forked from OSchip/llvm-project
641 lines
23 KiB
C++
641 lines
23 KiB
C++
//===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file provides the implementation of a basic TargetTransformInfo pass
|
|
/// predicated on the target abstractions present in the target independent
|
|
/// code generator. It uses these (primarily TargetLowering) to model as much
|
|
/// of the TTI query interface as possible. It is included by most targets so
|
|
/// that they can specialize only a small subset of the query space.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <utility>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned>
|
|
PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
|
|
cl::desc("Threshold for partial unrolling"), cl::Hidden);
|
|
|
|
#define DEBUG_TYPE "basictti"
|
|
|
|
namespace {
|
|
|
|
class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
|
|
const TargetMachine *TM;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
/// Estimate the cost overhead of SK_Alternate shuffle.
|
|
unsigned getAltShuffleOverhead(Type *Ty) const;
|
|
|
|
const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); }
|
|
|
|
public:
|
|
BasicTTI() : ImmutablePass(ID), TM(nullptr) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
|
|
initializeBasicTTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void initializePass() override {
|
|
pushTTIStack(this);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
void *getAdjustedAnalysisPointer(const void *ID) override {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
bool hasBranchDivergence() const override;
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
|
|
bool isLegalAddImmediate(int64_t imm) const override;
|
|
bool isLegalICmpImmediate(int64_t imm) const override;
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale) const override;
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale) const override;
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isTypeLegal(Type *Ty) const override;
|
|
unsigned getJumpBufAlignment() const override;
|
|
unsigned getJumpBufSize() const override;
|
|
bool shouldBuildLookupTables() const override;
|
|
bool haveFastSqrt(Type *Ty) const override;
|
|
void getUnrollingPreferences(Loop *L,
|
|
UnrollingPreferences &UP) const override;
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const override;
|
|
unsigned getMaximumUnrollFactor() const override;
|
|
unsigned getRegisterBitWidth(bool Vector) const override;
|
|
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
|
|
OperandValueKind) const override;
|
|
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const override;
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const override;
|
|
unsigned getCFInstrCost(unsigned Opcode) const override;
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const override;
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const override;
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const override;
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
|
|
ArrayRef<Type*> Tys) const override;
|
|
unsigned getNumberOfParts(Type *Tp) const override;
|
|
unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
|
|
unsigned getReductionCost(unsigned Opcode, Type *Ty,
|
|
bool IsPairwise) const override;
|
|
|
|
/// @}
|
|
};
|
|
|
|
}
|
|
|
|
INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
|
|
"Target independent code generator's TTI", true, true, false)
|
|
char BasicTTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
|
|
return new BasicTTI(TM);
|
|
}
|
|
|
|
bool BasicTTI::hasBranchDivergence() const { return false; }
|
|
|
|
bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
|
|
return getTLI()->isLegalAddImmediate(imm);
|
|
}
|
|
|
|
bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
|
|
return getTLI()->isLegalICmpImmediate(imm);
|
|
}
|
|
|
|
bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale) const {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->isLegalAddressingMode(AM, Ty);
|
|
}
|
|
|
|
int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale) const {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->getScalingFactorCost(AM, Ty);
|
|
}
|
|
|
|
bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
return getTLI()->isTruncateFree(Ty1, Ty2);
|
|
}
|
|
|
|
bool BasicTTI::isTypeLegal(Type *Ty) const {
|
|
EVT T = getTLI()->getValueType(Ty);
|
|
return getTLI()->isTypeLegal(T);
|
|
}
|
|
|
|
unsigned BasicTTI::getJumpBufAlignment() const {
|
|
return getTLI()->getJumpBufAlignment();
|
|
}
|
|
|
|
unsigned BasicTTI::getJumpBufSize() const {
|
|
return getTLI()->getJumpBufSize();
|
|
}
|
|
|
|
bool BasicTTI::shouldBuildLookupTables() const {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
return TLI->supportJumpTables() &&
|
|
(TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
|
|
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
|
|
}
|
|
|
|
bool BasicTTI::haveFastSqrt(Type *Ty) const {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
EVT VT = TLI->getValueType(Ty);
|
|
return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
|
|
}
|
|
|
|
void BasicTTI::getUnrollingPreferences(Loop *L,
|
|
UnrollingPreferences &UP) const {
|
|
// This unrolling functionality is target independent, but to provide some
|
|
// motivation for its intended use, for x86:
|
|
|
|
// According to the Intel 64 and IA-32 Architectures Optimization Reference
|
|
// Manual, Intel Core models and later have a loop stream detector
|
|
// (and associated uop queue) that can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have no more than 4 (8 for Nehalem and later) branches
|
|
// taken, and none of them may be calls.
|
|
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
|
|
|
|
// According to the Software Optimization Guide for AMD Family 15h Processors,
|
|
// models 30h-4fh (Steamroller and later) have a loop predictor and loop
|
|
// buffer which can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have fewer than 16 branches
|
|
// - The loop must have less than 40 uops in all executed loop branches
|
|
|
|
// The number of taken branches in a loop is hard to estimate here, and
|
|
// benchmarking has revealed that it is better not to be conservative when
|
|
// estimating the branch count. As a result, we'll ignore the branch limits
|
|
// until someone finds a case where it matters in practice.
|
|
|
|
unsigned MaxOps;
|
|
const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>();
|
|
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
|
|
MaxOps = PartialUnrollingThreshold;
|
|
else if (ST->getSchedModel()->LoopMicroOpBufferSize > 0)
|
|
MaxOps = ST->getSchedModel()->LoopMicroOpBufferSize;
|
|
else
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls.
|
|
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
|
|
I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
|
|
for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
|
|
if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
|
|
ImmutableCallSite CS(J);
|
|
if (const Function *F = CS.getCalledFunction()) {
|
|
if (!TopTTI->isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Enable runtime and partial unrolling up to the specified size.
|
|
UP.Partial = UP.Runtime = true;
|
|
UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Calls used by the vectorizers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
|
|
bool Extract) const {
|
|
assert (Ty->isVectorTy() && "Can only scalarize vectors");
|
|
unsigned Cost = 0;
|
|
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
if (Insert)
|
|
Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (Extract)
|
|
Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned BasicTTI::getMaximumUnrollFactor() const {
|
|
return 1;
|
|
}
|
|
|
|
unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind,
|
|
OperandValueKind) const {
|
|
// Check if any of the operands are vector operands.
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
|
|
// Assume that floating point arithmetic operations cost twice as much as
|
|
// integer operations.
|
|
unsigned OpCost = (IsFloat ? 2 : 1);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// If the type is split to multiple registers, assume that there is some
|
|
// overhead to this.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
if (LT.first > 1)
|
|
return LT.first * 2 * OpCost;
|
|
return LT.first * 1 * OpCost;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered then assume
|
|
// thare the code is twice as expensive.
|
|
return LT.first * 2 * OpCost;
|
|
}
|
|
|
|
// Else, assume that we need to scalarize this op.
|
|
if (Ty->isVectorTy()) {
|
|
unsigned Num = Ty->getVectorNumElements();
|
|
unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
|
|
// return the cost of multiple scalar invocation plus the cost of inserting
|
|
// and extracting the values.
|
|
return getScalarizationOverhead(Ty, true, true) + Num * Cost;
|
|
}
|
|
|
|
// We don't know anything about this scalar instruction.
|
|
return OpCost;
|
|
}
|
|
|
|
unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
|
|
assert(Ty->isVectorTy() && "Can only shuffle vectors");
|
|
unsigned Cost = 0;
|
|
// Shuffle cost is equal to the cost of extracting element from its argument
|
|
// plus the cost of inserting them onto the result vector.
|
|
|
|
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
|
|
// 0 of first vector, index 1 of second vector,index 2 of first vector and
|
|
// finally index 3 of second vector and insert them at index <0,1,2,3> of
|
|
// result vector.
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) const {
|
|
if (Kind == SK_Alternate) {
|
|
return getAltShuffleOverhead(Tp);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
|
|
std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
|
|
|
|
// Check for NOOP conversions.
|
|
if (SrcLT.first == DstLT.first &&
|
|
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
|
|
|
|
// Bitcast between types that are legalized to the same type are free.
|
|
if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
|
|
return 0;
|
|
}
|
|
|
|
if (Opcode == Instruction::Trunc &&
|
|
TLI->isTruncateFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
|
|
if (Opcode == Instruction::ZExt &&
|
|
TLI->isZExtFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
|
|
// If the cast is marked as legal (or promote) then assume low cost.
|
|
if (SrcLT.first == DstLT.first &&
|
|
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Handle scalar conversions.
|
|
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
|
|
|
|
// Scalar bitcasts are usually free.
|
|
if (Opcode == Instruction::BitCast)
|
|
return 0;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it costs 1.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Assume that illegal scalar instruction are expensive.
|
|
return 4;
|
|
}
|
|
|
|
// Check vector-to-vector casts.
|
|
if (Dst->isVectorTy() && Src->isVectorTy()) {
|
|
|
|
// If the cast is between same-sized registers, then the check is simple.
|
|
if (SrcLT.first == DstLT.first &&
|
|
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
|
|
|
|
// Assume that Zext is done using AND.
|
|
if (Opcode == Instruction::ZExt)
|
|
return 1;
|
|
|
|
// Assume that sext is done using SHL and SRA.
|
|
if (Opcode == Instruction::SExt)
|
|
return 2;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it costs
|
|
// 1 and multiply by the type-legalization overhead.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return SrcLT.first * 1;
|
|
}
|
|
|
|
// If we are converting vectors and the operation is illegal, or
|
|
// if the vectors are legalized to different types, estimate the
|
|
// scalarization costs.
|
|
unsigned Num = Dst->getVectorNumElements();
|
|
unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
|
|
Src->getScalarType());
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
|
|
}
|
|
|
|
// We already handled vector-to-vector and scalar-to-scalar conversions. This
|
|
// is where we handle bitcast between vectors and scalars. We need to assume
|
|
// that the conversion is scalarized in one way or another.
|
|
if (Opcode == Instruction::BitCast)
|
|
// Illegal bitcasts are done by storing and loading from a stack slot.
|
|
return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
|
|
(Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
|
|
|
|
llvm_unreachable("Unhandled cast");
|
|
}
|
|
|
|
unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Selects on vectors are actually vector selects.
|
|
if (ISD == ISD::SELECT) {
|
|
assert(CondTy && "CondTy must exist");
|
|
if (CondTy->isVectorTy())
|
|
ISD = ISD::VSELECT;
|
|
}
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1. Multiply
|
|
// by the type-legalization overhead.
|
|
return LT.first * 1;
|
|
}
|
|
|
|
// Otherwise, assume that the cast is scalarized.
|
|
if (ValTy->isVectorTy()) {
|
|
unsigned Num = ValTy->getVectorNumElements();
|
|
if (CondTy)
|
|
CondTy = CondTy->getScalarType();
|
|
unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
|
|
CondTy);
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of inserting
|
|
// and extracting the values.
|
|
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
|
|
}
|
|
|
|
// Unknown scalar opcode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Val->getScalarType());
|
|
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
assert(!Src->isVoidTy() && "Invalid type");
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
|
|
|
|
// Assuming that all loads of legal types cost 1.
|
|
unsigned Cost = LT.first;
|
|
|
|
if (Src->isVectorTy() &&
|
|
Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
|
|
// This is a vector load that legalizes to a larger type than the vector
|
|
// itself. Unless the corresponding extending load or truncating store is
|
|
// legal, then this will scalarize.
|
|
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
|
|
EVT MemVT = getTLI()->getValueType(Src, true);
|
|
if (MemVT.isSimple() && MemVT != MVT::Other) {
|
|
if (Opcode == Instruction::Store)
|
|
LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
|
|
else
|
|
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
|
|
}
|
|
|
|
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
|
|
// This is a vector load/store for some illegal type that is scalarized.
|
|
// We must account for the cost of building or decomposing the vector.
|
|
Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
|
|
Opcode == Instruction::Store);
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
|
|
ArrayRef<Type *> Tys) const {
|
|
unsigned ISD = 0;
|
|
switch (IID) {
|
|
default: {
|
|
// Assume that we need to scalarize this intrinsic.
|
|
unsigned ScalarizationCost = 0;
|
|
unsigned ScalarCalls = 1;
|
|
if (RetTy->isVectorTy()) {
|
|
ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
|
|
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
|
|
}
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
if (Tys[i]->isVectorTy()) {
|
|
ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
|
|
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
|
|
}
|
|
}
|
|
|
|
return ScalarCalls + ScalarizationCost;
|
|
}
|
|
// Look for intrinsics that can be lowered directly or turned into a scalar
|
|
// intrinsic call.
|
|
case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
|
|
case Intrinsic::sin: ISD = ISD::FSIN; break;
|
|
case Intrinsic::cos: ISD = ISD::FCOS; break;
|
|
case Intrinsic::exp: ISD = ISD::FEXP; break;
|
|
case Intrinsic::exp2: ISD = ISD::FEXP2; break;
|
|
case Intrinsic::log: ISD = ISD::FLOG; break;
|
|
case Intrinsic::log10: ISD = ISD::FLOG10; break;
|
|
case Intrinsic::log2: ISD = ISD::FLOG2; break;
|
|
case Intrinsic::fabs: ISD = ISD::FABS; break;
|
|
case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
|
|
case Intrinsic::floor: ISD = ISD::FFLOOR; break;
|
|
case Intrinsic::ceil: ISD = ISD::FCEIL; break;
|
|
case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
|
|
case Intrinsic::nearbyint:
|
|
ISD = ISD::FNEARBYINT; break;
|
|
case Intrinsic::rint: ISD = ISD::FRINT; break;
|
|
case Intrinsic::round: ISD = ISD::FROUND; break;
|
|
case Intrinsic::pow: ISD = ISD::FPOW; break;
|
|
case Intrinsic::fma: ISD = ISD::FMA; break;
|
|
case Intrinsic::fmuladd: ISD = ISD::FMA; break;
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
return 0;
|
|
}
|
|
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// If the type is split to multiple registers, assume that thre is some
|
|
// overhead to this.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
if (LT.first > 1)
|
|
return LT.first * 2;
|
|
return LT.first * 1;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered then assume
|
|
// thare the code is twice as expensive.
|
|
return LT.first * 2;
|
|
}
|
|
|
|
// If we can't lower fmuladd into an FMA estimate the cost as a floating
|
|
// point mul followed by an add.
|
|
if (IID == Intrinsic::fmuladd)
|
|
return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
|
|
TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
|
|
|
|
// Else, assume that we need to scalarize this intrinsic. For math builtins
|
|
// this will emit a costly libcall, adding call overhead and spills. Make it
|
|
// very expensive.
|
|
if (RetTy->isVectorTy()) {
|
|
unsigned Num = RetTy->getVectorNumElements();
|
|
unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
|
|
Tys);
|
|
return 10 * Cost * Num;
|
|
}
|
|
|
|
// This is going to be turned into a library call, make it expensive.
|
|
return 10;
|
|
}
|
|
|
|
unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
|
|
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
|
|
return 0;
|
|
}
|
|
|
|
unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
|
|
bool IsPairwise) const {
|
|
assert(Ty->isVectorTy() && "Expect a vector type");
|
|
unsigned NumVecElts = Ty->getVectorNumElements();
|
|
unsigned NumReduxLevels = Log2_32(NumVecElts);
|
|
unsigned ArithCost = NumReduxLevels *
|
|
TopTTI->getArithmeticInstrCost(Opcode, Ty);
|
|
// Assume the pairwise shuffles add a cost.
|
|
unsigned ShuffleCost =
|
|
NumReduxLevels * (IsPairwise + 1) *
|
|
TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
|
|
return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
|
|
}
|