llvm-project/mlir/lib/IR/PatternMatch.cpp

364 lines
14 KiB
C++

//===- PatternMatch.cpp - Base classes for pattern match ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/BlockAndValueMapping.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// PatternBenefit
//===----------------------------------------------------------------------===//
PatternBenefit::PatternBenefit(unsigned benefit) : representation(benefit) {
assert(representation == benefit && benefit != ImpossibleToMatchSentinel &&
"This pattern match benefit is too large to represent");
}
unsigned short PatternBenefit::getBenefit() const {
assert(!isImpossibleToMatch() && "Pattern doesn't match");
return representation;
}
//===----------------------------------------------------------------------===//
// Pattern
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// OperationName Root Constructors
Pattern::Pattern(StringRef rootName, PatternBenefit benefit,
MLIRContext *context, ArrayRef<StringRef> generatedNames)
: Pattern(OperationName(rootName, context).getAsOpaquePointer(),
RootKind::OperationName, generatedNames, benefit, context) {}
//===----------------------------------------------------------------------===//
// MatchAnyOpTypeTag Root Constructors
Pattern::Pattern(MatchAnyOpTypeTag tag, PatternBenefit benefit,
MLIRContext *context, ArrayRef<StringRef> generatedNames)
: Pattern(nullptr, RootKind::Any, generatedNames, benefit, context) {}
//===----------------------------------------------------------------------===//
// MatchInterfaceOpTypeTag Root Constructors
Pattern::Pattern(MatchInterfaceOpTypeTag tag, TypeID interfaceID,
PatternBenefit benefit, MLIRContext *context,
ArrayRef<StringRef> generatedNames)
: Pattern(interfaceID.getAsOpaquePointer(), RootKind::InterfaceID,
generatedNames, benefit, context) {}
//===----------------------------------------------------------------------===//
// MatchTraitOpTypeTag Root Constructors
Pattern::Pattern(MatchTraitOpTypeTag tag, TypeID traitID,
PatternBenefit benefit, MLIRContext *context,
ArrayRef<StringRef> generatedNames)
: Pattern(traitID.getAsOpaquePointer(), RootKind::TraitID, generatedNames,
benefit, context) {}
//===----------------------------------------------------------------------===//
// General Constructors
Pattern::Pattern(const void *rootValue, RootKind rootKind,
ArrayRef<StringRef> generatedNames, PatternBenefit benefit,
MLIRContext *context)
: rootValue(rootValue), rootKind(rootKind), benefit(benefit),
contextAndHasBoundedRecursion(context, false) {
if (generatedNames.empty())
return;
generatedOps.reserve(generatedNames.size());
std::transform(generatedNames.begin(), generatedNames.end(),
std::back_inserter(generatedOps), [context](StringRef name) {
return OperationName(name, context);
});
}
//===----------------------------------------------------------------------===//
// RewritePattern
//===----------------------------------------------------------------------===//
void RewritePattern::rewrite(Operation *op, PatternRewriter &rewriter) const {
llvm_unreachable("need to implement either matchAndRewrite or one of the "
"rewrite functions!");
}
LogicalResult RewritePattern::match(Operation *op) const {
llvm_unreachable("need to implement either match or matchAndRewrite!");
}
/// Out-of-line vtable anchor.
void RewritePattern::anchor() {}
//===----------------------------------------------------------------------===//
// PDLValue
//===----------------------------------------------------------------------===//
void PDLValue::print(raw_ostream &os) const {
if (!value) {
os << "<NULL-PDLValue>";
return;
}
switch (kind) {
case Kind::Attribute:
os << cast<Attribute>();
break;
case Kind::Operation:
os << *cast<Operation *>();
break;
case Kind::Type:
os << cast<Type>();
break;
case Kind::TypeRange:
llvm::interleaveComma(cast<TypeRange>(), os);
break;
case Kind::Value:
os << cast<Value>();
break;
case Kind::ValueRange:
llvm::interleaveComma(cast<ValueRange>(), os);
break;
}
}
void PDLValue::print(raw_ostream &os, Kind kind) {
switch (kind) {
case Kind::Attribute:
os << "Attribute";
break;
case Kind::Operation:
os << "Operation";
break;
case Kind::Type:
os << "Type";
break;
case Kind::TypeRange:
os << "TypeRange";
break;
case Kind::Value:
os << "Value";
break;
case Kind::ValueRange:
os << "ValueRange";
break;
}
}
//===----------------------------------------------------------------------===//
// PDLPatternModule
//===----------------------------------------------------------------------===//
void PDLPatternModule::mergeIn(PDLPatternModule &&other) {
// Ignore the other module if it has no patterns.
if (!other.pdlModule)
return;
// Steal the functions of the other module.
for (auto &it : other.constraintFunctions)
registerConstraintFunction(it.first(), std::move(it.second));
for (auto &it : other.rewriteFunctions)
registerRewriteFunction(it.first(), std::move(it.second));
// Steal the other state if we have no patterns.
if (!pdlModule) {
pdlModule = std::move(other.pdlModule);
return;
}
// Merge the pattern operations from the other module into this one.
Block *block = pdlModule->getBody();
block->getOperations().splice(block->end(),
other.pdlModule->getBody()->getOperations());
}
//===----------------------------------------------------------------------===//
// Function Registry
void PDLPatternModule::registerConstraintFunction(
StringRef name, PDLConstraintFunction constraintFn) {
// TODO: Is it possible to diagnose when `name` is already registered to
// a function that is not equivalent to `constraintFn`?
// Allow existing mappings in the case multiple patterns depend on the same
// constraint.
constraintFunctions.try_emplace(name, std::move(constraintFn));
}
void PDLPatternModule::registerRewriteFunction(StringRef name,
PDLRewriteFunction rewriteFn) {
// TODO: Is it possible to diagnose when `name` is already registered to
// a function that is not equivalent to `rewriteFn`?
// Allow existing mappings in the case multiple patterns depend on the same
// rewrite.
rewriteFunctions.try_emplace(name, std::move(rewriteFn));
}
//===----------------------------------------------------------------------===//
// RewriterBase
//===----------------------------------------------------------------------===//
RewriterBase::~RewriterBase() {
// Out of line to provide a vtable anchor for the class.
}
/// This method replaces the uses of the results of `op` with the values in
/// `newValues` when the provided `functor` returns true for a specific use.
/// The number of values in `newValues` is required to match the number of
/// results of `op`.
void RewriterBase::replaceOpWithIf(
Operation *op, ValueRange newValues, bool *allUsesReplaced,
llvm::unique_function<bool(OpOperand &) const> functor) {
assert(op->getNumResults() == newValues.size() &&
"incorrect number of values to replace operation");
// Notify the rewriter subclass that we're about to replace this root.
notifyRootReplaced(op);
// Replace each use of the results when the functor is true.
bool replacedAllUses = true;
for (auto it : llvm::zip(op->getResults(), newValues)) {
std::get<0>(it).replaceUsesWithIf(std::get<1>(it), functor);
replacedAllUses &= std::get<0>(it).use_empty();
}
if (allUsesReplaced)
*allUsesReplaced = replacedAllUses;
}
/// This method replaces the uses of the results of `op` with the values in
/// `newValues` when a use is nested within the given `block`. The number of
/// values in `newValues` is required to match the number of results of `op`.
/// If all uses of this operation are replaced, the operation is erased.
void RewriterBase::replaceOpWithinBlock(Operation *op, ValueRange newValues,
Block *block, bool *allUsesReplaced) {
replaceOpWithIf(op, newValues, allUsesReplaced, [block](OpOperand &use) {
return block->getParentOp()->isProperAncestor(use.getOwner());
});
}
/// This method replaces the results of the operation with the specified list of
/// values. The number of provided values must match the number of results of
/// the operation.
void RewriterBase::replaceOp(Operation *op, ValueRange newValues) {
// Notify the rewriter subclass that we're about to replace this root.
notifyRootReplaced(op);
assert(op->getNumResults() == newValues.size() &&
"incorrect # of replacement values");
op->replaceAllUsesWith(newValues);
notifyOperationRemoved(op);
op->erase();
}
/// This method erases an operation that is known to have no uses. The uses of
/// the given operation *must* be known to be dead.
void RewriterBase::eraseOp(Operation *op) {
assert(op->use_empty() && "expected 'op' to have no uses");
notifyOperationRemoved(op);
op->erase();
}
void RewriterBase::eraseBlock(Block *block) {
for (auto &op : llvm::make_early_inc_range(llvm::reverse(*block))) {
assert(op.use_empty() && "expected 'op' to have no uses");
eraseOp(&op);
}
block->erase();
}
/// Merge the operations of block 'source' into the end of block 'dest'.
/// 'source's predecessors must be empty or only contain 'dest`.
/// 'argValues' is used to replace the block arguments of 'source' after
/// merging.
void RewriterBase::mergeBlocks(Block *source, Block *dest,
ValueRange argValues) {
assert(llvm::all_of(source->getPredecessors(),
[dest](Block *succ) { return succ == dest; }) &&
"expected 'source' to have no predecessors or only 'dest'");
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
// Replace all of the successor arguments with the provided values.
for (auto it : llvm::zip(source->getArguments(), argValues))
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
// Splice the operations of the 'source' block into the 'dest' block and erase
// it.
dest->getOperations().splice(dest->end(), source->getOperations());
source->dropAllUses();
source->erase();
}
// Merge the operations of block 'source' before the operation 'op'. Source
// block should not have existing predecessors or successors.
void RewriterBase::mergeBlockBefore(Block *source, Operation *op,
ValueRange argValues) {
assert(source->hasNoPredecessors() &&
"expected 'source' to have no predecessors");
assert(source->hasNoSuccessors() &&
"expected 'source' to have no successors");
// Split the block containing 'op' into two, one containing all operations
// before 'op' (prologue) and another (epilogue) containing 'op' and all
// operations after it.
Block *prologue = op->getBlock();
Block *epilogue = splitBlock(prologue, op->getIterator());
// Merge the source block at the end of the prologue.
mergeBlocks(source, prologue, argValues);
// Merge the epilogue at the end the prologue.
mergeBlocks(epilogue, prologue);
}
/// Split the operations starting at "before" (inclusive) out of the given
/// block into a new block, and return it.
Block *RewriterBase::splitBlock(Block *block, Block::iterator before) {
return block->splitBlock(before);
}
/// 'op' and 'newOp' are known to have the same number of results, replace the
/// uses of op with uses of newOp
void RewriterBase::replaceOpWithResultsOfAnotherOp(Operation *op,
Operation *newOp) {
assert(op->getNumResults() == newOp->getNumResults() &&
"replacement op doesn't match results of original op");
if (op->getNumResults() == 1)
return replaceOp(op, newOp->getResult(0));
return replaceOp(op, newOp->getResults());
}
/// Move the blocks that belong to "region" before the given position in
/// another region. The two regions must be different. The caller is in
/// charge to update create the operation transferring the control flow to the
/// region and pass it the correct block arguments.
void RewriterBase::inlineRegionBefore(Region &region, Region &parent,
Region::iterator before) {
parent.getBlocks().splice(before, region.getBlocks());
}
void RewriterBase::inlineRegionBefore(Region &region, Block *before) {
inlineRegionBefore(region, *before->getParent(), before->getIterator());
}
/// Clone the blocks that belong to "region" before the given position in
/// another region "parent". The two regions must be different. The caller is
/// responsible for creating or updating the operation transferring flow of
/// control to the region and passing it the correct block arguments.
void RewriterBase::cloneRegionBefore(Region &region, Region &parent,
Region::iterator before,
BlockAndValueMapping &mapping) {
region.cloneInto(&parent, before, mapping);
}
void RewriterBase::cloneRegionBefore(Region &region, Region &parent,
Region::iterator before) {
BlockAndValueMapping mapping;
cloneRegionBefore(region, parent, before, mapping);
}
void RewriterBase::cloneRegionBefore(Region &region, Block *before) {
cloneRegionBefore(region, *before->getParent(), before->getIterator());
}