llvm-project/mlir/lib/IR/Builders.cpp

487 lines
17 KiB
C++

//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/SymbolTable.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Locations.
//===----------------------------------------------------------------------===//
Location Builder::getUnknownLoc() { return UnknownLoc::get(context); }
Location Builder::getFusedLoc(ArrayRef<Location> locs, Attribute metadata) {
return FusedLoc::get(locs, metadata, context);
}
//===----------------------------------------------------------------------===//
// Types.
//===----------------------------------------------------------------------===//
FloatType Builder::getBF16Type() { return FloatType::getBF16(context); }
FloatType Builder::getF16Type() { return FloatType::getF16(context); }
FloatType Builder::getF32Type() { return FloatType::getF32(context); }
FloatType Builder::getF64Type() { return FloatType::getF64(context); }
FloatType Builder::getF80Type() { return FloatType::getF80(context); }
FloatType Builder::getF128Type() { return FloatType::getF128(context); }
IndexType Builder::getIndexType() { return IndexType::get(context); }
IntegerType Builder::getI1Type() { return IntegerType::get(context, 1); }
IntegerType Builder::getI8Type() { return IntegerType::get(context, 8); }
IntegerType Builder::getI32Type() { return IntegerType::get(context, 32); }
IntegerType Builder::getI64Type() { return IntegerType::get(context, 64); }
IntegerType Builder::getIntegerType(unsigned width) {
return IntegerType::get(context, width);
}
IntegerType Builder::getIntegerType(unsigned width, bool isSigned) {
return IntegerType::get(
context, width, isSigned ? IntegerType::Signed : IntegerType::Unsigned);
}
FunctionType Builder::getFunctionType(TypeRange inputs, TypeRange results) {
return FunctionType::get(context, inputs, results);
}
TupleType Builder::getTupleType(TypeRange elementTypes) {
return TupleType::get(context, elementTypes);
}
NoneType Builder::getNoneType() { return NoneType::get(context); }
//===----------------------------------------------------------------------===//
// Attributes.
//===----------------------------------------------------------------------===//
NamedAttribute Builder::getNamedAttr(StringRef name, Attribute val) {
return NamedAttribute(getStringAttr(name), val);
}
UnitAttr Builder::getUnitAttr() { return UnitAttr::get(context); }
BoolAttr Builder::getBoolAttr(bool value) {
return BoolAttr::get(context, value);
}
DictionaryAttr Builder::getDictionaryAttr(ArrayRef<NamedAttribute> value) {
return DictionaryAttr::get(context, value);
}
IntegerAttr Builder::getIndexAttr(int64_t value) {
return IntegerAttr::get(getIndexType(), APInt(64, value));
}
IntegerAttr Builder::getI64IntegerAttr(int64_t value) {
return IntegerAttr::get(getIntegerType(64), APInt(64, value));
}
DenseIntElementsAttr Builder::getBoolVectorAttr(ArrayRef<bool> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getI1Type()),
values);
}
DenseIntElementsAttr Builder::getI32VectorAttr(ArrayRef<int32_t> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(32)),
values);
}
DenseIntElementsAttr Builder::getI64VectorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(64)),
values);
}
DenseIntElementsAttr Builder::getIndexVectorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
VectorType::get(static_cast<int64_t>(values.size()), getIndexType()),
values);
}
DenseIntElementsAttr Builder::getI32TensorAttr(ArrayRef<int32_t> values) {
return DenseIntElementsAttr::get(
RankedTensorType::get(static_cast<int64_t>(values.size()),
getIntegerType(32)),
values);
}
DenseIntElementsAttr Builder::getI64TensorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
RankedTensorType::get(static_cast<int64_t>(values.size()),
getIntegerType(64)),
values);
}
DenseIntElementsAttr Builder::getIndexTensorAttr(ArrayRef<int64_t> values) {
return DenseIntElementsAttr::get(
RankedTensorType::get(static_cast<int64_t>(values.size()),
getIndexType()),
values);
}
IntegerAttr Builder::getI32IntegerAttr(int32_t value) {
return IntegerAttr::get(getIntegerType(32), APInt(32, value));
}
IntegerAttr Builder::getSI32IntegerAttr(int32_t value) {
return IntegerAttr::get(getIntegerType(32, /*isSigned=*/true),
APInt(32, value, /*isSigned=*/true));
}
IntegerAttr Builder::getUI32IntegerAttr(uint32_t value) {
return IntegerAttr::get(getIntegerType(32, /*isSigned=*/false),
APInt(32, (uint64_t)value, /*isSigned=*/false));
}
IntegerAttr Builder::getI16IntegerAttr(int16_t value) {
return IntegerAttr::get(getIntegerType(16), APInt(16, value));
}
IntegerAttr Builder::getI8IntegerAttr(int8_t value) {
return IntegerAttr::get(getIntegerType(8), APInt(8, value));
}
IntegerAttr Builder::getIntegerAttr(Type type, int64_t value) {
if (type.isIndex())
return IntegerAttr::get(type, APInt(64, value));
return IntegerAttr::get(
type, APInt(type.getIntOrFloatBitWidth(), value, type.isSignedInteger()));
}
IntegerAttr Builder::getIntegerAttr(Type type, const APInt &value) {
return IntegerAttr::get(type, value);
}
FloatAttr Builder::getF64FloatAttr(double value) {
return FloatAttr::get(getF64Type(), APFloat(value));
}
FloatAttr Builder::getF32FloatAttr(float value) {
return FloatAttr::get(getF32Type(), APFloat(value));
}
FloatAttr Builder::getF16FloatAttr(float value) {
return FloatAttr::get(getF16Type(), value);
}
FloatAttr Builder::getFloatAttr(Type type, double value) {
return FloatAttr::get(type, value);
}
FloatAttr Builder::getFloatAttr(Type type, const APFloat &value) {
return FloatAttr::get(type, value);
}
StringAttr Builder::getStringAttr(const Twine &bytes) {
return StringAttr::get(context, bytes);
}
ArrayAttr Builder::getArrayAttr(ArrayRef<Attribute> value) {
return ArrayAttr::get(context, value);
}
ArrayAttr Builder::getBoolArrayAttr(ArrayRef<bool> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](bool v) -> Attribute { return getBoolAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getI32ArrayAttr(ArrayRef<int32_t> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](int32_t v) -> Attribute { return getI32IntegerAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getI64ArrayAttr(ArrayRef<int64_t> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](int64_t v) -> Attribute { return getI64IntegerAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getIndexArrayAttr(ArrayRef<int64_t> values) {
auto attrs = llvm::to_vector<8>(
llvm::map_range(values, [this](int64_t v) -> Attribute {
return getIntegerAttr(IndexType::get(getContext()), v);
}));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getF32ArrayAttr(ArrayRef<float> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](float v) -> Attribute { return getF32FloatAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getF64ArrayAttr(ArrayRef<double> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](double v) -> Attribute { return getF64FloatAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getStrArrayAttr(ArrayRef<StringRef> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [this](StringRef v) -> Attribute { return getStringAttr(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getTypeArrayAttr(TypeRange values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [](Type v) -> Attribute { return TypeAttr::get(v); }));
return getArrayAttr(attrs);
}
ArrayAttr Builder::getAffineMapArrayAttr(ArrayRef<AffineMap> values) {
auto attrs = llvm::to_vector<8>(llvm::map_range(
values, [](AffineMap v) -> Attribute { return AffineMapAttr::get(v); }));
return getArrayAttr(attrs);
}
Attribute Builder::getZeroAttr(Type type) {
if (type.isa<FloatType>())
return getFloatAttr(type, 0.0);
if (type.isa<IndexType>())
return getIndexAttr(0);
if (auto integerType = type.dyn_cast<IntegerType>())
return getIntegerAttr(type, APInt(type.cast<IntegerType>().getWidth(), 0));
if (type.isa<RankedTensorType, VectorType>()) {
auto vtType = type.cast<ShapedType>();
auto element = getZeroAttr(vtType.getElementType());
if (!element)
return {};
return DenseElementsAttr::get(vtType, element);
}
return {};
}
//===----------------------------------------------------------------------===//
// Affine Expressions, Affine Maps, and Integer Sets.
//===----------------------------------------------------------------------===//
AffineExpr Builder::getAffineDimExpr(unsigned position) {
return mlir::getAffineDimExpr(position, context);
}
AffineExpr Builder::getAffineSymbolExpr(unsigned position) {
return mlir::getAffineSymbolExpr(position, context);
}
AffineExpr Builder::getAffineConstantExpr(int64_t constant) {
return mlir::getAffineConstantExpr(constant, context);
}
AffineMap Builder::getEmptyAffineMap() { return AffineMap::get(context); }
AffineMap Builder::getConstantAffineMap(int64_t val) {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
getAffineConstantExpr(val));
}
AffineMap Builder::getDimIdentityMap() {
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, getAffineDimExpr(0));
}
AffineMap Builder::getMultiDimIdentityMap(unsigned rank) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(rank);
for (unsigned i = 0; i < rank; ++i)
dimExprs.push_back(getAffineDimExpr(i));
return AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, dimExprs,
context);
}
AffineMap Builder::getSymbolIdentityMap() {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1,
getAffineSymbolExpr(0));
}
AffineMap Builder::getSingleDimShiftAffineMap(int64_t shift) {
// expr = d0 + shift.
auto expr = getAffineDimExpr(0) + shift;
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
}
AffineMap Builder::getShiftedAffineMap(AffineMap map, int64_t shift) {
SmallVector<AffineExpr, 4> shiftedResults;
shiftedResults.reserve(map.getNumResults());
for (auto resultExpr : map.getResults())
shiftedResults.push_back(resultExpr + shift);
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), shiftedResults,
context);
}
//===----------------------------------------------------------------------===//
// OpBuilder
//===----------------------------------------------------------------------===//
OpBuilder::Listener::~Listener() = default;
/// Insert the given operation at the current insertion point and return it.
Operation *OpBuilder::insert(Operation *op) {
if (block)
block->getOperations().insert(insertPoint, op);
if (listener)
listener->notifyOperationInserted(op);
return op;
}
Block *OpBuilder::createBlock(Region *parent, Region::iterator insertPt,
TypeRange argTypes, ArrayRef<Location> locs) {
assert(parent && "expected valid parent region");
assert(argTypes.size() == locs.size() && "argument location mismatch");
if (insertPt == Region::iterator())
insertPt = parent->end();
Block *b = new Block();
b->addArguments(argTypes, locs);
parent->getBlocks().insert(insertPt, b);
setInsertionPointToEnd(b);
if (listener)
listener->notifyBlockCreated(b);
return b;
}
/// Add new block with 'argTypes' arguments and set the insertion point to the
/// end of it. The block is placed before 'insertBefore'.
Block *OpBuilder::createBlock(Block *insertBefore, TypeRange argTypes,
ArrayRef<Location> locs) {
assert(insertBefore && "expected valid insertion block");
return createBlock(insertBefore->getParent(), Region::iterator(insertBefore),
argTypes, locs);
}
/// Create an operation given the fields represented as an OperationState.
Operation *OpBuilder::create(const OperationState &state) {
return insert(Operation::create(state));
}
/// Creates an operation with the given fields.
Operation *OpBuilder::create(Location loc, StringAttr opName,
ValueRange operands, TypeRange types,
ArrayRef<NamedAttribute> attributes,
BlockRange successors,
MutableArrayRef<std::unique_ptr<Region>> regions) {
OperationState state(loc, opName, operands, types, attributes, successors,
regions);
return create(state);
}
/// Attempts to fold the given operation and places new results within
/// 'results'. Returns success if the operation was folded, failure otherwise.
/// Note: This function does not erase the operation on a successful fold.
LogicalResult OpBuilder::tryFold(Operation *op,
SmallVectorImpl<Value> &results) {
ResultRange opResults = op->getResults();
results.reserve(opResults.size());
auto cleanupFailure = [&] {
results.assign(opResults.begin(), opResults.end());
return failure();
};
// If this operation is already a constant, there is nothing to do.
if (matchPattern(op, m_Constant()))
return cleanupFailure();
// Check to see if any operands to the operation is constant and whether
// the operation knows how to constant fold itself.
SmallVector<Attribute, 4> constOperands(op->getNumOperands());
for (unsigned i = 0, e = constOperands.size(); i != e; ++i)
matchPattern(op->getOperand(i), m_Constant(&constOperands[i]));
// Try to fold the operation.
SmallVector<OpFoldResult, 4> foldResults;
if (failed(op->fold(constOperands, foldResults)) || foldResults.empty())
return cleanupFailure();
// A temporary builder used for creating constants during folding.
OpBuilder cstBuilder(context);
SmallVector<Operation *, 1> generatedConstants;
// Populate the results with the folded results.
Dialect *dialect = op->getDialect();
for (auto it : llvm::zip(foldResults, opResults.getTypes())) {
Type expectedType = std::get<1>(it);
// Normal values get pushed back directly.
if (auto value = std::get<0>(it).dyn_cast<Value>()) {
if (value.getType() != expectedType)
return cleanupFailure();
results.push_back(value);
continue;
}
// Otherwise, try to materialize a constant operation.
if (!dialect)
return cleanupFailure();
// Ask the dialect to materialize a constant operation for this value.
Attribute attr = std::get<0>(it).get<Attribute>();
auto *constOp = dialect->materializeConstant(cstBuilder, attr, expectedType,
op->getLoc());
if (!constOp) {
// Erase any generated constants.
for (Operation *cst : generatedConstants)
cst->erase();
return cleanupFailure();
}
assert(matchPattern(constOp, m_Constant()));
generatedConstants.push_back(constOp);
results.push_back(constOp->getResult(0));
}
// If we were successful, insert any generated constants.
for (Operation *cst : generatedConstants)
insert(cst);
return success();
}
Operation *OpBuilder::clone(Operation &op, BlockAndValueMapping &mapper) {
Operation *newOp = op.clone(mapper);
// The `insert` call below handles the notification for inserting `newOp`
// itself. But if `newOp` has any regions, we need to notify the listener
// about any ops that got inserted inside those regions as part of cloning.
if (listener) {
auto walkFn = [&](Operation *walkedOp) {
listener->notifyOperationInserted(walkedOp);
};
for (Region &region : newOp->getRegions())
region.walk(walkFn);
}
return insert(newOp);
}
Operation *OpBuilder::clone(Operation &op) {
BlockAndValueMapping mapper;
return clone(op, mapper);
}