Go to file
Jonas Paulsson 0f8c626723 [BuildLibCalls] Introduce getOrInsertLibFunc() for use when building libcalls.
A new set of overloaded functions named getOrInsertLibFunc() are now supposed
to be used instead of getOrInsertFunction() when building a libcall from
within an LLVM optimizer(). The idea is that this new function also makes
sure that any mandatory argument attributes are added to the function
prototype (after calling getOrInsertFunction()).

inferLibFuncAttributes() is renamed to inferNonMandatoryLibFuncAttrs() as it
only adds attributes that are not necessary for correctness but merely
helping with later optimizations.

Generally, the front end is responsible for building a correct function
prototype with the needed argument attributes. If the middle end however is
the one creating the call, e.g. when replacing one libcall with another, it
then must take this responsibility.

This continues the work of properly handling argument extension if required
by the target ABI when building a lib call. getOrInsertLibFunc() now does
this for all libcalls currently built by any LLVM optimizer. It is expected
that when in the future a new optimization builds a new libcall with an
integer argument it is to be added to getOrInsertLibFunc() with the proper
handling. Note that not all targets have it in their ABI to sign/zero extend
integer arguments to the full register width, but this will be done
selectively as determined by getExtAttrForI32Param().

Review: Eli Friedman, Nikita Popov, Dávid Bolvanský

Differential Revision: https://reviews.llvm.org/D123198
2022-04-19 21:22:07 +02:00
.github Disable Mailgun click tracking 2022-02-24 19:03:43 +03:00
bolt [BOLT] Check if LLVM_REVISION is defined 2022-04-15 06:33:14 -07:00
clang [CUDA][HIP] Fix delete operator for -fopenmp 2022-04-19 14:28:03 -04:00
clang-tools-extra [clangd] Dont include version string in update tasks 2022-04-19 19:27:04 +02:00
cmake [cmake] Demote fatal error to a warning when we don't know the Apple SDK in use 2022-03-22 15:36:47 -04:00
compiler-rt [ASan] Removed checks if the tested functions were emitted. 2022-04-19 19:20:52 +00:00
cross-project-tests [Dexter] Collate penalties of the same type into a single line for each 2022-04-11 17:01:40 +01:00
flang [mlir:NFC] Remove the forward declaration of FuncOp in the mlir namespace 2022-04-18 12:01:55 -07:00
libc [libc][docs] Remove the description of a "www" directory. 2022-04-18 07:16:21 +00:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libc++][NFC] Reindent `take_view` in accordance with the style guide. 2022-04-18 20:54:50 -07:00
libcxxabi [demangler] Support C23 _BitInt type 2022-04-08 12:20:45 +08:00
libunwind [libunwind][AIX] implementation of the unwinder for AIX 2022-04-13 13:18:10 -04:00
lld Force GHashCell to be 8-byte-aligned. 2022-04-18 08:46:03 -07:00
lldb [lldb] Handle empty search string in "memory find" 2022-04-19 09:19:38 +00:00
llvm [BuildLibCalls] Introduce getOrInsertLibFunc() for use when building libcalls. 2022-04-19 21:22:07 +02:00
llvm-libgcc [llvm-libgcc] initial commit 2022-02-16 17:06:45 +00:00
mlir Print custom assembly on pass failure by default 2022-04-19 17:29:08 +00:00
openmp [Libomptarget] Fix test using old unsupported lit string 2022-04-18 23:08:12 -04:00
polly [PPCGCodeGeneration] Look for function instead of function pointer type 2022-04-19 17:59:34 +02:00
pstl Bump the trunk major version to 15 2022-02-01 23:54:52 -08:00
runtimes [runtimes] Detect changes to Tests.cmake 2022-03-18 10:01:52 -07:00
test Remove folder introduced by incorrect patch level 2022-04-14 16:59:56 -07:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [mlir] Refactor LICM into a utility 2022-04-16 00:37:07 +00:00
.arcconfig Add modern arc config for default "onto" branch 2021-02-22 11:58:13 -08:00
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy [clangd] Cleanup of readability-identifier-naming 2022-02-01 13:31:52 +00:00
.git-blame-ignore-revs [lldb] Add 9494c510af to .git-blame-ignore-revs 2021-06-10 09:29:59 -07:00
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.