forked from OSchip/llvm-project
2627 lines
105 KiB
C++
2627 lines
105 KiB
C++
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the internal per-function state used for llvm translation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
|
|
#define CLANG_CODEGEN_CODEGENFUNCTION_H
|
|
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "clang/Basic/ABI.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "CodeGenModule.h"
|
|
#include "CGBuilder.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGValue.h"
|
|
|
|
namespace llvm {
|
|
class BasicBlock;
|
|
class LLVMContext;
|
|
class MDNode;
|
|
class Module;
|
|
class SwitchInst;
|
|
class Twine;
|
|
class Value;
|
|
class CallSite;
|
|
}
|
|
|
|
namespace clang {
|
|
class ASTContext;
|
|
class BlockDecl;
|
|
class CXXDestructorDecl;
|
|
class CXXForRangeStmt;
|
|
class CXXTryStmt;
|
|
class Decl;
|
|
class LabelDecl;
|
|
class EnumConstantDecl;
|
|
class FunctionDecl;
|
|
class FunctionProtoType;
|
|
class LabelStmt;
|
|
class ObjCContainerDecl;
|
|
class ObjCInterfaceDecl;
|
|
class ObjCIvarDecl;
|
|
class ObjCMethodDecl;
|
|
class ObjCImplementationDecl;
|
|
class ObjCPropertyImplDecl;
|
|
class TargetInfo;
|
|
class TargetCodeGenInfo;
|
|
class VarDecl;
|
|
class ObjCForCollectionStmt;
|
|
class ObjCAtTryStmt;
|
|
class ObjCAtThrowStmt;
|
|
class ObjCAtSynchronizedStmt;
|
|
class ObjCAutoreleasePoolStmt;
|
|
|
|
namespace CodeGen {
|
|
class CodeGenTypes;
|
|
class CGFunctionInfo;
|
|
class CGRecordLayout;
|
|
class CGBlockInfo;
|
|
class CGCXXABI;
|
|
class BlockFlags;
|
|
class BlockFieldFlags;
|
|
|
|
/// A branch fixup. These are required when emitting a goto to a
|
|
/// label which hasn't been emitted yet. The goto is optimistically
|
|
/// emitted as a branch to the basic block for the label, and (if it
|
|
/// occurs in a scope with non-trivial cleanups) a fixup is added to
|
|
/// the innermost cleanup. When a (normal) cleanup is popped, any
|
|
/// unresolved fixups in that scope are threaded through the cleanup.
|
|
struct BranchFixup {
|
|
/// The block containing the terminator which needs to be modified
|
|
/// into a switch if this fixup is resolved into the current scope.
|
|
/// If null, LatestBranch points directly to the destination.
|
|
llvm::BasicBlock *OptimisticBranchBlock;
|
|
|
|
/// The ultimate destination of the branch.
|
|
///
|
|
/// This can be set to null to indicate that this fixup was
|
|
/// successfully resolved.
|
|
llvm::BasicBlock *Destination;
|
|
|
|
/// The destination index value.
|
|
unsigned DestinationIndex;
|
|
|
|
/// The initial branch of the fixup.
|
|
llvm::BranchInst *InitialBranch;
|
|
};
|
|
|
|
template <class T> struct InvariantValue {
|
|
typedef T type;
|
|
typedef T saved_type;
|
|
static bool needsSaving(type value) { return false; }
|
|
static saved_type save(CodeGenFunction &CGF, type value) { return value; }
|
|
static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
|
|
};
|
|
|
|
/// A metaprogramming class for ensuring that a value will dominate an
|
|
/// arbitrary position in a function.
|
|
template <class T> struct DominatingValue : InvariantValue<T> {};
|
|
|
|
template <class T, bool mightBeInstruction =
|
|
llvm::is_base_of<llvm::Value, T>::value &&
|
|
!llvm::is_base_of<llvm::Constant, T>::value &&
|
|
!llvm::is_base_of<llvm::BasicBlock, T>::value>
|
|
struct DominatingPointer;
|
|
template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
|
|
// template <class T> struct DominatingPointer<T,true> at end of file
|
|
|
|
template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
|
|
|
|
enum CleanupKind {
|
|
EHCleanup = 0x1,
|
|
NormalCleanup = 0x2,
|
|
NormalAndEHCleanup = EHCleanup | NormalCleanup,
|
|
|
|
InactiveCleanup = 0x4,
|
|
InactiveEHCleanup = EHCleanup | InactiveCleanup,
|
|
InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
|
|
InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
|
|
};
|
|
|
|
/// A stack of scopes which respond to exceptions, including cleanups
|
|
/// and catch blocks.
|
|
class EHScopeStack {
|
|
public:
|
|
/// A saved depth on the scope stack. This is necessary because
|
|
/// pushing scopes onto the stack invalidates iterators.
|
|
class stable_iterator {
|
|
friend class EHScopeStack;
|
|
|
|
/// Offset from StartOfData to EndOfBuffer.
|
|
ptrdiff_t Size;
|
|
|
|
stable_iterator(ptrdiff_t Size) : Size(Size) {}
|
|
|
|
public:
|
|
static stable_iterator invalid() { return stable_iterator(-1); }
|
|
stable_iterator() : Size(-1) {}
|
|
|
|
bool isValid() const { return Size >= 0; }
|
|
|
|
/// Returns true if this scope encloses I.
|
|
/// Returns false if I is invalid.
|
|
/// This scope must be valid.
|
|
bool encloses(stable_iterator I) const { return Size <= I.Size; }
|
|
|
|
/// Returns true if this scope strictly encloses I: that is,
|
|
/// if it encloses I and is not I.
|
|
/// Returns false is I is invalid.
|
|
/// This scope must be valid.
|
|
bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
|
|
|
|
friend bool operator==(stable_iterator A, stable_iterator B) {
|
|
return A.Size == B.Size;
|
|
}
|
|
friend bool operator!=(stable_iterator A, stable_iterator B) {
|
|
return A.Size != B.Size;
|
|
}
|
|
};
|
|
|
|
/// Information for lazily generating a cleanup. Subclasses must be
|
|
/// POD-like: cleanups will not be destructed, and they will be
|
|
/// allocated on the cleanup stack and freely copied and moved
|
|
/// around.
|
|
///
|
|
/// Cleanup implementations should generally be declared in an
|
|
/// anonymous namespace.
|
|
class Cleanup {
|
|
// Anchor the construction vtable.
|
|
virtual void anchor();
|
|
public:
|
|
/// Generation flags.
|
|
class Flags {
|
|
enum {
|
|
F_IsForEH = 0x1,
|
|
F_IsNormalCleanupKind = 0x2,
|
|
F_IsEHCleanupKind = 0x4
|
|
};
|
|
unsigned flags;
|
|
|
|
public:
|
|
Flags() : flags(0) {}
|
|
|
|
/// isForEH - true if the current emission is for an EH cleanup.
|
|
bool isForEHCleanup() const { return flags & F_IsForEH; }
|
|
bool isForNormalCleanup() const { return !isForEHCleanup(); }
|
|
void setIsForEHCleanup() { flags |= F_IsForEH; }
|
|
|
|
bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
|
|
void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
|
|
|
|
/// isEHCleanupKind - true if the cleanup was pushed as an EH
|
|
/// cleanup.
|
|
bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
|
|
void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
|
|
};
|
|
|
|
// Provide a virtual destructor to suppress a very common warning
|
|
// that unfortunately cannot be suppressed without this. Cleanups
|
|
// should not rely on this destructor ever being called.
|
|
virtual ~Cleanup() {}
|
|
|
|
/// Emit the cleanup. For normal cleanups, this is run in the
|
|
/// same EH context as when the cleanup was pushed, i.e. the
|
|
/// immediately-enclosing context of the cleanup scope. For
|
|
/// EH cleanups, this is run in a terminate context.
|
|
///
|
|
// \param IsForEHCleanup true if this is for an EH cleanup, false
|
|
/// if for a normal cleanup.
|
|
virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
|
|
};
|
|
|
|
/// ConditionalCleanupN stores the saved form of its N parameters,
|
|
/// then restores them and performs the cleanup.
|
|
template <class T, class A0>
|
|
class ConditionalCleanup1 : public Cleanup {
|
|
typedef typename DominatingValue<A0>::saved_type A0_saved;
|
|
A0_saved a0_saved;
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
|
|
T(a0).Emit(CGF, flags);
|
|
}
|
|
|
|
public:
|
|
ConditionalCleanup1(A0_saved a0)
|
|
: a0_saved(a0) {}
|
|
};
|
|
|
|
template <class T, class A0, class A1>
|
|
class ConditionalCleanup2 : public Cleanup {
|
|
typedef typename DominatingValue<A0>::saved_type A0_saved;
|
|
typedef typename DominatingValue<A1>::saved_type A1_saved;
|
|
A0_saved a0_saved;
|
|
A1_saved a1_saved;
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
|
|
A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
|
|
T(a0, a1).Emit(CGF, flags);
|
|
}
|
|
|
|
public:
|
|
ConditionalCleanup2(A0_saved a0, A1_saved a1)
|
|
: a0_saved(a0), a1_saved(a1) {}
|
|
};
|
|
|
|
template <class T, class A0, class A1, class A2>
|
|
class ConditionalCleanup3 : public Cleanup {
|
|
typedef typename DominatingValue<A0>::saved_type A0_saved;
|
|
typedef typename DominatingValue<A1>::saved_type A1_saved;
|
|
typedef typename DominatingValue<A2>::saved_type A2_saved;
|
|
A0_saved a0_saved;
|
|
A1_saved a1_saved;
|
|
A2_saved a2_saved;
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
|
|
A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
|
|
A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
|
|
T(a0, a1, a2).Emit(CGF, flags);
|
|
}
|
|
|
|
public:
|
|
ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
|
|
: a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
|
|
};
|
|
|
|
template <class T, class A0, class A1, class A2, class A3>
|
|
class ConditionalCleanup4 : public Cleanup {
|
|
typedef typename DominatingValue<A0>::saved_type A0_saved;
|
|
typedef typename DominatingValue<A1>::saved_type A1_saved;
|
|
typedef typename DominatingValue<A2>::saved_type A2_saved;
|
|
typedef typename DominatingValue<A3>::saved_type A3_saved;
|
|
A0_saved a0_saved;
|
|
A1_saved a1_saved;
|
|
A2_saved a2_saved;
|
|
A3_saved a3_saved;
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) {
|
|
A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
|
|
A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
|
|
A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
|
|
A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
|
|
T(a0, a1, a2, a3).Emit(CGF, flags);
|
|
}
|
|
|
|
public:
|
|
ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
|
|
: a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
|
|
};
|
|
|
|
private:
|
|
// The implementation for this class is in CGException.h and
|
|
// CGException.cpp; the definition is here because it's used as a
|
|
// member of CodeGenFunction.
|
|
|
|
/// The start of the scope-stack buffer, i.e. the allocated pointer
|
|
/// for the buffer. All of these pointers are either simultaneously
|
|
/// null or simultaneously valid.
|
|
char *StartOfBuffer;
|
|
|
|
/// The end of the buffer.
|
|
char *EndOfBuffer;
|
|
|
|
/// The first valid entry in the buffer.
|
|
char *StartOfData;
|
|
|
|
/// The innermost normal cleanup on the stack.
|
|
stable_iterator InnermostNormalCleanup;
|
|
|
|
/// The innermost EH scope on the stack.
|
|
stable_iterator InnermostEHScope;
|
|
|
|
/// The current set of branch fixups. A branch fixup is a jump to
|
|
/// an as-yet unemitted label, i.e. a label for which we don't yet
|
|
/// know the EH stack depth. Whenever we pop a cleanup, we have
|
|
/// to thread all the current branch fixups through it.
|
|
///
|
|
/// Fixups are recorded as the Use of the respective branch or
|
|
/// switch statement. The use points to the final destination.
|
|
/// When popping out of a cleanup, these uses are threaded through
|
|
/// the cleanup and adjusted to point to the new cleanup.
|
|
///
|
|
/// Note that branches are allowed to jump into protected scopes
|
|
/// in certain situations; e.g. the following code is legal:
|
|
/// struct A { ~A(); }; // trivial ctor, non-trivial dtor
|
|
/// goto foo;
|
|
/// A a;
|
|
/// foo:
|
|
/// bar();
|
|
SmallVector<BranchFixup, 8> BranchFixups;
|
|
|
|
char *allocate(size_t Size);
|
|
|
|
void *pushCleanup(CleanupKind K, size_t DataSize);
|
|
|
|
public:
|
|
EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
|
|
InnermostNormalCleanup(stable_end()),
|
|
InnermostEHScope(stable_end()) {}
|
|
~EHScopeStack() { delete[] StartOfBuffer; }
|
|
|
|
// Variadic templates would make this not terrible.
|
|
|
|
/// Push a lazily-created cleanup on the stack.
|
|
template <class T>
|
|
void pushCleanup(CleanupKind Kind) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T));
|
|
Cleanup *Obj = new(Buffer) T();
|
|
(void) Obj;
|
|
}
|
|
|
|
/// Push a lazily-created cleanup on the stack.
|
|
template <class T, class A0>
|
|
void pushCleanup(CleanupKind Kind, A0 a0) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T));
|
|
Cleanup *Obj = new(Buffer) T(a0);
|
|
(void) Obj;
|
|
}
|
|
|
|
/// Push a lazily-created cleanup on the stack.
|
|
template <class T, class A0, class A1>
|
|
void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T));
|
|
Cleanup *Obj = new(Buffer) T(a0, a1);
|
|
(void) Obj;
|
|
}
|
|
|
|
/// Push a lazily-created cleanup on the stack.
|
|
template <class T, class A0, class A1, class A2>
|
|
void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T));
|
|
Cleanup *Obj = new(Buffer) T(a0, a1, a2);
|
|
(void) Obj;
|
|
}
|
|
|
|
/// Push a lazily-created cleanup on the stack.
|
|
template <class T, class A0, class A1, class A2, class A3>
|
|
void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T));
|
|
Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
|
|
(void) Obj;
|
|
}
|
|
|
|
/// Push a lazily-created cleanup on the stack.
|
|
template <class T, class A0, class A1, class A2, class A3, class A4>
|
|
void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T));
|
|
Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
|
|
(void) Obj;
|
|
}
|
|
|
|
// Feel free to add more variants of the following:
|
|
|
|
/// Push a cleanup with non-constant storage requirements on the
|
|
/// stack. The cleanup type must provide an additional static method:
|
|
/// static size_t getExtraSize(size_t);
|
|
/// The argument to this method will be the value N, which will also
|
|
/// be passed as the first argument to the constructor.
|
|
///
|
|
/// The data stored in the extra storage must obey the same
|
|
/// restrictions as normal cleanup member data.
|
|
///
|
|
/// The pointer returned from this method is valid until the cleanup
|
|
/// stack is modified.
|
|
template <class T, class A0, class A1, class A2>
|
|
T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
|
|
void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
|
|
return new (Buffer) T(N, a0, a1, a2);
|
|
}
|
|
|
|
/// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp.
|
|
void popCleanup();
|
|
|
|
/// Push a set of catch handlers on the stack. The catch is
|
|
/// uninitialized and will need to have the given number of handlers
|
|
/// set on it.
|
|
class EHCatchScope *pushCatch(unsigned NumHandlers);
|
|
|
|
/// Pops a catch scope off the stack. This is private to CGException.cpp.
|
|
void popCatch();
|
|
|
|
/// Push an exceptions filter on the stack.
|
|
class EHFilterScope *pushFilter(unsigned NumFilters);
|
|
|
|
/// Pops an exceptions filter off the stack.
|
|
void popFilter();
|
|
|
|
/// Push a terminate handler on the stack.
|
|
void pushTerminate();
|
|
|
|
/// Pops a terminate handler off the stack.
|
|
void popTerminate();
|
|
|
|
/// Determines whether the exception-scopes stack is empty.
|
|
bool empty() const { return StartOfData == EndOfBuffer; }
|
|
|
|
bool requiresLandingPad() const {
|
|
return InnermostEHScope != stable_end();
|
|
}
|
|
|
|
/// Determines whether there are any normal cleanups on the stack.
|
|
bool hasNormalCleanups() const {
|
|
return InnermostNormalCleanup != stable_end();
|
|
}
|
|
|
|
/// Returns the innermost normal cleanup on the stack, or
|
|
/// stable_end() if there are no normal cleanups.
|
|
stable_iterator getInnermostNormalCleanup() const {
|
|
return InnermostNormalCleanup;
|
|
}
|
|
stable_iterator getInnermostActiveNormalCleanup() const;
|
|
|
|
stable_iterator getInnermostEHScope() const {
|
|
return InnermostEHScope;
|
|
}
|
|
|
|
stable_iterator getInnermostActiveEHScope() const;
|
|
|
|
/// An unstable reference to a scope-stack depth. Invalidated by
|
|
/// pushes but not pops.
|
|
class iterator;
|
|
|
|
/// Returns an iterator pointing to the innermost EH scope.
|
|
iterator begin() const;
|
|
|
|
/// Returns an iterator pointing to the outermost EH scope.
|
|
iterator end() const;
|
|
|
|
/// Create a stable reference to the top of the EH stack. The
|
|
/// returned reference is valid until that scope is popped off the
|
|
/// stack.
|
|
stable_iterator stable_begin() const {
|
|
return stable_iterator(EndOfBuffer - StartOfData);
|
|
}
|
|
|
|
/// Create a stable reference to the bottom of the EH stack.
|
|
static stable_iterator stable_end() {
|
|
return stable_iterator(0);
|
|
}
|
|
|
|
/// Translates an iterator into a stable_iterator.
|
|
stable_iterator stabilize(iterator it) const;
|
|
|
|
/// Turn a stable reference to a scope depth into a unstable pointer
|
|
/// to the EH stack.
|
|
iterator find(stable_iterator save) const;
|
|
|
|
/// Removes the cleanup pointed to by the given stable_iterator.
|
|
void removeCleanup(stable_iterator save);
|
|
|
|
/// Add a branch fixup to the current cleanup scope.
|
|
BranchFixup &addBranchFixup() {
|
|
assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
|
|
BranchFixups.push_back(BranchFixup());
|
|
return BranchFixups.back();
|
|
}
|
|
|
|
unsigned getNumBranchFixups() const { return BranchFixups.size(); }
|
|
BranchFixup &getBranchFixup(unsigned I) {
|
|
assert(I < getNumBranchFixups());
|
|
return BranchFixups[I];
|
|
}
|
|
|
|
/// Pops lazily-removed fixups from the end of the list. This
|
|
/// should only be called by procedures which have just popped a
|
|
/// cleanup or resolved one or more fixups.
|
|
void popNullFixups();
|
|
|
|
/// Clears the branch-fixups list. This should only be called by
|
|
/// ResolveAllBranchFixups.
|
|
void clearFixups() { BranchFixups.clear(); }
|
|
};
|
|
|
|
/// CodeGenFunction - This class organizes the per-function state that is used
|
|
/// while generating LLVM code.
|
|
class CodeGenFunction : public CodeGenTypeCache {
|
|
CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
|
|
void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT
|
|
|
|
friend class CGCXXABI;
|
|
public:
|
|
/// A jump destination is an abstract label, branching to which may
|
|
/// require a jump out through normal cleanups.
|
|
struct JumpDest {
|
|
JumpDest() : Block(0), ScopeDepth(), Index(0) {}
|
|
JumpDest(llvm::BasicBlock *Block,
|
|
EHScopeStack::stable_iterator Depth,
|
|
unsigned Index)
|
|
: Block(Block), ScopeDepth(Depth), Index(Index) {}
|
|
|
|
bool isValid() const { return Block != 0; }
|
|
llvm::BasicBlock *getBlock() const { return Block; }
|
|
EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
|
|
unsigned getDestIndex() const { return Index; }
|
|
|
|
private:
|
|
llvm::BasicBlock *Block;
|
|
EHScopeStack::stable_iterator ScopeDepth;
|
|
unsigned Index;
|
|
};
|
|
|
|
CodeGenModule &CGM; // Per-module state.
|
|
const TargetInfo &Target;
|
|
|
|
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
|
|
CGBuilderTy Builder;
|
|
|
|
/// CurFuncDecl - Holds the Decl for the current function or ObjC method.
|
|
/// This excludes BlockDecls.
|
|
const Decl *CurFuncDecl;
|
|
/// CurCodeDecl - This is the inner-most code context, which includes blocks.
|
|
const Decl *CurCodeDecl;
|
|
const CGFunctionInfo *CurFnInfo;
|
|
QualType FnRetTy;
|
|
llvm::Function *CurFn;
|
|
|
|
/// CurGD - The GlobalDecl for the current function being compiled.
|
|
GlobalDecl CurGD;
|
|
|
|
/// PrologueCleanupDepth - The cleanup depth enclosing all the
|
|
/// cleanups associated with the parameters.
|
|
EHScopeStack::stable_iterator PrologueCleanupDepth;
|
|
|
|
/// ReturnBlock - Unified return block.
|
|
JumpDest ReturnBlock;
|
|
|
|
/// ReturnValue - The temporary alloca to hold the return value. This is null
|
|
/// iff the function has no return value.
|
|
llvm::Value *ReturnValue;
|
|
|
|
/// AllocaInsertPoint - This is an instruction in the entry block before which
|
|
/// we prefer to insert allocas.
|
|
llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
|
|
|
|
bool CatchUndefined;
|
|
|
|
/// In ARC, whether we should autorelease the return value.
|
|
bool AutoreleaseResult;
|
|
|
|
const CodeGen::CGBlockInfo *BlockInfo;
|
|
llvm::Value *BlockPointer;
|
|
|
|
/// \brief A mapping from NRVO variables to the flags used to indicate
|
|
/// when the NRVO has been applied to this variable.
|
|
llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
|
|
|
|
EHScopeStack EHStack;
|
|
|
|
/// i32s containing the indexes of the cleanup destinations.
|
|
llvm::AllocaInst *NormalCleanupDest;
|
|
|
|
unsigned NextCleanupDestIndex;
|
|
|
|
/// FirstBlockInfo - The head of a singly-linked-list of block layouts.
|
|
CGBlockInfo *FirstBlockInfo;
|
|
|
|
/// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
|
|
llvm::BasicBlock *EHResumeBlock;
|
|
|
|
/// The exception slot. All landing pads write the current exception pointer
|
|
/// into this alloca.
|
|
llvm::Value *ExceptionSlot;
|
|
|
|
/// The selector slot. Under the MandatoryCleanup model, all landing pads
|
|
/// write the current selector value into this alloca.
|
|
llvm::AllocaInst *EHSelectorSlot;
|
|
|
|
/// Emits a landing pad for the current EH stack.
|
|
llvm::BasicBlock *EmitLandingPad();
|
|
|
|
llvm::BasicBlock *getInvokeDestImpl();
|
|
|
|
template <class T>
|
|
typename DominatingValue<T>::saved_type saveValueInCond(T value) {
|
|
return DominatingValue<T>::save(*this, value);
|
|
}
|
|
|
|
public:
|
|
/// ObjCEHValueStack - Stack of Objective-C exception values, used for
|
|
/// rethrows.
|
|
SmallVector<llvm::Value*, 8> ObjCEHValueStack;
|
|
|
|
/// A class controlling the emission of a finally block.
|
|
class FinallyInfo {
|
|
/// Where the catchall's edge through the cleanup should go.
|
|
JumpDest RethrowDest;
|
|
|
|
/// A function to call to enter the catch.
|
|
llvm::Constant *BeginCatchFn;
|
|
|
|
/// An i1 variable indicating whether or not the @finally is
|
|
/// running for an exception.
|
|
llvm::AllocaInst *ForEHVar;
|
|
|
|
/// An i8* variable into which the exception pointer to rethrow
|
|
/// has been saved.
|
|
llvm::AllocaInst *SavedExnVar;
|
|
|
|
public:
|
|
void enter(CodeGenFunction &CGF, const Stmt *Finally,
|
|
llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
|
|
llvm::Constant *rethrowFn);
|
|
void exit(CodeGenFunction &CGF);
|
|
};
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch())
|
|
return EHStack.pushCleanup<T>(kind, a0);
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0, class A1>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch())
|
|
return EHStack.pushCleanup<T>(kind, a0, a1);
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0, class A1, class A2>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch()) {
|
|
return EHStack.pushCleanup<T>(kind, a0, a1, a2);
|
|
}
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
|
|
typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0, class A1, class A2, class A3>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch()) {
|
|
return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
|
|
}
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
|
|
typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
|
|
typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
|
|
a2_saved, a3_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// Set up the last cleaup that was pushed as a conditional
|
|
/// full-expression cleanup.
|
|
void initFullExprCleanup();
|
|
|
|
/// PushDestructorCleanup - Push a cleanup to call the
|
|
/// complete-object destructor of an object of the given type at the
|
|
/// given address. Does nothing if T is not a C++ class type with a
|
|
/// non-trivial destructor.
|
|
void PushDestructorCleanup(QualType T, llvm::Value *Addr);
|
|
|
|
/// PushDestructorCleanup - Push a cleanup to call the
|
|
/// complete-object variant of the given destructor on the object at
|
|
/// the given address.
|
|
void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
|
|
llvm::Value *Addr);
|
|
|
|
/// PopCleanupBlock - Will pop the cleanup entry on the stack and
|
|
/// process all branch fixups.
|
|
void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
|
|
|
|
/// DeactivateCleanupBlock - Deactivates the given cleanup block.
|
|
/// The block cannot be reactivated. Pops it if it's the top of the
|
|
/// stack.
|
|
///
|
|
/// \param DominatingIP - An instruction which is known to
|
|
/// dominate the current IP (if set) and which lies along
|
|
/// all paths of execution between the current IP and the
|
|
/// the point at which the cleanup comes into scope.
|
|
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
|
|
llvm::Instruction *DominatingIP);
|
|
|
|
/// ActivateCleanupBlock - Activates an initially-inactive cleanup.
|
|
/// Cannot be used to resurrect a deactivated cleanup.
|
|
///
|
|
/// \param DominatingIP - An instruction which is known to
|
|
/// dominate the current IP (if set) and which lies along
|
|
/// all paths of execution between the current IP and the
|
|
/// the point at which the cleanup comes into scope.
|
|
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
|
|
llvm::Instruction *DominatingIP);
|
|
|
|
/// \brief Enters a new scope for capturing cleanups, all of which
|
|
/// will be executed once the scope is exited.
|
|
class RunCleanupsScope {
|
|
EHScopeStack::stable_iterator CleanupStackDepth;
|
|
bool OldDidCallStackSave;
|
|
bool PerformCleanup;
|
|
|
|
RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
|
|
RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
|
|
|
|
protected:
|
|
CodeGenFunction& CGF;
|
|
|
|
public:
|
|
/// \brief Enter a new cleanup scope.
|
|
explicit RunCleanupsScope(CodeGenFunction &CGF)
|
|
: PerformCleanup(true), CGF(CGF)
|
|
{
|
|
CleanupStackDepth = CGF.EHStack.stable_begin();
|
|
OldDidCallStackSave = CGF.DidCallStackSave;
|
|
CGF.DidCallStackSave = false;
|
|
}
|
|
|
|
/// \brief Exit this cleanup scope, emitting any accumulated
|
|
/// cleanups.
|
|
~RunCleanupsScope() {
|
|
if (PerformCleanup) {
|
|
CGF.DidCallStackSave = OldDidCallStackSave;
|
|
CGF.PopCleanupBlocks(CleanupStackDepth);
|
|
}
|
|
}
|
|
|
|
/// \brief Determine whether this scope requires any cleanups.
|
|
bool requiresCleanups() const {
|
|
return CGF.EHStack.stable_begin() != CleanupStackDepth;
|
|
}
|
|
|
|
/// \brief Force the emission of cleanups now, instead of waiting
|
|
/// until this object is destroyed.
|
|
void ForceCleanup() {
|
|
assert(PerformCleanup && "Already forced cleanup");
|
|
CGF.DidCallStackSave = OldDidCallStackSave;
|
|
CGF.PopCleanupBlocks(CleanupStackDepth);
|
|
PerformCleanup = false;
|
|
}
|
|
};
|
|
|
|
class LexicalScope: protected RunCleanupsScope {
|
|
SourceRange Range;
|
|
bool PopDebugStack;
|
|
|
|
LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
|
|
LexicalScope &operator=(const LexicalScope &);
|
|
|
|
public:
|
|
/// \brief Enter a new cleanup scope.
|
|
explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
|
|
: RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
|
|
if (CGDebugInfo *DI = CGF.getDebugInfo())
|
|
DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
|
|
}
|
|
|
|
/// \brief Exit this cleanup scope, emitting any accumulated
|
|
/// cleanups.
|
|
~LexicalScope() {
|
|
if (PopDebugStack) {
|
|
CGDebugInfo *DI = CGF.getDebugInfo();
|
|
if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
|
|
}
|
|
}
|
|
|
|
/// \brief Force the emission of cleanups now, instead of waiting
|
|
/// until this object is destroyed.
|
|
void ForceCleanup() {
|
|
RunCleanupsScope::ForceCleanup();
|
|
if (CGDebugInfo *DI = CGF.getDebugInfo()) {
|
|
DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
|
|
PopDebugStack = false;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/// PopCleanupBlocks - Takes the old cleanup stack size and emits
|
|
/// the cleanup blocks that have been added.
|
|
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
|
|
|
|
void ResolveBranchFixups(llvm::BasicBlock *Target);
|
|
|
|
/// The given basic block lies in the current EH scope, but may be a
|
|
/// target of a potentially scope-crossing jump; get a stable handle
|
|
/// to which we can perform this jump later.
|
|
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
|
|
return JumpDest(Target,
|
|
EHStack.getInnermostNormalCleanup(),
|
|
NextCleanupDestIndex++);
|
|
}
|
|
|
|
/// The given basic block lies in the current EH scope, but may be a
|
|
/// target of a potentially scope-crossing jump; get a stable handle
|
|
/// to which we can perform this jump later.
|
|
JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
|
|
return getJumpDestInCurrentScope(createBasicBlock(Name));
|
|
}
|
|
|
|
/// EmitBranchThroughCleanup - Emit a branch from the current insert
|
|
/// block through the normal cleanup handling code (if any) and then
|
|
/// on to \arg Dest.
|
|
void EmitBranchThroughCleanup(JumpDest Dest);
|
|
|
|
/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
|
|
/// specified destination obviously has no cleanups to run. 'false' is always
|
|
/// a conservatively correct answer for this method.
|
|
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
|
|
|
|
/// popCatchScope - Pops the catch scope at the top of the EHScope
|
|
/// stack, emitting any required code (other than the catch handlers
|
|
/// themselves).
|
|
void popCatchScope();
|
|
|
|
llvm::BasicBlock *getEHResumeBlock();
|
|
llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
|
|
|
|
/// An object to manage conditionally-evaluated expressions.
|
|
class ConditionalEvaluation {
|
|
llvm::BasicBlock *StartBB;
|
|
|
|
public:
|
|
ConditionalEvaluation(CodeGenFunction &CGF)
|
|
: StartBB(CGF.Builder.GetInsertBlock()) {}
|
|
|
|
void begin(CodeGenFunction &CGF) {
|
|
assert(CGF.OutermostConditional != this);
|
|
if (!CGF.OutermostConditional)
|
|
CGF.OutermostConditional = this;
|
|
}
|
|
|
|
void end(CodeGenFunction &CGF) {
|
|
assert(CGF.OutermostConditional != 0);
|
|
if (CGF.OutermostConditional == this)
|
|
CGF.OutermostConditional = 0;
|
|
}
|
|
|
|
/// Returns a block which will be executed prior to each
|
|
/// evaluation of the conditional code.
|
|
llvm::BasicBlock *getStartingBlock() const {
|
|
return StartBB;
|
|
}
|
|
};
|
|
|
|
/// isInConditionalBranch - Return true if we're currently emitting
|
|
/// one branch or the other of a conditional expression.
|
|
bool isInConditionalBranch() const { return OutermostConditional != 0; }
|
|
|
|
void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
|
|
assert(isInConditionalBranch());
|
|
llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
|
|
new llvm::StoreInst(value, addr, &block->back());
|
|
}
|
|
|
|
/// An RAII object to record that we're evaluating a statement
|
|
/// expression.
|
|
class StmtExprEvaluation {
|
|
CodeGenFunction &CGF;
|
|
|
|
/// We have to save the outermost conditional: cleanups in a
|
|
/// statement expression aren't conditional just because the
|
|
/// StmtExpr is.
|
|
ConditionalEvaluation *SavedOutermostConditional;
|
|
|
|
public:
|
|
StmtExprEvaluation(CodeGenFunction &CGF)
|
|
: CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
|
|
CGF.OutermostConditional = 0;
|
|
}
|
|
|
|
~StmtExprEvaluation() {
|
|
CGF.OutermostConditional = SavedOutermostConditional;
|
|
CGF.EnsureInsertPoint();
|
|
}
|
|
};
|
|
|
|
/// An object which temporarily prevents a value from being
|
|
/// destroyed by aggressive peephole optimizations that assume that
|
|
/// all uses of a value have been realized in the IR.
|
|
class PeepholeProtection {
|
|
llvm::Instruction *Inst;
|
|
friend class CodeGenFunction;
|
|
|
|
public:
|
|
PeepholeProtection() : Inst(0) {}
|
|
};
|
|
|
|
/// A non-RAII class containing all the information about a bound
|
|
/// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
|
|
/// this which makes individual mappings very simple; using this
|
|
/// class directly is useful when you have a variable number of
|
|
/// opaque values or don't want the RAII functionality for some
|
|
/// reason.
|
|
class OpaqueValueMappingData {
|
|
const OpaqueValueExpr *OpaqueValue;
|
|
bool BoundLValue;
|
|
CodeGenFunction::PeepholeProtection Protection;
|
|
|
|
OpaqueValueMappingData(const OpaqueValueExpr *ov,
|
|
bool boundLValue)
|
|
: OpaqueValue(ov), BoundLValue(boundLValue) {}
|
|
public:
|
|
OpaqueValueMappingData() : OpaqueValue(0) {}
|
|
|
|
static bool shouldBindAsLValue(const Expr *expr) {
|
|
// gl-values should be bound as l-values for obvious reasons.
|
|
// Records should be bound as l-values because IR generation
|
|
// always keeps them in memory. Expressions of function type
|
|
// act exactly like l-values but are formally required to be
|
|
// r-values in C.
|
|
return expr->isGLValue() ||
|
|
expr->getType()->isRecordType() ||
|
|
expr->getType()->isFunctionType();
|
|
}
|
|
|
|
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *ov,
|
|
const Expr *e) {
|
|
if (shouldBindAsLValue(ov))
|
|
return bind(CGF, ov, CGF.EmitLValue(e));
|
|
return bind(CGF, ov, CGF.EmitAnyExpr(e));
|
|
}
|
|
|
|
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *ov,
|
|
const LValue &lv) {
|
|
assert(shouldBindAsLValue(ov));
|
|
CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
|
|
return OpaqueValueMappingData(ov, true);
|
|
}
|
|
|
|
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *ov,
|
|
const RValue &rv) {
|
|
assert(!shouldBindAsLValue(ov));
|
|
CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
|
|
|
|
OpaqueValueMappingData data(ov, false);
|
|
|
|
// Work around an extremely aggressive peephole optimization in
|
|
// EmitScalarConversion which assumes that all other uses of a
|
|
// value are extant.
|
|
data.Protection = CGF.protectFromPeepholes(rv);
|
|
|
|
return data;
|
|
}
|
|
|
|
bool isValid() const { return OpaqueValue != 0; }
|
|
void clear() { OpaqueValue = 0; }
|
|
|
|
void unbind(CodeGenFunction &CGF) {
|
|
assert(OpaqueValue && "no data to unbind!");
|
|
|
|
if (BoundLValue) {
|
|
CGF.OpaqueLValues.erase(OpaqueValue);
|
|
} else {
|
|
CGF.OpaqueRValues.erase(OpaqueValue);
|
|
CGF.unprotectFromPeepholes(Protection);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
|
|
class OpaqueValueMapping {
|
|
CodeGenFunction &CGF;
|
|
OpaqueValueMappingData Data;
|
|
|
|
public:
|
|
static bool shouldBindAsLValue(const Expr *expr) {
|
|
return OpaqueValueMappingData::shouldBindAsLValue(expr);
|
|
}
|
|
|
|
/// Build the opaque value mapping for the given conditional
|
|
/// operator if it's the GNU ?: extension. This is a common
|
|
/// enough pattern that the convenience operator is really
|
|
/// helpful.
|
|
///
|
|
OpaqueValueMapping(CodeGenFunction &CGF,
|
|
const AbstractConditionalOperator *op) : CGF(CGF) {
|
|
if (isa<ConditionalOperator>(op))
|
|
// Leave Data empty.
|
|
return;
|
|
|
|
const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
|
|
Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
|
|
e->getCommon());
|
|
}
|
|
|
|
OpaqueValueMapping(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *opaqueValue,
|
|
LValue lvalue)
|
|
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
|
|
}
|
|
|
|
OpaqueValueMapping(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *opaqueValue,
|
|
RValue rvalue)
|
|
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
|
|
}
|
|
|
|
void pop() {
|
|
Data.unbind(CGF);
|
|
Data.clear();
|
|
}
|
|
|
|
~OpaqueValueMapping() {
|
|
if (Data.isValid()) Data.unbind(CGF);
|
|
}
|
|
};
|
|
|
|
/// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
|
|
/// number that holds the value.
|
|
unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
|
|
|
|
/// BuildBlockByrefAddress - Computes address location of the
|
|
/// variable which is declared as __block.
|
|
llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
|
|
const VarDecl *V);
|
|
private:
|
|
CGDebugInfo *DebugInfo;
|
|
bool DisableDebugInfo;
|
|
|
|
/// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
|
|
/// calling llvm.stacksave for multiple VLAs in the same scope.
|
|
bool DidCallStackSave;
|
|
|
|
/// IndirectBranch - The first time an indirect goto is seen we create a block
|
|
/// with an indirect branch. Every time we see the address of a label taken,
|
|
/// we add the label to the indirect goto. Every subsequent indirect goto is
|
|
/// codegen'd as a jump to the IndirectBranch's basic block.
|
|
llvm::IndirectBrInst *IndirectBranch;
|
|
|
|
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
|
|
/// decls.
|
|
typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
|
|
DeclMapTy LocalDeclMap;
|
|
|
|
/// LabelMap - This keeps track of the LLVM basic block for each C label.
|
|
llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
|
|
|
|
// BreakContinueStack - This keeps track of where break and continue
|
|
// statements should jump to.
|
|
struct BreakContinue {
|
|
BreakContinue(JumpDest Break, JumpDest Continue)
|
|
: BreakBlock(Break), ContinueBlock(Continue) {}
|
|
|
|
JumpDest BreakBlock;
|
|
JumpDest ContinueBlock;
|
|
};
|
|
SmallVector<BreakContinue, 8> BreakContinueStack;
|
|
|
|
/// SwitchInsn - This is nearest current switch instruction. It is null if if
|
|
/// current context is not in a switch.
|
|
llvm::SwitchInst *SwitchInsn;
|
|
|
|
/// CaseRangeBlock - This block holds if condition check for last case
|
|
/// statement range in current switch instruction.
|
|
llvm::BasicBlock *CaseRangeBlock;
|
|
|
|
/// OpaqueLValues - Keeps track of the current set of opaque value
|
|
/// expressions.
|
|
llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
|
|
llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
|
|
|
|
// VLASizeMap - This keeps track of the associated size for each VLA type.
|
|
// We track this by the size expression rather than the type itself because
|
|
// in certain situations, like a const qualifier applied to an VLA typedef,
|
|
// multiple VLA types can share the same size expression.
|
|
// FIXME: Maybe this could be a stack of maps that is pushed/popped as we
|
|
// enter/leave scopes.
|
|
llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
|
|
|
|
/// A block containing a single 'unreachable' instruction. Created
|
|
/// lazily by getUnreachableBlock().
|
|
llvm::BasicBlock *UnreachableBlock;
|
|
|
|
/// CXXThisDecl - When generating code for a C++ member function,
|
|
/// this will hold the implicit 'this' declaration.
|
|
ImplicitParamDecl *CXXThisDecl;
|
|
llvm::Value *CXXThisValue;
|
|
|
|
/// CXXVTTDecl - When generating code for a base object constructor or
|
|
/// base object destructor with virtual bases, this will hold the implicit
|
|
/// VTT parameter.
|
|
ImplicitParamDecl *CXXVTTDecl;
|
|
llvm::Value *CXXVTTValue;
|
|
|
|
/// OutermostConditional - Points to the outermost active
|
|
/// conditional control. This is used so that we know if a
|
|
/// temporary should be destroyed conditionally.
|
|
ConditionalEvaluation *OutermostConditional;
|
|
|
|
|
|
/// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
|
|
/// type as well as the field number that contains the actual data.
|
|
llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
|
|
unsigned> > ByRefValueInfo;
|
|
|
|
llvm::BasicBlock *TerminateLandingPad;
|
|
llvm::BasicBlock *TerminateHandler;
|
|
llvm::BasicBlock *TrapBB;
|
|
|
|
public:
|
|
CodeGenFunction(CodeGenModule &cgm);
|
|
~CodeGenFunction();
|
|
|
|
CodeGenTypes &getTypes() const { return CGM.getTypes(); }
|
|
ASTContext &getContext() const { return CGM.getContext(); }
|
|
CGDebugInfo *getDebugInfo() {
|
|
if (DisableDebugInfo)
|
|
return NULL;
|
|
return DebugInfo;
|
|
}
|
|
void disableDebugInfo() { DisableDebugInfo = true; }
|
|
void enableDebugInfo() { DisableDebugInfo = false; }
|
|
|
|
bool shouldUseFusedARCCalls() {
|
|
return CGM.getCodeGenOpts().OptimizationLevel == 0;
|
|
}
|
|
|
|
const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
|
|
|
|
/// Returns a pointer to the function's exception object and selector slot,
|
|
/// which is assigned in every landing pad.
|
|
llvm::Value *getExceptionSlot();
|
|
llvm::Value *getEHSelectorSlot();
|
|
|
|
/// Returns the contents of the function's exception object and selector
|
|
/// slots.
|
|
llvm::Value *getExceptionFromSlot();
|
|
llvm::Value *getSelectorFromSlot();
|
|
|
|
llvm::Value *getNormalCleanupDestSlot();
|
|
|
|
llvm::BasicBlock *getUnreachableBlock() {
|
|
if (!UnreachableBlock) {
|
|
UnreachableBlock = createBasicBlock("unreachable");
|
|
new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
|
|
}
|
|
return UnreachableBlock;
|
|
}
|
|
|
|
llvm::BasicBlock *getInvokeDest() {
|
|
if (!EHStack.requiresLandingPad()) return 0;
|
|
return getInvokeDestImpl();
|
|
}
|
|
|
|
llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Cleanups
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
|
|
|
|
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
|
|
llvm::Value *arrayEndPointer,
|
|
QualType elementType,
|
|
Destroyer &destroyer);
|
|
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
|
|
llvm::Value *arrayEnd,
|
|
QualType elementType,
|
|
Destroyer &destroyer);
|
|
|
|
void pushDestroy(QualType::DestructionKind dtorKind,
|
|
llvm::Value *addr, QualType type);
|
|
void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
|
|
Destroyer &destroyer, bool useEHCleanupForArray);
|
|
void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
|
|
bool useEHCleanupForArray);
|
|
llvm::Function *generateDestroyHelper(llvm::Constant *addr,
|
|
QualType type,
|
|
Destroyer &destroyer,
|
|
bool useEHCleanupForArray);
|
|
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
|
|
QualType type, Destroyer &destroyer,
|
|
bool checkZeroLength, bool useEHCleanup);
|
|
|
|
Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
|
|
|
|
/// Determines whether an EH cleanup is required to destroy a type
|
|
/// with the given destruction kind.
|
|
bool needsEHCleanup(QualType::DestructionKind kind) {
|
|
switch (kind) {
|
|
case QualType::DK_none:
|
|
return false;
|
|
case QualType::DK_cxx_destructor:
|
|
case QualType::DK_objc_weak_lifetime:
|
|
return getLangOptions().Exceptions;
|
|
case QualType::DK_objc_strong_lifetime:
|
|
return getLangOptions().Exceptions &&
|
|
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
|
|
}
|
|
llvm_unreachable("bad destruction kind");
|
|
}
|
|
|
|
CleanupKind getCleanupKind(QualType::DestructionKind kind) {
|
|
return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Objective-C
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void GenerateObjCMethod(const ObjCMethodDecl *OMD);
|
|
|
|
void StartObjCMethod(const ObjCMethodDecl *MD,
|
|
const ObjCContainerDecl *CD,
|
|
SourceLocation StartLoc);
|
|
|
|
/// GenerateObjCGetter - Synthesize an Objective-C property getter function.
|
|
void GenerateObjCGetter(ObjCImplementationDecl *IMP,
|
|
const ObjCPropertyImplDecl *PID);
|
|
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
|
|
const ObjCPropertyImplDecl *propImpl);
|
|
|
|
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
|
|
ObjCMethodDecl *MD, bool ctor);
|
|
|
|
/// GenerateObjCSetter - Synthesize an Objective-C property setter function
|
|
/// for the given property.
|
|
void GenerateObjCSetter(ObjCImplementationDecl *IMP,
|
|
const ObjCPropertyImplDecl *PID);
|
|
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
|
|
const ObjCPropertyImplDecl *propImpl);
|
|
bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
|
|
bool IvarTypeWithAggrGCObjects(QualType Ty);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Block Bits
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Value *EmitBlockLiteral(const BlockExpr *);
|
|
llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
|
|
static void destroyBlockInfos(CGBlockInfo *info);
|
|
llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
|
|
const CGBlockInfo &Info,
|
|
llvm::StructType *,
|
|
llvm::Constant *BlockVarLayout);
|
|
|
|
llvm::Function *GenerateBlockFunction(GlobalDecl GD,
|
|
const CGBlockInfo &Info,
|
|
const Decl *OuterFuncDecl,
|
|
const DeclMapTy &ldm);
|
|
|
|
llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
|
|
llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
|
|
|
|
void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
|
|
|
|
class AutoVarEmission;
|
|
|
|
void emitByrefStructureInit(const AutoVarEmission &emission);
|
|
void enterByrefCleanup(const AutoVarEmission &emission);
|
|
|
|
llvm::Value *LoadBlockStruct() {
|
|
assert(BlockPointer && "no block pointer set!");
|
|
return BlockPointer;
|
|
}
|
|
|
|
void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
|
|
void AllocateBlockDecl(const BlockDeclRefExpr *E);
|
|
llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
|
|
return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
|
|
}
|
|
llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
|
|
llvm::Type *BuildByRefType(const VarDecl *var);
|
|
|
|
void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
|
|
const CGFunctionInfo &FnInfo);
|
|
void StartFunction(GlobalDecl GD, QualType RetTy,
|
|
llvm::Function *Fn,
|
|
const CGFunctionInfo &FnInfo,
|
|
const FunctionArgList &Args,
|
|
SourceLocation StartLoc);
|
|
|
|
void EmitConstructorBody(FunctionArgList &Args);
|
|
void EmitDestructorBody(FunctionArgList &Args);
|
|
void EmitFunctionBody(FunctionArgList &Args);
|
|
|
|
/// EmitReturnBlock - Emit the unified return block, trying to avoid its
|
|
/// emission when possible.
|
|
void EmitReturnBlock();
|
|
|
|
/// FinishFunction - Complete IR generation of the current function. It is
|
|
/// legal to call this function even if there is no current insertion point.
|
|
void FinishFunction(SourceLocation EndLoc=SourceLocation());
|
|
|
|
/// GenerateThunk - Generate a thunk for the given method.
|
|
void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
|
|
GlobalDecl GD, const ThunkInfo &Thunk);
|
|
|
|
void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
|
|
GlobalDecl GD, const ThunkInfo &Thunk);
|
|
|
|
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
|
|
FunctionArgList &Args);
|
|
|
|
/// InitializeVTablePointer - Initialize the vtable pointer of the given
|
|
/// subobject.
|
|
///
|
|
void InitializeVTablePointer(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
llvm::Constant *VTable,
|
|
const CXXRecordDecl *VTableClass);
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
|
|
void InitializeVTablePointers(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
bool BaseIsNonVirtualPrimaryBase,
|
|
llvm::Constant *VTable,
|
|
const CXXRecordDecl *VTableClass,
|
|
VisitedVirtualBasesSetTy& VBases);
|
|
|
|
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
|
|
|
|
/// GetVTablePtr - Return the Value of the vtable pointer member pointed
|
|
/// to by This.
|
|
llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
|
|
|
|
/// EnterDtorCleanups - Enter the cleanups necessary to complete the
|
|
/// given phase of destruction for a destructor. The end result
|
|
/// should call destructors on members and base classes in reverse
|
|
/// order of their construction.
|
|
void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
|
|
|
|
/// ShouldInstrumentFunction - Return true if the current function should be
|
|
/// instrumented with __cyg_profile_func_* calls
|
|
bool ShouldInstrumentFunction();
|
|
|
|
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
|
|
/// instrumentation function with the current function and the call site, if
|
|
/// function instrumentation is enabled.
|
|
void EmitFunctionInstrumentation(const char *Fn);
|
|
|
|
/// EmitMCountInstrumentation - Emit call to .mcount.
|
|
void EmitMCountInstrumentation();
|
|
|
|
/// EmitFunctionProlog - Emit the target specific LLVM code to load the
|
|
/// arguments for the given function. This is also responsible for naming the
|
|
/// LLVM function arguments.
|
|
void EmitFunctionProlog(const CGFunctionInfo &FI,
|
|
llvm::Function *Fn,
|
|
const FunctionArgList &Args);
|
|
|
|
/// EmitFunctionEpilog - Emit the target specific LLVM code to return the
|
|
/// given temporary.
|
|
void EmitFunctionEpilog(const CGFunctionInfo &FI);
|
|
|
|
/// EmitStartEHSpec - Emit the start of the exception spec.
|
|
void EmitStartEHSpec(const Decl *D);
|
|
|
|
/// EmitEndEHSpec - Emit the end of the exception spec.
|
|
void EmitEndEHSpec(const Decl *D);
|
|
|
|
/// getTerminateLandingPad - Return a landing pad that just calls terminate.
|
|
llvm::BasicBlock *getTerminateLandingPad();
|
|
|
|
/// getTerminateHandler - Return a handler (not a landing pad, just
|
|
/// a catch handler) that just calls terminate. This is used when
|
|
/// a terminate scope encloses a try.
|
|
llvm::BasicBlock *getTerminateHandler();
|
|
|
|
llvm::Type *ConvertTypeForMem(QualType T);
|
|
llvm::Type *ConvertType(QualType T);
|
|
llvm::Type *ConvertType(const TypeDecl *T) {
|
|
return ConvertType(getContext().getTypeDeclType(T));
|
|
}
|
|
|
|
/// LoadObjCSelf - Load the value of self. This function is only valid while
|
|
/// generating code for an Objective-C method.
|
|
llvm::Value *LoadObjCSelf();
|
|
|
|
/// TypeOfSelfObject - Return type of object that this self represents.
|
|
QualType TypeOfSelfObject();
|
|
|
|
/// hasAggregateLLVMType - Return true if the specified AST type will map into
|
|
/// an aggregate LLVM type or is void.
|
|
static bool hasAggregateLLVMType(QualType T);
|
|
|
|
/// createBasicBlock - Create an LLVM basic block.
|
|
llvm::BasicBlock *createBasicBlock(StringRef name = "",
|
|
llvm::Function *parent = 0,
|
|
llvm::BasicBlock *before = 0) {
|
|
#ifdef NDEBUG
|
|
return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
|
|
#else
|
|
return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
|
|
#endif
|
|
}
|
|
|
|
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
|
|
/// label maps to.
|
|
JumpDest getJumpDestForLabel(const LabelDecl *S);
|
|
|
|
/// SimplifyForwardingBlocks - If the given basic block is only a branch to
|
|
/// another basic block, simplify it. This assumes that no other code could
|
|
/// potentially reference the basic block.
|
|
void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
|
|
|
|
/// EmitBlock - Emit the given block \arg BB and set it as the insert point,
|
|
/// adding a fall-through branch from the current insert block if
|
|
/// necessary. It is legal to call this function even if there is no current
|
|
/// insertion point.
|
|
///
|
|
/// IsFinished - If true, indicates that the caller has finished emitting
|
|
/// branches to the given block and does not expect to emit code into it. This
|
|
/// means the block can be ignored if it is unreachable.
|
|
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
|
|
|
|
/// EmitBlockAfterUses - Emit the given block somewhere hopefully
|
|
/// near its uses, and leave the insertion point in it.
|
|
void EmitBlockAfterUses(llvm::BasicBlock *BB);
|
|
|
|
/// EmitBranch - Emit a branch to the specified basic block from the current
|
|
/// insert block, taking care to avoid creation of branches from dummy
|
|
/// blocks. It is legal to call this function even if there is no current
|
|
/// insertion point.
|
|
///
|
|
/// This function clears the current insertion point. The caller should follow
|
|
/// calls to this function with calls to Emit*Block prior to generation new
|
|
/// code.
|
|
void EmitBranch(llvm::BasicBlock *Block);
|
|
|
|
/// HaveInsertPoint - True if an insertion point is defined. If not, this
|
|
/// indicates that the current code being emitted is unreachable.
|
|
bool HaveInsertPoint() const {
|
|
return Builder.GetInsertBlock() != 0;
|
|
}
|
|
|
|
/// EnsureInsertPoint - Ensure that an insertion point is defined so that
|
|
/// emitted IR has a place to go. Note that by definition, if this function
|
|
/// creates a block then that block is unreachable; callers may do better to
|
|
/// detect when no insertion point is defined and simply skip IR generation.
|
|
void EnsureInsertPoint() {
|
|
if (!HaveInsertPoint())
|
|
EmitBlock(createBasicBlock());
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified stmt yet.
|
|
void ErrorUnsupported(const Stmt *S, const char *Type,
|
|
bool OmitOnError=false);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Helpers
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
LValue MakeAddrLValue(llvm::Value *V, QualType T,
|
|
CharUnits Alignment = CharUnits()) {
|
|
return LValue::MakeAddr(V, T, Alignment, getContext(),
|
|
CGM.getTBAAInfo(T));
|
|
}
|
|
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
|
|
CharUnits Alignment;
|
|
if (!T->isIncompleteType())
|
|
Alignment = getContext().getTypeAlignInChars(T);
|
|
return LValue::MakeAddr(V, T, Alignment, getContext(),
|
|
CGM.getTBAAInfo(T));
|
|
}
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block. The caller is responsible for setting an appropriate alignment on
|
|
/// the alloca.
|
|
llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
|
|
const Twine &Name = "tmp");
|
|
|
|
/// InitTempAlloca - Provide an initial value for the given alloca.
|
|
void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
|
|
|
|
/// CreateIRTemp - Create a temporary IR object of the given type, with
|
|
/// appropriate alignment. This routine should only be used when an temporary
|
|
/// value needs to be stored into an alloca (for example, to avoid explicit
|
|
/// PHI construction), but the type is the IR type, not the type appropriate
|
|
/// for storing in memory.
|
|
llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
|
|
|
|
/// CreateMemTemp - Create a temporary memory object of the given type, with
|
|
/// appropriate alignment.
|
|
llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
|
|
|
|
/// CreateAggTemp - Create a temporary memory object for the given
|
|
/// aggregate type.
|
|
AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
|
|
CharUnits Alignment = getContext().getTypeAlignInChars(T);
|
|
return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
|
|
T.getQualifiers(),
|
|
AggValueSlot::IsNotDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased);
|
|
}
|
|
|
|
/// Emit a cast to void* in the appropriate address space.
|
|
llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
|
|
|
|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
|
|
/// expression and compare the result against zero, returning an Int1Ty value.
|
|
llvm::Value *EvaluateExprAsBool(const Expr *E);
|
|
|
|
/// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
|
|
void EmitIgnoredExpr(const Expr *E);
|
|
|
|
/// EmitAnyExpr - Emit code to compute the specified expression which can have
|
|
/// any type. The result is returned as an RValue struct. If this is an
|
|
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
|
|
/// the result should be returned.
|
|
///
|
|
/// \param IgnoreResult - True if the resulting value isn't used.
|
|
RValue EmitAnyExpr(const Expr *E,
|
|
AggValueSlot AggSlot = AggValueSlot::ignored(),
|
|
bool IgnoreResult = false);
|
|
|
|
// EmitVAListRef - Emit a "reference" to a va_list; this is either the address
|
|
// or the value of the expression, depending on how va_list is defined.
|
|
llvm::Value *EmitVAListRef(const Expr *E);
|
|
|
|
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
|
|
/// always be accessible even if no aggregate location is provided.
|
|
RValue EmitAnyExprToTemp(const Expr *E);
|
|
|
|
/// EmitAnyExprToMem - Emits the code necessary to evaluate an
|
|
/// arbitrary expression into the given memory location.
|
|
void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
|
|
Qualifiers Quals, bool IsInitializer);
|
|
|
|
/// EmitExprAsInit - Emits the code necessary to initialize a
|
|
/// location in memory with the given initializer.
|
|
void EmitExprAsInit(const Expr *init, const ValueDecl *D,
|
|
LValue lvalue, bool capturedByInit);
|
|
|
|
/// EmitAggregateCopy - Emit an aggrate copy.
|
|
///
|
|
/// \param isVolatile - True iff either the source or the destination is
|
|
/// volatile.
|
|
void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
|
|
QualType EltTy, bool isVolatile=false,
|
|
unsigned Alignment = 0);
|
|
|
|
/// StartBlock - Start new block named N. If insert block is a dummy block
|
|
/// then reuse it.
|
|
void StartBlock(const char *N);
|
|
|
|
/// GetAddrOfStaticLocalVar - Return the address of a static local variable.
|
|
llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
|
|
return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
|
|
}
|
|
|
|
/// GetAddrOfLocalVar - Return the address of a local variable.
|
|
llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
|
|
llvm::Value *Res = LocalDeclMap[VD];
|
|
assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
|
|
return Res;
|
|
}
|
|
|
|
/// getOpaqueLValueMapping - Given an opaque value expression (which
|
|
/// must be mapped to an l-value), return its mapping.
|
|
const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
|
|
assert(OpaqueValueMapping::shouldBindAsLValue(e));
|
|
|
|
llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
|
|
it = OpaqueLValues.find(e);
|
|
assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
|
|
return it->second;
|
|
}
|
|
|
|
/// getOpaqueRValueMapping - Given an opaque value expression (which
|
|
/// must be mapped to an r-value), return its mapping.
|
|
const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
|
|
assert(!OpaqueValueMapping::shouldBindAsLValue(e));
|
|
|
|
llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
|
|
it = OpaqueRValues.find(e);
|
|
assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
|
|
return it->second;
|
|
}
|
|
|
|
/// getAccessedFieldNo - Given an encoded value and a result number, return
|
|
/// the input field number being accessed.
|
|
static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
|
|
|
|
llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
|
|
llvm::BasicBlock *GetIndirectGotoBlock();
|
|
|
|
/// EmitNullInitialization - Generate code to set a value of the given type to
|
|
/// null, If the type contains data member pointers, they will be initialized
|
|
/// to -1 in accordance with the Itanium C++ ABI.
|
|
void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
|
|
|
|
// EmitVAArg - Generate code to get an argument from the passed in pointer
|
|
// and update it accordingly. The return value is a pointer to the argument.
|
|
// FIXME: We should be able to get rid of this method and use the va_arg
|
|
// instruction in LLVM instead once it works well enough.
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
|
|
|
|
/// emitArrayLength - Compute the length of an array, even if it's a
|
|
/// VLA, and drill down to the base element type.
|
|
llvm::Value *emitArrayLength(const ArrayType *arrayType,
|
|
QualType &baseType,
|
|
llvm::Value *&addr);
|
|
|
|
/// EmitVLASize - Capture all the sizes for the VLA expressions in
|
|
/// the given variably-modified type and store them in the VLASizeMap.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitVariablyModifiedType(QualType Ty);
|
|
|
|
/// getVLASize - Returns an LLVM value that corresponds to the size,
|
|
/// in non-variably-sized elements, of a variable length array type,
|
|
/// plus that largest non-variably-sized element type. Assumes that
|
|
/// the type has already been emitted with EmitVariablyModifiedType.
|
|
std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
|
|
std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
|
|
|
|
/// LoadCXXThis - Load the value of 'this'. This function is only valid while
|
|
/// generating code for an C++ member function.
|
|
llvm::Value *LoadCXXThis() {
|
|
assert(CXXThisValue && "no 'this' value for this function");
|
|
return CXXThisValue;
|
|
}
|
|
|
|
/// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
|
|
/// virtual bases.
|
|
llvm::Value *LoadCXXVTT() {
|
|
assert(CXXVTTValue && "no VTT value for this function");
|
|
return CXXVTTValue;
|
|
}
|
|
|
|
/// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
|
|
/// complete class to the given direct base.
|
|
llvm::Value *
|
|
GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *Base,
|
|
bool BaseIsVirtual);
|
|
|
|
/// GetAddressOfBaseClass - This function will add the necessary delta to the
|
|
/// load of 'this' and returns address of the base class.
|
|
llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue);
|
|
|
|
llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue);
|
|
|
|
llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
|
|
const CXXRecordDecl *ClassDecl,
|
|
const CXXRecordDecl *BaseClassDecl);
|
|
|
|
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType CtorType,
|
|
const FunctionArgList &Args);
|
|
// It's important not to confuse this and the previous function. Delegating
|
|
// constructors are the C++0x feature. The constructor delegate optimization
|
|
// is used to reduce duplication in the base and complete consturctors where
|
|
// they are substantially the same.
|
|
void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
const FunctionArgList &Args);
|
|
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
bool ForVirtualBase, llvm::Value *This,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd);
|
|
|
|
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
|
|
llvm::Value *This, llvm::Value *Src,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd);
|
|
|
|
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
|
|
const ConstantArrayType *ArrayTy,
|
|
llvm::Value *ArrayPtr,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ZeroInitialization = false);
|
|
|
|
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
|
|
llvm::Value *NumElements,
|
|
llvm::Value *ArrayPtr,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ZeroInitialization = false);
|
|
|
|
static Destroyer destroyCXXObject;
|
|
|
|
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
bool ForVirtualBase, llvm::Value *This);
|
|
|
|
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
|
|
llvm::Value *NewPtr, llvm::Value *NumElements);
|
|
|
|
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
|
|
llvm::Value *Ptr);
|
|
|
|
llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
|
|
void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
|
|
|
|
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
|
|
QualType DeleteTy);
|
|
|
|
llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
|
|
llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
|
|
|
|
void EmitCheck(llvm::Value *, unsigned Size);
|
|
|
|
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre);
|
|
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre);
|
|
//===--------------------------------------------------------------------===//
|
|
// Declaration Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitDecl - Emit a declaration.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitDecl(const Decl &D);
|
|
|
|
/// EmitVarDecl - Emit a local variable declaration.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitVarDecl(const VarDecl &D);
|
|
|
|
void EmitScalarInit(const Expr *init, const ValueDecl *D,
|
|
LValue lvalue, bool capturedByInit);
|
|
void EmitScalarInit(llvm::Value *init, LValue lvalue);
|
|
|
|
typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
|
|
llvm::Value *Address);
|
|
|
|
/// EmitAutoVarDecl - Emit an auto variable declaration.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitAutoVarDecl(const VarDecl &D);
|
|
|
|
class AutoVarEmission {
|
|
friend class CodeGenFunction;
|
|
|
|
const VarDecl *Variable;
|
|
|
|
/// The alignment of the variable.
|
|
CharUnits Alignment;
|
|
|
|
/// The address of the alloca. Null if the variable was emitted
|
|
/// as a global constant.
|
|
llvm::Value *Address;
|
|
|
|
llvm::Value *NRVOFlag;
|
|
|
|
/// True if the variable is a __block variable.
|
|
bool IsByRef;
|
|
|
|
/// True if the variable is of aggregate type and has a constant
|
|
/// initializer.
|
|
bool IsConstantAggregate;
|
|
|
|
struct Invalid {};
|
|
AutoVarEmission(Invalid) : Variable(0) {}
|
|
|
|
AutoVarEmission(const VarDecl &variable)
|
|
: Variable(&variable), Address(0), NRVOFlag(0),
|
|
IsByRef(false), IsConstantAggregate(false) {}
|
|
|
|
bool wasEmittedAsGlobal() const { return Address == 0; }
|
|
|
|
public:
|
|
static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
|
|
|
|
/// Returns the address of the object within this declaration.
|
|
/// Note that this does not chase the forwarding pointer for
|
|
/// __block decls.
|
|
llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
|
|
if (!IsByRef) return Address;
|
|
|
|
return CGF.Builder.CreateStructGEP(Address,
|
|
CGF.getByRefValueLLVMField(Variable),
|
|
Variable->getNameAsString());
|
|
}
|
|
};
|
|
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
|
|
void EmitAutoVarInit(const AutoVarEmission &emission);
|
|
void EmitAutoVarCleanups(const AutoVarEmission &emission);
|
|
void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
|
|
QualType::DestructionKind dtorKind);
|
|
|
|
void EmitStaticVarDecl(const VarDecl &D,
|
|
llvm::GlobalValue::LinkageTypes Linkage);
|
|
|
|
/// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
|
|
void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
|
|
|
|
/// protectFromPeepholes - Protect a value that we're intending to
|
|
/// store to the side, but which will probably be used later, from
|
|
/// aggressive peepholing optimizations that might delete it.
|
|
///
|
|
/// Pass the result to unprotectFromPeepholes to declare that
|
|
/// protection is no longer required.
|
|
///
|
|
/// There's no particular reason why this shouldn't apply to
|
|
/// l-values, it's just that no existing peepholes work on pointers.
|
|
PeepholeProtection protectFromPeepholes(RValue rvalue);
|
|
void unprotectFromPeepholes(PeepholeProtection protection);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Statement Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
|
|
void EmitStopPoint(const Stmt *S);
|
|
|
|
/// EmitStmt - Emit the code for the statement \arg S. It is legal to call
|
|
/// this function even if there is no current insertion point.
|
|
///
|
|
/// This function may clear the current insertion point; callers should use
|
|
/// EnsureInsertPoint if they wish to subsequently generate code without first
|
|
/// calling EmitBlock, EmitBranch, or EmitStmt.
|
|
void EmitStmt(const Stmt *S);
|
|
|
|
/// EmitSimpleStmt - Try to emit a "simple" statement which does not
|
|
/// necessarily require an insertion point or debug information; typically
|
|
/// because the statement amounts to a jump or a container of other
|
|
/// statements.
|
|
///
|
|
/// \return True if the statement was handled.
|
|
bool EmitSimpleStmt(const Stmt *S);
|
|
|
|
RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
|
|
AggValueSlot AVS = AggValueSlot::ignored());
|
|
|
|
/// EmitLabel - Emit the block for the given label. It is legal to call this
|
|
/// function even if there is no current insertion point.
|
|
void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
|
|
|
|
void EmitLabelStmt(const LabelStmt &S);
|
|
void EmitGotoStmt(const GotoStmt &S);
|
|
void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
|
|
void EmitIfStmt(const IfStmt &S);
|
|
void EmitWhileStmt(const WhileStmt &S);
|
|
void EmitDoStmt(const DoStmt &S);
|
|
void EmitForStmt(const ForStmt &S);
|
|
void EmitReturnStmt(const ReturnStmt &S);
|
|
void EmitDeclStmt(const DeclStmt &S);
|
|
void EmitBreakStmt(const BreakStmt &S);
|
|
void EmitContinueStmt(const ContinueStmt &S);
|
|
void EmitSwitchStmt(const SwitchStmt &S);
|
|
void EmitDefaultStmt(const DefaultStmt &S);
|
|
void EmitCaseStmt(const CaseStmt &S);
|
|
void EmitCaseStmtRange(const CaseStmt &S);
|
|
void EmitAsmStmt(const AsmStmt &S);
|
|
|
|
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
|
|
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
|
|
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
|
|
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
|
|
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
|
|
|
|
llvm::Constant *getUnwindResumeFn();
|
|
llvm::Constant *getUnwindResumeOrRethrowFn();
|
|
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
|
|
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
|
|
|
|
void EmitCXXTryStmt(const CXXTryStmt &S);
|
|
void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// LValue Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
|
|
RValue GetUndefRValue(QualType Ty);
|
|
|
|
/// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
|
|
/// and issue an ErrorUnsupported style diagnostic (using the
|
|
/// provided Name).
|
|
RValue EmitUnsupportedRValue(const Expr *E,
|
|
const char *Name);
|
|
|
|
/// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
|
|
/// an ErrorUnsupported style diagnostic (using the provided Name).
|
|
LValue EmitUnsupportedLValue(const Expr *E,
|
|
const char *Name);
|
|
|
|
/// EmitLValue - Emit code to compute a designator that specifies the location
|
|
/// of the expression.
|
|
///
|
|
/// This can return one of two things: a simple address or a bitfield
|
|
/// reference. In either case, the LLVM Value* in the LValue structure is
|
|
/// guaranteed to be an LLVM pointer type.
|
|
///
|
|
/// If this returns a bitfield reference, nothing about the pointee type of
|
|
/// the LLVM value is known: For example, it may not be a pointer to an
|
|
/// integer.
|
|
///
|
|
/// If this returns a normal address, and if the lvalue's C type is fixed
|
|
/// size, this method guarantees that the returned pointer type will point to
|
|
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
|
|
/// variable length type, this is not possible.
|
|
///
|
|
LValue EmitLValue(const Expr *E);
|
|
|
|
/// EmitCheckedLValue - Same as EmitLValue but additionally we generate
|
|
/// checking code to guard against undefined behavior. This is only
|
|
/// suitable when we know that the address will be used to access the
|
|
/// object.
|
|
LValue EmitCheckedLValue(const Expr *E);
|
|
|
|
/// EmitToMemory - Change a scalar value from its value
|
|
/// representation to its in-memory representation.
|
|
llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
|
|
|
|
/// EmitFromMemory - Change a scalar value from its memory
|
|
/// representation to its value representation.
|
|
llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
|
|
|
|
/// EmitLoadOfScalar - Load a scalar value from an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation.
|
|
llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
|
|
unsigned Alignment, QualType Ty,
|
|
llvm::MDNode *TBAAInfo = 0);
|
|
|
|
/// EmitLoadOfScalar - Load a scalar value from an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation. The l-value must be a simple
|
|
/// l-value.
|
|
llvm::Value *EmitLoadOfScalar(LValue lvalue);
|
|
|
|
/// EmitStoreOfScalar - Store a scalar value to an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation.
|
|
void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
|
|
bool Volatile, unsigned Alignment, QualType Ty,
|
|
llvm::MDNode *TBAAInfo = 0);
|
|
|
|
/// EmitStoreOfScalar - Store a scalar value to an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation. The l-value must be a simple
|
|
/// l-value.
|
|
void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
|
|
|
|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
|
|
/// this method emits the address of the lvalue, then loads the result as an
|
|
/// rvalue, returning the rvalue.
|
|
RValue EmitLoadOfLValue(LValue V);
|
|
RValue EmitLoadOfExtVectorElementLValue(LValue V);
|
|
RValue EmitLoadOfBitfieldLValue(LValue LV);
|
|
|
|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
|
|
/// lvalue, where both are guaranteed to the have the same type, and that type
|
|
/// is 'Ty'.
|
|
void EmitStoreThroughLValue(RValue Src, LValue Dst);
|
|
void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
|
|
|
|
/// EmitStoreThroughLValue - Store Src into Dst with same constraints as
|
|
/// EmitStoreThroughLValue.
|
|
///
|
|
/// \param Result [out] - If non-null, this will be set to a Value* for the
|
|
/// bit-field contents after the store, appropriate for use as the result of
|
|
/// an assignment to the bit-field.
|
|
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
|
|
llvm::Value **Result=0);
|
|
|
|
/// Emit an l-value for an assignment (simple or compound) of complex type.
|
|
LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
|
|
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
|
|
|
|
// Note: only available for agg return types
|
|
LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
|
|
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
|
|
// Note: only available for agg return types
|
|
LValue EmitCallExprLValue(const CallExpr *E);
|
|
// Note: only available for agg return types
|
|
LValue EmitVAArgExprLValue(const VAArgExpr *E);
|
|
LValue EmitDeclRefLValue(const DeclRefExpr *E);
|
|
LValue EmitStringLiteralLValue(const StringLiteral *E);
|
|
LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
|
|
LValue EmitPredefinedLValue(const PredefinedExpr *E);
|
|
LValue EmitUnaryOpLValue(const UnaryOperator *E);
|
|
LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
|
|
LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
|
|
LValue EmitMemberExpr(const MemberExpr *E);
|
|
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
|
|
LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
|
|
LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
|
|
LValue EmitCastLValue(const CastExpr *E);
|
|
LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
|
|
LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
|
|
LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
|
|
|
|
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
|
|
AggValueSlot slot = AggValueSlot::ignored());
|
|
LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
|
|
|
|
llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
|
|
const ObjCIvarDecl *Ivar);
|
|
LValue EmitLValueForAnonRecordField(llvm::Value* Base,
|
|
const IndirectFieldDecl* Field,
|
|
unsigned CVRQualifiers);
|
|
LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
|
|
unsigned CVRQualifiers);
|
|
|
|
/// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
|
|
/// if the Field is a reference, this will return the address of the reference
|
|
/// and not the address of the value stored in the reference.
|
|
LValue EmitLValueForFieldInitialization(llvm::Value* Base,
|
|
const FieldDecl* Field,
|
|
unsigned CVRQualifiers);
|
|
|
|
LValue EmitLValueForIvar(QualType ObjectTy,
|
|
llvm::Value* Base, const ObjCIvarDecl *Ivar,
|
|
unsigned CVRQualifiers);
|
|
|
|
LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
|
|
unsigned CVRQualifiers);
|
|
|
|
LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
|
|
|
|
LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
|
|
LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
|
|
LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
|
|
|
|
LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
|
|
LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
|
|
LValue EmitStmtExprLValue(const StmtExpr *E);
|
|
LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
|
|
LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
|
|
void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Scalar Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitCall - Generate a call of the given function, expecting the given
|
|
/// result type, and using the given argument list which specifies both the
|
|
/// LLVM arguments and the types they were derived from.
|
|
///
|
|
/// \param TargetDecl - If given, the decl of the function in a direct call;
|
|
/// used to set attributes on the call (noreturn, etc.).
|
|
RValue EmitCall(const CGFunctionInfo &FnInfo,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
const CallArgList &Args,
|
|
const Decl *TargetDecl = 0,
|
|
llvm::Instruction **callOrInvoke = 0);
|
|
|
|
RValue EmitCall(QualType FnType, llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
const Decl *TargetDecl = 0);
|
|
RValue EmitCallExpr(const CallExpr *E,
|
|
ReturnValueSlot ReturnValue = ReturnValueSlot());
|
|
|
|
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
|
|
ArrayRef<llvm::Value *> Args,
|
|
const Twine &Name = "");
|
|
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
|
|
const Twine &Name = "");
|
|
|
|
llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
|
|
llvm::Type *Ty);
|
|
llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
llvm::Value *This, llvm::Type *Ty);
|
|
llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
|
|
NestedNameSpecifier *Qual,
|
|
llvm::Type *Ty);
|
|
|
|
llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
|
|
CXXDtorType Type,
|
|
const CXXRecordDecl *RD);
|
|
|
|
RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::Value *This,
|
|
llvm::Value *VTT,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd);
|
|
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
|
|
ReturnValueSlot ReturnValue);
|
|
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
|
|
ReturnValueSlot ReturnValue);
|
|
|
|
llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
llvm::Value *This);
|
|
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
ReturnValueSlot ReturnValue);
|
|
|
|
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
|
|
ReturnValueSlot ReturnValue);
|
|
|
|
|
|
RValue EmitBuiltinExpr(const FunctionDecl *FD,
|
|
unsigned BuiltinID, const CallExpr *E);
|
|
|
|
RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
|
|
|
|
/// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
|
|
/// is unhandled by the current target.
|
|
llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
|
|
llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
llvm::Value *EmitNeonCall(llvm::Function *F,
|
|
SmallVectorImpl<llvm::Value*> &O,
|
|
const char *name,
|
|
unsigned shift = 0, bool rightshift = false);
|
|
llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
|
|
llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
|
|
bool negateForRightShift);
|
|
|
|
llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
|
|
llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
|
|
llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
|
|
llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
|
|
llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
|
|
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
|
|
ReturnValueSlot Return = ReturnValueSlot());
|
|
|
|
/// Retrieves the default cleanup kind for an ARC cleanup.
|
|
/// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
|
|
CleanupKind getARCCleanupKind() {
|
|
return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
|
|
? NormalAndEHCleanup : NormalCleanup;
|
|
}
|
|
|
|
// ARC primitives.
|
|
void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
|
|
void EmitARCDestroyWeak(llvm::Value *addr);
|
|
llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
|
|
llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
|
|
llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
|
|
bool ignored);
|
|
void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
|
|
void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
|
|
llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
|
|
llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
|
|
llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
|
|
bool ignored);
|
|
llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
|
|
bool ignored);
|
|
llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
|
|
llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
|
|
llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
|
|
void EmitARCRelease(llvm::Value *value, bool precise);
|
|
llvm::Value *EmitARCAutorelease(llvm::Value *value);
|
|
llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
|
|
llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
|
|
llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
|
|
|
|
std::pair<LValue,llvm::Value*>
|
|
EmitARCStoreAutoreleasing(const BinaryOperator *e);
|
|
std::pair<LValue,llvm::Value*>
|
|
EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
|
|
|
|
llvm::Value *EmitObjCThrowOperand(const Expr *expr);
|
|
|
|
llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
|
|
llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
|
|
llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
|
|
|
|
llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
|
|
llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
|
|
llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
|
|
|
|
static Destroyer destroyARCStrongImprecise;
|
|
static Destroyer destroyARCStrongPrecise;
|
|
static Destroyer destroyARCWeak;
|
|
|
|
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
|
|
llvm::Value *EmitObjCAutoreleasePoolPush();
|
|
llvm::Value *EmitObjCMRRAutoreleasePoolPush();
|
|
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
|
|
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
|
|
|
|
/// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
|
|
/// expression. Will emit a temporary variable if E is not an LValue.
|
|
RValue EmitReferenceBindingToExpr(const Expr* E,
|
|
const NamedDecl *InitializedDecl);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Expressions are broken into three classes: scalar, complex, aggregate.
|
|
|
|
/// EmitScalarExpr - Emit the computation of the specified expression of LLVM
|
|
/// scalar type, returning the result.
|
|
llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
|
|
QualType DstTy);
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
|
|
/// complex type to the specified destination type, where the destination type
|
|
/// is an LLVM scalar type.
|
|
llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
|
|
QualType DstTy);
|
|
|
|
|
|
/// EmitAggExpr - Emit the computation of the specified expression
|
|
/// of aggregate type. The result is computed into the given slot,
|
|
/// which may be null to indicate that the value is not needed.
|
|
void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
|
|
|
|
/// EmitAggExprToLValue - Emit the computation of the specified expression of
|
|
/// aggregate type into a temporary LValue.
|
|
LValue EmitAggExprToLValue(const Expr *E);
|
|
|
|
/// EmitGCMemmoveCollectable - Emit special API for structs with object
|
|
/// pointers.
|
|
void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
|
|
QualType Ty);
|
|
|
|
/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
|
|
/// make sure it survives garbage collection until this point.
|
|
void EmitExtendGCLifetime(llvm::Value *object);
|
|
|
|
/// EmitComplexExpr - Emit the computation of the specified expression of
|
|
/// complex type, returning the result.
|
|
ComplexPairTy EmitComplexExpr(const Expr *E,
|
|
bool IgnoreReal = false,
|
|
bool IgnoreImag = false);
|
|
|
|
/// EmitComplexExprIntoAddr - Emit the computation of the specified expression
|
|
/// of complex type, storing into the specified Value*.
|
|
void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
|
|
bool DestIsVolatile);
|
|
|
|
/// StoreComplexToAddr - Store a complex number into the specified address.
|
|
void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
|
|
bool DestIsVolatile);
|
|
/// LoadComplexFromAddr - Load a complex number from the specified address.
|
|
ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
|
|
|
|
/// CreateStaticVarDecl - Create a zero-initialized LLVM global for
|
|
/// a static local variable.
|
|
llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
|
|
const char *Separator,
|
|
llvm::GlobalValue::LinkageTypes Linkage);
|
|
|
|
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
|
|
/// global variable that has already been created for it. If the initializer
|
|
/// has a different type than GV does, this may free GV and return a different
|
|
/// one. Otherwise it just returns GV.
|
|
llvm::GlobalVariable *
|
|
AddInitializerToStaticVarDecl(const VarDecl &D,
|
|
llvm::GlobalVariable *GV);
|
|
|
|
|
|
/// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
|
|
/// variable with global storage.
|
|
void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
|
|
|
|
/// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
|
|
/// with the C++ runtime so that its destructor will be called at exit.
|
|
void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
|
|
llvm::Constant *DeclPtr);
|
|
|
|
/// Emit code in this function to perform a guarded variable
|
|
/// initialization. Guarded initializations are used when it's not
|
|
/// possible to prove that an initialization will be done exactly
|
|
/// once, e.g. with a static local variable or a static data member
|
|
/// of a class template.
|
|
void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
|
|
|
|
/// GenerateCXXGlobalInitFunc - Generates code for initializing global
|
|
/// variables.
|
|
void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
|
|
llvm::Constant **Decls,
|
|
unsigned NumDecls);
|
|
|
|
/// GenerateCXXGlobalDtorFunc - Generates code for destroying global
|
|
/// variables.
|
|
void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
|
|
const std::vector<std::pair<llvm::WeakVH,
|
|
llvm::Constant*> > &DtorsAndObjects);
|
|
|
|
void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
|
|
const VarDecl *D,
|
|
llvm::GlobalVariable *Addr);
|
|
|
|
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
|
|
|
|
void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
|
|
const Expr *Exp);
|
|
|
|
void enterFullExpression(const ExprWithCleanups *E) {
|
|
if (E->getNumObjects() == 0) return;
|
|
enterNonTrivialFullExpression(E);
|
|
}
|
|
void enterNonTrivialFullExpression(const ExprWithCleanups *E);
|
|
|
|
void EmitCXXThrowExpr(const CXXThrowExpr *E);
|
|
|
|
RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Annotations Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Emit an annotation call (intrinsic or builtin).
|
|
llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
|
|
llvm::Value *AnnotatedVal,
|
|
llvm::StringRef AnnotationStr,
|
|
SourceLocation Location);
|
|
|
|
/// Emit local annotations for the local variable V, declared by D.
|
|
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
|
|
|
|
/// Emit field annotations for the given field & value. Returns the
|
|
/// annotation result.
|
|
llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Internal Helpers
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// ContainsLabel - Return true if the statement contains a label in it. If
|
|
/// this statement is not executed normally, it not containing a label means
|
|
/// that we can just remove the code.
|
|
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
|
|
|
|
/// containsBreak - Return true if the statement contains a break out of it.
|
|
/// If the statement (recursively) contains a switch or loop with a break
|
|
/// inside of it, this is fine.
|
|
static bool containsBreak(const Stmt *S);
|
|
|
|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
|
|
/// to a constant, or if it does but contains a label, return false. If it
|
|
/// constant folds return true and set the boolean result in Result.
|
|
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
|
|
|
|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
|
|
/// to a constant, or if it does but contains a label, return false. If it
|
|
/// constant folds return true and set the folded value.
|
|
bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
|
|
|
|
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
|
|
/// if statement) to the specified blocks. Based on the condition, this might
|
|
/// try to simplify the codegen of the conditional based on the branch.
|
|
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
|
|
llvm::BasicBlock *FalseBlock);
|
|
|
|
/// getTrapBB - Create a basic block that will call the trap intrinsic. We'll
|
|
/// generate a branch around the created basic block as necessary.
|
|
llvm::BasicBlock *getTrapBB();
|
|
|
|
/// EmitCallArg - Emit a single call argument.
|
|
void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
|
|
|
|
/// EmitDelegateCallArg - We are performing a delegate call; that
|
|
/// is, the current function is delegating to another one. Produce
|
|
/// a r-value suitable for passing the given parameter.
|
|
void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
|
|
|
|
/// SetFPAccuracy - Set the minimum required accuracy of the given floating
|
|
/// point operation, expressed as the maximum relative error in ulp.
|
|
void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
|
|
unsigned AccuracyD = 1);
|
|
|
|
private:
|
|
void EmitReturnOfRValue(RValue RV, QualType Ty);
|
|
|
|
/// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
|
|
/// from function arguments into \arg Dst. See ABIArgInfo::Expand.
|
|
///
|
|
/// \param AI - The first function argument of the expansion.
|
|
/// \return The argument following the last expanded function
|
|
/// argument.
|
|
llvm::Function::arg_iterator
|
|
ExpandTypeFromArgs(QualType Ty, LValue Dst,
|
|
llvm::Function::arg_iterator AI);
|
|
|
|
/// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
|
|
/// Ty, into individual arguments on the provided vector \arg Args. See
|
|
/// ABIArgInfo::Expand.
|
|
void ExpandTypeToArgs(QualType Ty, RValue Src,
|
|
SmallVector<llvm::Value*, 16> &Args,
|
|
llvm::FunctionType *IRFuncTy);
|
|
|
|
llvm::Value* EmitAsmInput(const AsmStmt &S,
|
|
const TargetInfo::ConstraintInfo &Info,
|
|
const Expr *InputExpr, std::string &ConstraintStr);
|
|
|
|
llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
|
|
const TargetInfo::ConstraintInfo &Info,
|
|
LValue InputValue, QualType InputType,
|
|
std::string &ConstraintStr);
|
|
|
|
/// EmitCallArgs - Emit call arguments for a function.
|
|
/// The CallArgTypeInfo parameter is used for iterating over the known
|
|
/// argument types of the function being called.
|
|
template<typename T>
|
|
void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd) {
|
|
CallExpr::const_arg_iterator Arg = ArgBeg;
|
|
|
|
// First, use the argument types that the type info knows about
|
|
if (CallArgTypeInfo) {
|
|
for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
|
|
E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
|
|
assert(Arg != ArgEnd && "Running over edge of argument list!");
|
|
QualType ArgType = *I;
|
|
#ifndef NDEBUG
|
|
QualType ActualArgType = Arg->getType();
|
|
if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
|
|
QualType ActualBaseType =
|
|
ActualArgType->getAs<PointerType>()->getPointeeType();
|
|
QualType ArgBaseType =
|
|
ArgType->getAs<PointerType>()->getPointeeType();
|
|
if (ArgBaseType->isVariableArrayType()) {
|
|
if (const VariableArrayType *VAT =
|
|
getContext().getAsVariableArrayType(ActualBaseType)) {
|
|
if (!VAT->getSizeExpr())
|
|
ActualArgType = ArgType;
|
|
}
|
|
}
|
|
}
|
|
assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
|
|
getTypePtr() ==
|
|
getContext().getCanonicalType(ActualArgType).getTypePtr() &&
|
|
"type mismatch in call argument!");
|
|
#endif
|
|
EmitCallArg(Args, *Arg, ArgType);
|
|
}
|
|
|
|
// Either we've emitted all the call args, or we have a call to a
|
|
// variadic function.
|
|
assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
|
|
"Extra arguments in non-variadic function!");
|
|
|
|
}
|
|
|
|
// If we still have any arguments, emit them using the type of the argument.
|
|
for (; Arg != ArgEnd; ++Arg)
|
|
EmitCallArg(Args, *Arg, Arg->getType());
|
|
}
|
|
|
|
const TargetCodeGenInfo &getTargetHooks() const {
|
|
return CGM.getTargetCodeGenInfo();
|
|
}
|
|
|
|
void EmitDeclMetadata();
|
|
|
|
CodeGenModule::ByrefHelpers *
|
|
buildByrefHelpers(llvm::StructType &byrefType,
|
|
const AutoVarEmission &emission);
|
|
};
|
|
|
|
/// Helper class with most of the code for saving a value for a
|
|
/// conditional expression cleanup.
|
|
struct DominatingLLVMValue {
|
|
typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
|
|
|
|
/// Answer whether the given value needs extra work to be saved.
|
|
static bool needsSaving(llvm::Value *value) {
|
|
// If it's not an instruction, we don't need to save.
|
|
if (!isa<llvm::Instruction>(value)) return false;
|
|
|
|
// If it's an instruction in the entry block, we don't need to save.
|
|
llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
|
|
return (block != &block->getParent()->getEntryBlock());
|
|
}
|
|
|
|
/// Try to save the given value.
|
|
static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
|
|
if (!needsSaving(value)) return saved_type(value, false);
|
|
|
|
// Otherwise we need an alloca.
|
|
llvm::Value *alloca =
|
|
CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
|
|
CGF.Builder.CreateStore(value, alloca);
|
|
|
|
return saved_type(alloca, true);
|
|
}
|
|
|
|
static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
|
|
if (!value.getInt()) return value.getPointer();
|
|
return CGF.Builder.CreateLoad(value.getPointer());
|
|
}
|
|
};
|
|
|
|
/// A partial specialization of DominatingValue for llvm::Values that
|
|
/// might be llvm::Instructions.
|
|
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
|
|
typedef T *type;
|
|
static type restore(CodeGenFunction &CGF, saved_type value) {
|
|
return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
|
|
}
|
|
};
|
|
|
|
/// A specialization of DominatingValue for RValue.
|
|
template <> struct DominatingValue<RValue> {
|
|
typedef RValue type;
|
|
class saved_type {
|
|
enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
|
|
AggregateAddress, ComplexAddress };
|
|
|
|
llvm::Value *Value;
|
|
Kind K;
|
|
saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
|
|
|
|
public:
|
|
static bool needsSaving(RValue value);
|
|
static saved_type save(CodeGenFunction &CGF, RValue value);
|
|
RValue restore(CodeGenFunction &CGF);
|
|
|
|
// implementations in CGExprCXX.cpp
|
|
};
|
|
|
|
static bool needsSaving(type value) {
|
|
return saved_type::needsSaving(value);
|
|
}
|
|
static saved_type save(CodeGenFunction &CGF, type value) {
|
|
return saved_type::save(CGF, value);
|
|
}
|
|
static type restore(CodeGenFunction &CGF, saved_type value) {
|
|
return value.restore(CGF);
|
|
}
|
|
};
|
|
|
|
} // end namespace CodeGen
|
|
} // end namespace clang
|
|
|
|
#endif
|