llvm-project/lldb/source/Expression/ClangExpressionParser.cpp

697 lines
24 KiB
C++

//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/ClangExpressionParser.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Expression/ClangASTSource.h"
#include "lldb/Expression/ClangExpression.h"
#include "lldb/Expression/IRDynamicChecks.h"
#include "lldb/Expression/IRForTarget.h"
#include "lldb/Expression/IRToDWARF.h"
#include "lldb/Expression/RecordingMemoryManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Checker/FrontendActions.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Driver/CC1Options.h"
#include "clang/Driver/OptTable.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Frontend/VerifyDiagnosticsClient.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseAST.h"
#include "clang/Rewrite/FrontendActions.h"
#include "clang/Sema/SemaConsumer.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/Module.h"
#include "llvm/LLVMContext.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/System/Host.h"
#include "llvm/System/Signals.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetSelect.h"
using namespace clang;
using namespace llvm;
using namespace lldb_private;
//===----------------------------------------------------------------------===//
// Utility Methods for Clang
//===----------------------------------------------------------------------===//
std::string GetBuiltinIncludePath(const char *Argv0) {
llvm::sys::Path P =
llvm::sys::Path::GetMainExecutable(Argv0,
(void*)(intptr_t) GetBuiltinIncludePath);
if (!P.isEmpty()) {
P.eraseComponent(); // Remove /clang from foo/bin/clang
P.eraseComponent(); // Remove /bin from foo/bin
// Get foo/lib/clang/<version>/include
P.appendComponent("lib");
P.appendComponent("clang");
P.appendComponent(CLANG_VERSION_STRING);
P.appendComponent("include");
}
return P.str();
}
//===----------------------------------------------------------------------===//
// Main driver for Clang
//===----------------------------------------------------------------------===//
static void LLVMErrorHandler(void *UserData, const std::string &Message) {
Diagnostic &Diags = *static_cast<Diagnostic*>(UserData);
Diags.Report(diag::err_fe_error_backend) << Message;
// We cannot recover from llvm errors.
exit(1);
}
static FrontendAction *CreateFrontendBaseAction(CompilerInstance &CI) {
using namespace clang::frontend;
switch (CI.getFrontendOpts().ProgramAction) {
default:
llvm_unreachable("Invalid program action!");
case ASTDump: return new ASTDumpAction();
case ASTPrint: return new ASTPrintAction();
case ASTPrintXML: return new ASTPrintXMLAction();
case ASTView: return new ASTViewAction();
case BoostCon: return new BoostConAction();
case DumpRawTokens: return new DumpRawTokensAction();
case DumpTokens: return new DumpTokensAction();
case EmitAssembly: return new EmitAssemblyAction();
case EmitBC: return new EmitBCAction();
case EmitHTML: return new HTMLPrintAction();
case EmitLLVM: return new EmitLLVMAction();
case EmitLLVMOnly: return new EmitLLVMOnlyAction();
case EmitCodeGenOnly: return new EmitCodeGenOnlyAction();
case EmitObj: return new EmitObjAction();
case FixIt: return new FixItAction();
case GeneratePCH: return new GeneratePCHAction();
case GeneratePTH: return new GeneratePTHAction();
case InheritanceView: return new InheritanceViewAction();
case InitOnly: return new InitOnlyAction();
case ParseSyntaxOnly: return new SyntaxOnlyAction();
case PluginAction: {
for (FrontendPluginRegistry::iterator it =
FrontendPluginRegistry::begin(), ie = FrontendPluginRegistry::end();
it != ie; ++it) {
if (it->getName() == CI.getFrontendOpts().ActionName) {
llvm::OwningPtr<PluginASTAction> P(it->instantiate());
if (!P->ParseArgs(CI, CI.getFrontendOpts().PluginArgs))
return 0;
return P.take();
}
}
CI.getDiagnostics().Report(diag::err_fe_invalid_plugin_name)
<< CI.getFrontendOpts().ActionName;
return 0;
}
case PrintDeclContext: return new DeclContextPrintAction();
case PrintPreamble: return new PrintPreambleAction();
case PrintPreprocessedInput: return new PrintPreprocessedAction();
case RewriteMacros: return new RewriteMacrosAction();
case RewriteObjC: return new RewriteObjCAction();
case RewriteTest: return new RewriteTestAction();
case RunAnalysis: return new AnalysisAction();
case RunPreprocessorOnly: return new PreprocessOnlyAction();
}
}
static FrontendAction *CreateFrontendAction(CompilerInstance &CI) {
// Create the underlying action.
FrontendAction *Act = CreateFrontendBaseAction(CI);
if (!Act)
return 0;
// If there are any AST files to merge, create a frontend action
// adaptor to perform the merge.
if (!CI.getFrontendOpts().ASTMergeFiles.empty())
Act = new ASTMergeAction(Act, &CI.getFrontendOpts().ASTMergeFiles[0],
CI.getFrontendOpts().ASTMergeFiles.size());
return Act;
}
//===----------------------------------------------------------------------===//
// Implementation of ClangExpressionParser
//===----------------------------------------------------------------------===//
ClangExpressionParser::ClangExpressionParser(const char *target_triple,
ClangExpression &expr) :
m_expr(expr),
m_target_triple (),
m_compiler (),
m_code_generator (NULL),
m_execution_engine (),
m_jitted_functions ()
{
// Initialize targets first, so that --version shows registered targets.
static struct InitializeLLVM {
InitializeLLVM() {
llvm::InitializeAllTargets();
llvm::InitializeAllAsmPrinters();
}
} InitializeLLVM;
if (target_triple && target_triple[0])
m_target_triple = target_triple;
else
m_target_triple = llvm::sys::getHostTriple();
// 1. Create a new compiler instance.
m_compiler.reset(new CompilerInstance());
m_compiler->setLLVMContext(new LLVMContext());
// 2. Set options.
// Parse expressions as Objective C++ regardless of context.
// Our hook into Clang's lookup mechanism only works in C++.
m_compiler->getLangOpts().CPlusPlus = true;
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ThreadsafeStatics = false;
m_compiler->getLangOpts().AccessControl = false; // Debuggers get universal access
m_compiler->getLangOpts().DollarIdents = true; // $ indicates a persistent variable name
// Set CodeGen options
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
// Disable some warnings.
m_compiler->getDiagnosticOpts().Warnings.push_back("no-unused-value");
// Set the target triple.
m_compiler->getTargetOpts().Triple = m_target_triple;
// 3. Set up various important bits of infrastructure.
m_compiler->createDiagnostics(0, 0);
// Create the target instance.
m_compiler->setTarget(TargetInfo::CreateTargetInfo(m_compiler->getDiagnostics(),
m_compiler->getTargetOpts()));
assert (m_compiler->hasTarget());
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_compiler->getTarget().setForcedLangOptions(m_compiler->getLangOpts());
// 4. Set up the diagnostic buffer for reporting errors
m_compiler->getDiagnostics().setClient(new clang::TextDiagnosticBuffer);
// 5. Set up the source management objects inside the compiler
if (!m_compiler->hasSourceManager())
m_compiler->createSourceManager();
m_compiler->createFileManager();
m_compiler->createPreprocessor();
// 6. Most of this we get from the CompilerInstance, but we
// also want to give the context an ExternalASTSource.
SelectorTable selector_table;
m_builtin_context.reset(new Builtin::Context(m_compiler->getTarget()));
std::auto_ptr<clang::ASTContext> ast_context(new ASTContext(m_compiler->getLangOpts(),
m_compiler->getSourceManager(),
m_compiler->getTarget(),
m_compiler->getPreprocessor().getIdentifierTable(),
selector_table,
*m_builtin_context.get(),
0));
ClangExpressionDeclMap *decl_map = m_expr.DeclMap();
if (decl_map)
{
OwningPtr<clang::ExternalASTSource> ast_source(new ClangASTSource(*ast_context, *decl_map));
ast_context->setExternalSource(ast_source);
}
m_compiler->setASTContext(ast_context.release());
std::string module_name("___clang_module");
m_code_generator.reset(CreateLLVMCodeGen(m_compiler->getDiagnostics(),
module_name,
m_compiler->getCodeGenOpts(),
m_compiler->getLLVMContext()));
}
ClangExpressionParser::~ClangExpressionParser()
{
}
unsigned
ClangExpressionParser::Parse (Stream &stream)
{
TextDiagnosticBuffer *diag_buf = static_cast<TextDiagnosticBuffer*>(m_compiler->getDiagnostics().getClient());
diag_buf->FlushDiagnostics (m_compiler->getDiagnostics());
MemoryBuffer *memory_buffer = MemoryBuffer::getMemBufferCopy(m_expr.Text(), __FUNCTION__);
FileID memory_buffer_file_id = m_compiler->getSourceManager().createMainFileIDForMemBuffer (memory_buffer);
diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor());
ASTConsumer *ast_transformer = m_expr.ASTTransformer(m_code_generator.get());
if (ast_transformer)
ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext());
else
ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext());
diag_buf->EndSourceFile();
TextDiagnosticBuffer::const_iterator diag_iterator;
int num_errors = 0;
for (diag_iterator = diag_buf->warn_begin();
diag_iterator != diag_buf->warn_end();
++diag_iterator)
stream.Printf("warning: %s\n", (*diag_iterator).second.c_str());
num_errors = 0;
for (diag_iterator = diag_buf->err_begin();
diag_iterator != diag_buf->err_end();
++diag_iterator)
{
num_errors++;
stream.Printf("error: %s\n", (*diag_iterator).second.c_str());
}
return num_errors;
}
static bool FindFunctionInModule (std::string &mangled_name,
llvm::Module *module,
const char *orig_name)
{
for (llvm::Module::iterator fi = module->getFunctionList().begin(), fe = module->getFunctionList().end();
fi != fe;
++fi)
{
if (fi->getName().str().find(orig_name) != std::string::npos)
{
mangled_name = fi->getName().str();
return true;
}
}
return false;
}
Error
ClangExpressionParser::MakeDWARF ()
{
Error err;
llvm::Module *module = m_code_generator->GetModule();
if (!module)
{
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
ClangExpressionVariableStore *local_variables = m_expr.LocalVariables();
ClangExpressionDeclMap *decl_map = m_expr.DeclMap();
if (!local_variables)
{
err.SetErrorToGenericError();
err.SetErrorString("Can't convert an expression without a VariableList to DWARF");
return err;
}
if (!decl_map)
{
err.SetErrorToGenericError();
err.SetErrorString("Can't convert an expression without a DeclMap to DWARF");
return err;
}
std::string function_name;
if (!FindFunctionInModule(function_name, module, m_expr.FunctionName()))
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module", m_expr.FunctionName());
return err;
}
IRToDWARF ir_to_dwarf(*local_variables, decl_map, m_expr.DwarfOpcodeStream(), function_name.c_str());
if (!ir_to_dwarf.runOnModule(*module))
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't convert the expression to DWARF");
return err;
}
err.Clear();
return err;
}
Error
ClangExpressionParser::MakeJIT (lldb::addr_t &func_addr,
lldb::addr_t &func_end,
ExecutionContext &exe_ctx)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
Error err;
llvm::Module *module = m_code_generator->ReleaseModule();
if (!module)
{
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
// Find the actual name of the function (it's often mangled somehow)
std::string function_name;
if (!FindFunctionInModule(function_name, module, m_expr.FunctionName()))
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module", m_expr.FunctionName());
return err;
}
else
{
if(log)
log->Printf("Found function %s for %s", function_name.c_str(), m_expr.FunctionName());
}
ClangExpressionDeclMap *decl_map = m_expr.DeclMap(); // result can be NULL
if (decl_map)
{
IRForTarget ir_for_target(decl_map,
m_expr.NeedsVariableResolution(),
function_name.c_str());
if (!ir_for_target.runOnModule(*module))
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't convert the expression to DWARF");
return err;
}
if (m_expr.NeedsValidation())
{
/*
Disabled temporarily - TODO Centralize and re-enable this inside Process to avoid race conditions
IRDynamicChecks ir_dynamic_checks(*exe_ctx.process->GetDynamicCheckers(), function_name.c_str());
if (!ir_dynamic_checks.runOnModule(*module))
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't add dynamic checks to the expression");
return err;
}
*/
}
}
m_jit_mm = new RecordingMemoryManager();
std::string error_string;
m_execution_engine.reset(llvm::ExecutionEngine::createJIT (module,
&error_string,
m_jit_mm,
CodeGenOpt::Default,
true,
CodeModel::Small));
if (!m_execution_engine.get())
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't JIT the function: %s", error_string.c_str());
return err;
}
m_execution_engine->DisableLazyCompilation();
llvm::Function *function = module->getFunction (function_name.c_str());
// We don't actually need the function pointer here, this just forces it to get resolved.
void *fun_ptr = m_execution_engine->getPointerToFunction(function);
// Errors usually cause failures in the JIT, but if we're lucky we get here.
if (!fun_ptr)
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't JIT the function");
return err;
}
m_jitted_functions.push_back (ClangExpressionParser::JittedFunction(function_name.c_str(), (lldb::addr_t)fun_ptr));
ExecutionContext &exc_context(exe_ctx);
if (exc_context.process == NULL)
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't write the JIT compiled code into the target because there is no target");
return err;
}
// Look over the regions allocated for the function compiled. The JIT
// tries to allocate the functions & stubs close together, so we should try to
// write them that way too...
// For now I only write functions with no stubs, globals, exception tables,
// etc. So I only need to write the functions.
size_t alloc_size = 0;
std::map<uint8_t *, uint8_t *>::iterator fun_pos = m_jit_mm->m_functions.begin();
std::map<uint8_t *, uint8_t *>::iterator fun_end = m_jit_mm->m_functions.end();
for (; fun_pos != fun_end; ++fun_pos)
alloc_size += (*fun_pos).second - (*fun_pos).first;
Error alloc_error;
lldb::addr_t target_addr = exc_context.process->AllocateMemory (alloc_size, lldb::ePermissionsReadable|lldb::ePermissionsExecutable, alloc_error);
if (target_addr == LLDB_INVALID_ADDRESS)
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't allocate memory for the JITted function: %s", alloc_error.AsCString("unknown error"));
return err;
}
lldb::addr_t cursor = target_addr;
for (fun_pos = m_jit_mm->m_functions.begin(); fun_pos != fun_end; fun_pos++)
{
lldb::addr_t lstart = (lldb::addr_t) (*fun_pos).first;
lldb::addr_t lend = (lldb::addr_t) (*fun_pos).second;
size_t size = lend - lstart;
Error write_error;
if (exc_context.process->WriteMemory(cursor, (void *) lstart, size, write_error) != size)
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't copy JITted function into the target: %s", write_error.AsCString("unknown error"));
return err;
}
m_jit_mm->AddToLocalToRemoteMap (lstart, size, cursor);
cursor += size;
}
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos != end; pos++)
{
(*pos).m_remote_addr = m_jit_mm->GetRemoteAddressForLocal ((*pos).m_local_addr);
if (!(*pos).m_name.compare(function_name.c_str()))
{
func_end = m_jit_mm->GetRemoteRangeForLocal ((*pos).m_local_addr).second;
func_addr = (*pos).m_remote_addr;
}
}
err.Clear();
return err;
}
Error
ClangExpressionParser::DisassembleFunction (Stream &stream, ExecutionContext &exe_ctx)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
const char *name = m_expr.FunctionName();
Error ret;
ret.Clear();
lldb::addr_t func_local_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t func_remote_addr = LLDB_INVALID_ADDRESS;
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos < end; pos++)
{
if (strstr(pos->m_name.c_str(), name))
{
func_local_addr = pos->m_local_addr;
func_remote_addr = pos->m_remote_addr;
}
}
if (func_local_addr == LLDB_INVALID_ADDRESS)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't find function %s for disassembly", name);
return ret;
}
if(log)
log->Printf("Found function, has local address 0x%llx and remote address 0x%llx", (uint64_t)func_local_addr, (uint64_t)func_remote_addr);
std::pair <lldb::addr_t, lldb::addr_t> func_range;
func_range = m_jit_mm->GetRemoteRangeForLocal(func_local_addr);
if (func_range.first == 0 && func_range.second == 0)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't find code range for function %s", name);
return ret;
}
if(log)
log->Printf("Function's code range is [0x%llx-0x%llx]", func_range.first, func_range.second);
if (!exe_ctx.target)
{
ret.SetErrorToGenericError();
ret.SetErrorString("Couldn't find the target");
}
lldb::DataBufferSP buffer_sp(new DataBufferHeap(func_range.second - func_remote_addr, 0));
Error err;
exe_ctx.process->ReadMemory(func_remote_addr, buffer_sp->GetBytes(), buffer_sp->GetByteSize(), err);
if (!err.Success())
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't read from process: %s", err.AsCString("unknown error"));
return ret;
}
ArchSpec arch(exe_ctx.target->GetArchitecture());
Disassembler *disassembler = Disassembler::FindPlugin(arch);
if (disassembler == NULL)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Unable to find disassembler plug-in for %s architecture.", arch.AsCString());
return ret;
}
if (!exe_ctx.process)
{
ret.SetErrorToGenericError();
ret.SetErrorString("Couldn't find the process");
return ret;
}
DataExtractor extractor(buffer_sp,
exe_ctx.process->GetByteOrder(),
exe_ctx.target->GetArchitecture().GetAddressByteSize());
if(log)
{
log->Printf("Function data has contents:");
extractor.PutToLog (log,
0,
extractor.GetByteSize(),
func_remote_addr,
16,
DataExtractor::TypeUInt8);
}
disassembler->DecodeInstructions (Address (NULL, func_remote_addr), extractor, 0, UINT32_MAX);
InstructionList &instruction_list = disassembler->GetInstructionList();
uint32_t bytes_offset = 0;
for (uint32_t instruction_index = 0, num_instructions = instruction_list.GetSize();
instruction_index < num_instructions;
++instruction_index)
{
Instruction *instruction = instruction_list.GetInstructionAtIndex(instruction_index).get();
instruction->Dump (&stream,
true,
&extractor,
bytes_offset,
&exe_ctx,
true);
stream.PutChar('\n');
bytes_offset += instruction->GetByteSize();
}
return ret;
}