - rest);
|
|
if (d != 0) {
|
|
*from = d;
|
|
uz += extra;
|
|
}
|
|
}
|
|
|
|
MP_USED(z) = uz;
|
|
CLAMP(z);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
|
|
The sign of the result is always zero/positive.
|
|
*/
|
|
STATIC int s_qsub(mp_int z, mp_size p2)
|
|
{
|
|
mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp;
|
|
mp_size tdig = (p2 / MP_DIGIT_BIT), pos;
|
|
mp_word w = 0;
|
|
|
|
if (!s_pad(z, tdig + 1))
|
|
return 0;
|
|
|
|
for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
|
|
w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
|
|
|
|
*zp = LOWER_HALF(w);
|
|
w = UPPER_HALF(w) ? 0 : 1;
|
|
}
|
|
|
|
w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
|
|
*zp = LOWER_HALF(w);
|
|
|
|
assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
|
|
|
|
MP_SIGN(z) = MP_ZPOS;
|
|
CLAMP(z);
|
|
|
|
return 1;
|
|
}
|
|
|
|
STATIC int s_dp2k(mp_int z)
|
|
{
|
|
int k = 0;
|
|
mp_digit *dp = MP_DIGITS(z), d;
|
|
|
|
if (MP_USED(z) == 1 && *dp == 0)
|
|
return 1;
|
|
|
|
while (*dp == 0) {
|
|
k += MP_DIGIT_BIT;
|
|
++dp;
|
|
}
|
|
|
|
d = *dp;
|
|
while ((d & 1) == 0) {
|
|
d >>= 1;
|
|
++k;
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
STATIC int s_isp2(mp_int z)
|
|
{
|
|
mp_size uz = MP_USED(z), k = 0;
|
|
mp_digit *dz = MP_DIGITS(z), d;
|
|
|
|
while (uz > 1) {
|
|
if (*dz++ != 0)
|
|
return -1;
|
|
k += MP_DIGIT_BIT;
|
|
--uz;
|
|
}
|
|
|
|
d = *dz;
|
|
while (d > 1) {
|
|
if (d & 1)
|
|
return -1;
|
|
++k; d >>= 1;
|
|
}
|
|
|
|
return (int) k;
|
|
}
|
|
|
|
STATIC int s_2expt(mp_int z, mp_small k)
|
|
{
|
|
mp_size ndig, rest;
|
|
mp_digit *dz;
|
|
|
|
ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
|
|
rest = k % MP_DIGIT_BIT;
|
|
|
|
if (!s_pad(z, ndig))
|
|
return 0;
|
|
|
|
dz = MP_DIGITS(z);
|
|
ZERO(dz, ndig);
|
|
*(dz + ndig - 1) = (1 << rest);
|
|
MP_USED(z) = ndig;
|
|
|
|
return 1;
|
|
}
|
|
|
|
STATIC int s_norm(mp_int a, mp_int b)
|
|
{
|
|
mp_digit d = b->digits[MP_USED(b) - 1];
|
|
int k = 0;
|
|
|
|
while (d < (mp_digit) (1 << (MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
|
|
d <<= 1;
|
|
++k;
|
|
}
|
|
|
|
/* These multiplications can't fail */
|
|
if (k != 0) {
|
|
(void) s_qmul(a, (mp_size) k);
|
|
(void) s_qmul(b, (mp_size) k);
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
STATIC mp_result s_brmu(mp_int z, mp_int m)
|
|
{
|
|
mp_size um = MP_USED(m) * 2;
|
|
|
|
if (!s_pad(z, um))
|
|
return MP_MEMORY;
|
|
|
|
s_2expt(z, MP_DIGIT_BIT * um);
|
|
return mp_int_div(z, m, z, NULL);
|
|
}
|
|
|
|
STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
|
|
{
|
|
mp_size um = MP_USED(m), umb_p1, umb_m1;
|
|
|
|
umb_p1 = (um + 1) * MP_DIGIT_BIT;
|
|
umb_m1 = (um - 1) * MP_DIGIT_BIT;
|
|
|
|
if (mp_int_copy(x, q1) != MP_OK)
|
|
return 0;
|
|
|
|
/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
|
|
s_qdiv(q1, umb_m1);
|
|
UMUL(q1, mu, q2);
|
|
s_qdiv(q2, umb_p1);
|
|
|
|
/* Set x = x mod b^(k+1) */
|
|
s_qmod(x, umb_p1);
|
|
|
|
/* Now, q is a guess for the quotient a / m.
|
|
Compute x - q * m mod b^(k+1), replacing x. This may be off
|
|
by a factor of 2m, but no more than that.
|
|
*/
|
|
UMUL(q2, m, q1);
|
|
s_qmod(q1, umb_p1);
|
|
(void) mp_int_sub(x, q1, x); /* can't fail */
|
|
|
|
/* The result may be < 0; if it is, add b^(k+1) to pin it in the proper
|
|
range. */
|
|
if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
|
|
return 0;
|
|
|
|
/* If x > m, we need to back it off until it is in range. This will be
|
|
required at most twice. */
|
|
if (mp_int_compare(x, m) >= 0) {
|
|
(void) mp_int_sub(x, m, x);
|
|
if (mp_int_compare(x, m) >= 0)
|
|
(void) mp_int_sub(x, m, x);
|
|
}
|
|
|
|
/* At this point, x has been properly reduced. */
|
|
return 1;
|
|
}
|
|
|
|
/* Perform modular exponentiation using Barrett's method, where mu is the
|
|
reduction constant for m. Assumes a < m, b > 0. */
|
|
STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
|
|
{
|
|
mp_digit *db, *dbt, umu, d;
|
|
mp_result res;
|
|
DECLARE_TEMP(3);
|
|
|
|
umu = MP_USED(mu); db = MP_DIGITS(b); dbt = db + MP_USED(b) - 1;
|
|
|
|
while (last__ < 3) {
|
|
SETUP(mp_int_init_size(LAST_TEMP(), 4 * umu));
|
|
ZERO(MP_DIGITS(TEMP(last__ - 1)), MP_ALLOC(TEMP(last__ - 1)));
|
|
}
|
|
|
|
(void) mp_int_set_value(c, 1);
|
|
|
|
/* Take care of low-order digits */
|
|
while (db < dbt) {
|
|
int i;
|
|
|
|
for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
|
|
if (d & 1) {
|
|
/* The use of a second temporary avoids allocation */
|
|
UMUL(c, a, TEMP(0));
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
|
|
res = MP_MEMORY; goto CLEANUP;
|
|
}
|
|
mp_int_copy(TEMP(0), c);
|
|
}
|
|
|
|
|
|
USQR(a, TEMP(0));
|
|
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
|
|
res = MP_MEMORY; goto CLEANUP;
|
|
}
|
|
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
|
|
mp_int_copy(TEMP(0), a);
|
|
}
|
|
|
|
++db;
|
|
}
|
|
|
|
/* Take care of highest-order digit */
|
|
d = *dbt;
|
|
for (;;) {
|
|
if (d & 1) {
|
|
UMUL(c, a, TEMP(0));
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
|
|
res = MP_MEMORY; goto CLEANUP;
|
|
}
|
|
mp_int_copy(TEMP(0), c);
|
|
}
|
|
|
|
d >>= 1;
|
|
if (!d) break;
|
|
|
|
USQR(a, TEMP(0));
|
|
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
|
|
res = MP_MEMORY; goto CLEANUP;
|
|
}
|
|
(void) mp_int_copy(TEMP(0), a);
|
|
}
|
|
|
|
CLEANUP_TEMP();
|
|
return res;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
The s_udiv function produces incorrect results. For example, with test
|
|
div:11141460315522012760862883825:48318382095:0,230584300062375935
|
|
commenting out the function for now and using s_udiv_knuth instead.
|
|
STATIC mp_result s_udiv(mp_int a, mp_int b);
|
|
*/
|
|
/* Precondition: a >= b and b > 0
|
|
Postcondition: a' = a / b, b' = a % b
|
|
*/
|
|
STATIC mp_result s_udiv(mp_int a, mp_int b)
|
|
{
|
|
mpz_t q, r, t;
|
|
mp_size ua, ub, qpos = 0;
|
|
mp_digit *da, btop;
|
|
mp_result res = MP_OK;
|
|
int k, skip = 0;
|
|
|
|
/* Force signs to positive */
|
|
MP_SIGN(a) = MP_ZPOS;
|
|
MP_SIGN(b) = MP_ZPOS;
|
|
|
|
/* Normalize, per Knuth */
|
|
k = s_norm(a, b);
|
|
|
|
ua = MP_USED(a); ub = MP_USED(b); btop = b->digits[ub - 1];
|
|
if ((res = mp_int_init_size(&q, ua)) != MP_OK) return res;
|
|
if ((res = mp_int_init_size(&t, ua + 1)) != MP_OK) goto CLEANUP;
|
|
|
|
da = MP_DIGITS(a);
|
|
r.digits = da + ua - 1; /* The contents of r are shared with a */
|
|
r.used = 1;
|
|
r.sign = MP_ZPOS;
|
|
r.alloc = MP_ALLOC(a);
|
|
ZERO(t.digits, t.alloc);
|
|
|
|
/* Solve for quotient digits, store in q.digits in reverse order */
|
|
while (r.digits >= da) {
|
|
assert(qpos <= q.alloc);
|
|
|
|
if (s_ucmp(b, &r) > 0) {
|
|
r.digits -= 1;
|
|
r.used += 1;
|
|
|
|
if (++skip > 1 && qpos > 0)
|
|
q.digits[qpos++] = 0;
|
|
|
|
CLAMP(&r);
|
|
}
|
|
else {
|
|
mp_word pfx = r.digits[r.used - 1];
|
|
mp_word qdigit;
|
|
|
|
if (r.used > 1 && pfx < btop) {
|
|
pfx <<= MP_DIGIT_BIT / 2;
|
|
pfx <<= MP_DIGIT_BIT / 2;
|
|
pfx |= r.digits[r.used - 2];
|
|
}
|
|
|
|
qdigit = pfx / btop;
|
|
if (qdigit > MP_DIGIT_MAX) {
|
|
qdigit = MP_DIGIT_MAX;
|
|
}
|
|
|
|
s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
|
|
t.used = ub + 1; CLAMP(&t);
|
|
while (s_ucmp(&t, &r) > 0) {
|
|
--qdigit;
|
|
(void) mp_int_sub(&t, b, &t); /* cannot fail */
|
|
}
|
|
|
|
s_usub(r.digits, t.digits, r.digits, r.used, t.used);
|
|
CLAMP(&r);
|
|
|
|
q.digits[qpos++] = (mp_digit) qdigit;
|
|
ZERO(t.digits, t.used);
|
|
skip = 0;
|
|
}
|
|
}
|
|
|
|
/* Put quotient digits in the correct order, and discard extra zeroes */
|
|
q.used = qpos;
|
|
REV(mp_digit, q.digits, qpos);
|
|
CLAMP(&q);
|
|
|
|
/* Denormalize the remainder */
|
|
CLAMP(a);
|
|
if (k != 0)
|
|
s_qdiv(a, k);
|
|
|
|
mp_int_copy(a, b); /* ok: 0 <= r < b */
|
|
mp_int_copy(&q, a); /* ok: q <= a */
|
|
|
|
mp_int_clear(&t);
|
|
CLEANUP:
|
|
mp_int_clear(&q);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/* Division of nonnegative integers
|
|
|
|
This function implements division algorithm for unsigned multi-precision
|
|
integers. The algorithm is based on Algorithm D from Knuth's "The Art of
|
|
Computer Programming", 3rd ed. 1998, pg 272-273.
|
|
|
|
We diverge from Knuth's algorithm in that we do not perform the subtraction
|
|
from the remainder until we have determined that we have the correct
|
|
quotient digit. This makes our algorithm less efficient that Knuth because
|
|
we might have to perform multiple multiplication and comparison steps before
|
|
the subtraction. The advantage is that it is easy to implement and ensure
|
|
correctness without worrying about underflow from the subtraction.
|
|
|
|
inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
|
|
v a n digit integer in base b (b is 2^MP_DIGIT_BIT)
|
|
n >= 1
|
|
m >= 0
|
|
outputs: u / v stored in u
|
|
u % v stored in v
|
|
*/
|
|
STATIC mp_result s_udiv_knuth(mp_int u, mp_int v) {
|
|
mpz_t q, r, t;
|
|
mp_result
|
|
res = MP_OK;
|
|
int k,j;
|
|
mp_size m,n;
|
|
|
|
/* Force signs to positive */
|
|
MP_SIGN(u) = MP_ZPOS;
|
|
MP_SIGN(v) = MP_ZPOS;
|
|
|
|
/* Use simple division algorithm when v is only one digit long */
|
|
if (MP_USED(v) == 1) {
|
|
mp_digit d, rem;
|
|
d = v->digits[0];
|
|
rem = s_ddiv(u, d);
|
|
mp_int_set_value(v, rem);
|
|
return MP_OK;
|
|
}
|
|
|
|
/************************************************************/
|
|
/* Algorithm D */
|
|
/************************************************************/
|
|
/* The n and m variables are defined as used by Knuth.
|
|
u is an n digit number with digits u_{n-1}..u_0.
|
|
v is an n+m digit number with digits from v_{m+n-1}..v_0.
|
|
We require that n > 1 and m >= 0 */
|
|
n = MP_USED(v);
|
|
m = MP_USED(u) - n;
|
|
assert(n > 1);
|
|
assert(m >= 0);
|
|
|
|
/************************************************************/
|
|
/* D1: Normalize.
|
|
The normalization step provides the necessary condition for Theorem B,
|
|
which states that the quotient estimate for q_j, call it qhat
|
|
|
|
qhat = u_{j+n}u_{j+n-1} / v_{n-1}
|
|
|
|
is bounded by
|
|
|
|
qhat - 2 <= q_j <= qhat.
|
|
|
|
That is, qhat is always greater than the actual quotient digit q,
|
|
and it is never more than two larger than the actual quotient digit. */
|
|
k = s_norm(u, v);
|
|
|
|
/* Extend size of u by one if needed.
|
|
|
|
The algorithm begins with a value of u that has one more digit of input.
|
|
The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the
|
|
multiplication did not increase the number of digits of u, we need to add
|
|
a leading zero here.
|
|
*/
|
|
if (k == 0 || MP_USED(u) != m + n + 1) {
|
|
if (!s_pad(u, m+n+1))
|
|
return MP_MEMORY;
|
|
u->digits[m+n] = 0;
|
|
u->used = m+n+1;
|
|
}
|
|
|
|
/* Add a leading 0 to v.
|
|
|
|
The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to
|
|
add the leading zero to v here to ensure that the multiplication will
|
|
produce the full n+1 digit result. */
|
|
if (!s_pad(v, n+1)) return MP_MEMORY; v->digits[n] = 0;
|
|
|
|
/* Initialize temporary variables q and t.
|
|
q allocates space for m+1 digits to store the quotient digits
|
|
t allocates space for n+1 digits to hold the result of q_j*v */
|
|
if ((res = mp_int_init_size(&q, m + 1)) != MP_OK) return res;
|
|
if ((res = mp_int_init_size(&t, n + 1)) != MP_OK) goto CLEANUP;
|
|
|
|
/************************************************************/
|
|
/* D2: Initialize j */
|
|
j = m;
|
|
r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */
|
|
r.used = n + 1;
|
|
r.sign = MP_ZPOS;
|
|
r.alloc = MP_ALLOC(u);
|
|
ZERO(t.digits, t.alloc);
|
|
|
|
/* Calculate the m+1 digits of the quotient result */
|
|
for (; j >= 0; j--) {
|
|
/************************************************************/
|
|
/* D3: Calculate q' */
|
|
/* r->digits is aligned to position j of the number u */
|
|
mp_word pfx, qhat;
|
|
pfx = r.digits[n];
|
|
pfx <<= MP_DIGIT_BIT / 2;
|
|
pfx <<= MP_DIGIT_BIT / 2;
|
|
pfx |= r.digits[n-1]; /* pfx = u_{j+n}{j+n-1} */
|
|
|
|
qhat = pfx / v->digits[n-1];
|
|
/* Check to see if qhat > b, and decrease qhat if so.
|
|
Theorem B guarantess that qhat is at most 2 larger than the
|
|
actual value, so it is possible that qhat is greater than
|
|
the maximum value that will fit in a digit */
|
|
if (qhat > MP_DIGIT_MAX)
|
|
qhat = MP_DIGIT_MAX;
|
|
|
|
/************************************************************/
|
|
/* D4,D5,D6: Multiply qhat * v and test for a correct value of q
|
|
|
|
We proceed a bit different than the way described by Knuth. This way is
|
|
simpler but less efficent. Instead of doing the multiply and subtract
|
|
then checking for underflow, we first do the multiply of qhat * v and
|
|
see if it is larger than the current remainder r. If it is larger, we
|
|
decrease qhat by one and try again. We may need to decrease qhat one
|
|
more time before we get a value that is smaller than r.
|
|
|
|
This way is less efficent than Knuth becuase we do more multiplies, but
|
|
we do not need to worry about underflow this way. */
|
|
/* t = qhat * v */
|
|
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1); t.used = n + 1;
|
|
CLAMP(&t);
|
|
|
|
/* Clamp r for the comparison. Comparisons do not like leading zeros. */
|
|
CLAMP(&r);
|
|
if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */
|
|
qhat -= 1; /* try a smaller q */
|
|
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1);
|
|
t.used = n + 1; CLAMP(&t);
|
|
if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */
|
|
assert(qhat > 0);
|
|
qhat -= 1; /* try a smaller q */
|
|
s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1);
|
|
t.used = n + 1; CLAMP(&t);
|
|
}
|
|
assert(s_ucmp(&t, &r) <= 0 && "The mathematics failed us.");
|
|
}
|
|
/* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1
|
|
digits long. */
|
|
r.used = n + 1;
|
|
|
|
/************************************************************/
|
|
/* D4: Multiply and subtract */
|
|
/* note: The multiply was completed above so we only need to subtract here.
|
|
**/
|
|
s_usub(r.digits, t.digits, r.digits, r.used, t.used);
|
|
|
|
/************************************************************/
|
|
/* D5: Test remainder */
|
|
/* note: Not needed because we always check that qhat is the correct value
|
|
* before performing the subtract.
|
|
* Value cast to mp_digit to prevent warning, qhat has been clamped to MP_DIGIT_MAX */
|
|
q.digits[j] = (mp_digit)qhat;
|
|
|
|
/************************************************************/
|
|
/* D6: Add back */
|
|
/* note: Not needed because we always check that qhat is the correct value
|
|
* before performing the subtract. */
|
|
|
|
/************************************************************/
|
|
/* D7: Loop on j */
|
|
r.digits--;
|
|
ZERO(t.digits, t.alloc);
|
|
}
|
|
|
|
/* Get rid of leading zeros in q */
|
|
q.used = m + 1;
|
|
CLAMP(&q);
|
|
|
|
/* Denormalize the remainder */
|
|
CLAMP(u); /* use u here because the r.digits pointer is off-by-one */
|
|
if (k != 0)
|
|
s_qdiv(u, k);
|
|
|
|
mp_int_copy(u, v); /* ok: 0 <= r < v */
|
|
mp_int_copy(&q, u); /* ok: q <= u */
|
|
|
|
mp_int_clear(&t);
|
|
CLEANUP:
|
|
mp_int_clear(&q);
|
|
return res;
|
|
}
|
|
|
|
STATIC int s_outlen(mp_int z, mp_size r)
|
|
{
|
|
mp_result bits;
|
|
double raw;
|
|
|
|
assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
|
|
|
|
bits = mp_int_count_bits(z);
|
|
raw = (double)bits * s_log2[r];
|
|
|
|
return (int)(raw + 0.999999);
|
|
}
|
|
|
|
STATIC mp_size s_inlen(int len, mp_size r)
|
|
{
|
|
double raw = (double)len / s_log2[r];
|
|
mp_size bits = (mp_size)(raw + 0.5);
|
|
|
|
return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
|
|
}
|
|
|
|
STATIC int s_ch2val(char c, int r)
|
|
{
|
|
int out;
|
|
|
|
if (isdigit((unsigned char) c))
|
|
out = c - '0';
|
|
else if (r > 10 && isalpha((unsigned char) c))
|
|
out = toupper(c) - 'A' + 10;
|
|
else
|
|
return -1;
|
|
|
|
return (out >= r) ? -1 : out;
|
|
}
|
|
|
|
STATIC char s_val2ch(int v, int caps)
|
|
{
|
|
assert(v >= 0);
|
|
|
|
if (v < 10)
|
|
return v + '0';
|
|
else {
|
|
char out = (v - 10) + 'a';
|
|
|
|
if (caps)
|
|
return toupper(out);
|
|
else
|
|
return out;
|
|
}
|
|
}
|
|
|
|
STATIC void s_2comp(unsigned char *buf, int len)
|
|
{
|
|
int i;
|
|
unsigned short s = 1;
|
|
|
|
for (i = len - 1; i >= 0; --i) {
|
|
unsigned char c = ~buf[i];
|
|
|
|
s = c + s;
|
|
c = s & UCHAR_MAX;
|
|
s >>= CHAR_BIT;
|
|
|
|
buf[i] = c;
|
|
}
|
|
|
|
/* last carry out is ignored */
|
|
}
|
|
|
|
STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
|
|
{
|
|
mp_size uz;
|
|
mp_digit *dz;
|
|
int pos = 0, limit = *limpos;
|
|
|
|
uz = MP_USED(z); dz = MP_DIGITS(z);
|
|
while (uz > 0 && pos < limit) {
|
|
mp_digit d = *dz++;
|
|
int i;
|
|
|
|
for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
|
|
buf[pos++] = (unsigned char)d;
|
|
d >>= CHAR_BIT;
|
|
|
|
/* Don't write leading zeroes */
|
|
if (d == 0 && uz == 1)
|
|
i = 0; /* exit loop without signaling truncation */
|
|
}
|
|
|
|
/* Detect truncation (loop exited with pos >= limit) */
|
|
if (i > 0) break;
|
|
|
|
--uz;
|
|
}
|
|
|
|
if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
|
|
if (pos < limit)
|
|
buf[pos++] = 0;
|
|
else
|
|
uz = 1;
|
|
}
|
|
|
|
/* Digits are in reverse order, fix that */
|
|
REV(unsigned char, buf, pos);
|
|
|
|
/* Return the number of bytes actually written */
|
|
*limpos = pos;
|
|
|
|
return (uz == 0) ? MP_OK : MP_TRUNC;
|
|
}
|
|
|
|
#if DEBUG
|
|
void s_print(char *tag, mp_int z)
|
|
{
|
|
int i;
|
|
|
|
fprintf(stderr, "%s: %c ", tag,
|
|
(MP_SIGN(z) == MP_NEG) ? '-' : '+');
|
|
|
|
for (i = MP_USED(z) - 1; i >= 0; --i)
|
|
fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), z->digits[i]);
|
|
|
|
fputc('\n', stderr);
|
|
|
|
}
|
|
|
|
void s_print_buf(char *tag, mp_digit *buf, mp_size num)
|
|
{
|
|
int i;
|
|
|
|
fprintf(stderr, "%s: ", tag);
|
|
|
|
for (i = num - 1; i >= 0; --i)
|
|
fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]);
|
|
|
|
fputc('\n', stderr);
|
|
}
|
|
#endif
|
|
|
|
/* Here there be dragons */
|