forked from OSchip/llvm-project
4384 lines
160 KiB
C++
4384 lines
160 KiB
C++
//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Decl subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_DECL_H
|
|
#define LLVM_CLANG_AST_DECL_H
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContextAllocate.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/ExternalASTSource.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/Redeclarable.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Basic/AddressSpaces.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/Linkage.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/PragmaKinds.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/Visibility.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/TrailingObjects.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
namespace clang {
|
|
|
|
class ASTContext;
|
|
struct ASTTemplateArgumentListInfo;
|
|
class Attr;
|
|
class CompoundStmt;
|
|
class DependentFunctionTemplateSpecializationInfo;
|
|
class EnumDecl;
|
|
class Expr;
|
|
class FunctionTemplateDecl;
|
|
class FunctionTemplateSpecializationInfo;
|
|
class LabelStmt;
|
|
class MemberSpecializationInfo;
|
|
class Module;
|
|
class NamespaceDecl;
|
|
class ParmVarDecl;
|
|
class RecordDecl;
|
|
class Stmt;
|
|
class StringLiteral;
|
|
class TagDecl;
|
|
class TemplateArgumentList;
|
|
class TemplateArgumentListInfo;
|
|
class TemplateParameterList;
|
|
class TypeAliasTemplateDecl;
|
|
class TypeLoc;
|
|
class UnresolvedSetImpl;
|
|
class VarTemplateDecl;
|
|
|
|
/// A container of type source information.
|
|
///
|
|
/// A client can read the relevant info using TypeLoc wrappers, e.g:
|
|
/// @code
|
|
/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
|
|
/// TL.getBeginLoc().print(OS, SrcMgr);
|
|
/// @endcode
|
|
class alignas(8) TypeSourceInfo {
|
|
// Contains a memory block after the class, used for type source information,
|
|
// allocated by ASTContext.
|
|
friend class ASTContext;
|
|
|
|
QualType Ty;
|
|
|
|
TypeSourceInfo(QualType ty) : Ty(ty) {}
|
|
|
|
public:
|
|
/// Return the type wrapped by this type source info.
|
|
QualType getType() const { return Ty; }
|
|
|
|
/// Return the TypeLoc wrapper for the type source info.
|
|
TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
|
|
|
|
/// Override the type stored in this TypeSourceInfo. Use with caution!
|
|
void overrideType(QualType T) { Ty = T; }
|
|
};
|
|
|
|
/// The top declaration context.
|
|
class TranslationUnitDecl : public Decl, public DeclContext {
|
|
ASTContext &Ctx;
|
|
|
|
/// The (most recently entered) anonymous namespace for this
|
|
/// translation unit, if one has been created.
|
|
NamespaceDecl *AnonymousNamespace = nullptr;
|
|
|
|
explicit TranslationUnitDecl(ASTContext &ctx);
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
ASTContext &getASTContext() const { return Ctx; }
|
|
|
|
NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
|
|
void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
|
|
|
|
static TranslationUnitDecl *Create(ASTContext &C);
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == TranslationUnit; }
|
|
static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
|
|
}
|
|
static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// Represents a `#pragma comment` line. Always a child of
|
|
/// TranslationUnitDecl.
|
|
class PragmaCommentDecl final
|
|
: public Decl,
|
|
private llvm::TrailingObjects<PragmaCommentDecl, char> {
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
friend TrailingObjects;
|
|
|
|
PragmaMSCommentKind CommentKind;
|
|
|
|
PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
|
|
PragmaMSCommentKind CommentKind)
|
|
: Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
|
|
SourceLocation CommentLoc,
|
|
PragmaMSCommentKind CommentKind,
|
|
StringRef Arg);
|
|
static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned ArgSize);
|
|
|
|
PragmaMSCommentKind getCommentKind() const { return CommentKind; }
|
|
|
|
StringRef getArg() const { return getTrailingObjects<char>(); }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == PragmaComment; }
|
|
};
|
|
|
|
/// Represents a `#pragma detect_mismatch` line. Always a child of
|
|
/// TranslationUnitDecl.
|
|
class PragmaDetectMismatchDecl final
|
|
: public Decl,
|
|
private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
friend TrailingObjects;
|
|
|
|
size_t ValueStart;
|
|
|
|
PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
|
|
size_t ValueStart)
|
|
: Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
static PragmaDetectMismatchDecl *Create(const ASTContext &C,
|
|
TranslationUnitDecl *DC,
|
|
SourceLocation Loc, StringRef Name,
|
|
StringRef Value);
|
|
static PragmaDetectMismatchDecl *
|
|
CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
|
|
|
|
StringRef getName() const { return getTrailingObjects<char>(); }
|
|
StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
|
|
};
|
|
|
|
/// Declaration context for names declared as extern "C" in C++. This
|
|
/// is neither the semantic nor lexical context for such declarations, but is
|
|
/// used to check for conflicts with other extern "C" declarations. Example:
|
|
///
|
|
/// \code
|
|
/// namespace N { extern "C" void f(); } // #1
|
|
/// void N::f() {} // #2
|
|
/// namespace M { extern "C" void f(); } // #3
|
|
/// \endcode
|
|
///
|
|
/// The semantic context of #1 is namespace N and its lexical context is the
|
|
/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
|
|
/// context is the TU. However, both declarations are also visible in the
|
|
/// extern "C" context.
|
|
///
|
|
/// The declaration at #3 finds it is a redeclaration of \c N::f through
|
|
/// lookup in the extern "C" context.
|
|
class ExternCContextDecl : public Decl, public DeclContext {
|
|
explicit ExternCContextDecl(TranslationUnitDecl *TU)
|
|
: Decl(ExternCContext, TU, SourceLocation()),
|
|
DeclContext(ExternCContext) {}
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
static ExternCContextDecl *Create(const ASTContext &C,
|
|
TranslationUnitDecl *TU);
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == ExternCContext; }
|
|
static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
|
|
}
|
|
static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// This represents a decl that may have a name. Many decls have names such
|
|
/// as ObjCMethodDecl, but not \@class, etc.
|
|
///
|
|
/// Note that not every NamedDecl is actually named (e.g., a struct might
|
|
/// be anonymous), and not every name is an identifier.
|
|
class NamedDecl : public Decl {
|
|
/// The name of this declaration, which is typically a normal
|
|
/// identifier but may also be a special kind of name (C++
|
|
/// constructor, Objective-C selector, etc.)
|
|
DeclarationName Name;
|
|
|
|
virtual void anchor();
|
|
|
|
private:
|
|
NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
|
|
|
|
protected:
|
|
NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
|
|
: Decl(DK, DC, L), Name(N) {}
|
|
|
|
public:
|
|
/// Get the identifier that names this declaration, if there is one.
|
|
///
|
|
/// This will return NULL if this declaration has no name (e.g., for
|
|
/// an unnamed class) or if the name is a special name (C++ constructor,
|
|
/// Objective-C selector, etc.).
|
|
IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
|
|
|
|
/// Get the name of identifier for this declaration as a StringRef.
|
|
///
|
|
/// This requires that the declaration have a name and that it be a simple
|
|
/// identifier.
|
|
StringRef getName() const {
|
|
assert(Name.isIdentifier() && "Name is not a simple identifier");
|
|
return getIdentifier() ? getIdentifier()->getName() : "";
|
|
}
|
|
|
|
/// Get a human-readable name for the declaration, even if it is one of the
|
|
/// special kinds of names (C++ constructor, Objective-C selector, etc).
|
|
///
|
|
/// Creating this name requires expensive string manipulation, so it should
|
|
/// be called only when performance doesn't matter. For simple declarations,
|
|
/// getNameAsCString() should suffice.
|
|
//
|
|
// FIXME: This function should be renamed to indicate that it is not just an
|
|
// alternate form of getName(), and clients should move as appropriate.
|
|
//
|
|
// FIXME: Deprecated, move clients to getName().
|
|
std::string getNameAsString() const { return Name.getAsString(); }
|
|
|
|
virtual void printName(raw_ostream &os) const;
|
|
|
|
/// Get the actual, stored name of the declaration, which may be a special
|
|
/// name.
|
|
DeclarationName getDeclName() const { return Name; }
|
|
|
|
/// Set the name of this declaration.
|
|
void setDeclName(DeclarationName N) { Name = N; }
|
|
|
|
/// Returns a human-readable qualified name for this declaration, like
|
|
/// A::B::i, for i being member of namespace A::B.
|
|
///
|
|
/// If the declaration is not a member of context which can be named (record,
|
|
/// namespace), it will return the same result as printName().
|
|
///
|
|
/// Creating this name is expensive, so it should be called only when
|
|
/// performance doesn't matter.
|
|
void printQualifiedName(raw_ostream &OS) const;
|
|
void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
|
|
|
|
// FIXME: Remove string version.
|
|
std::string getQualifiedNameAsString() const;
|
|
|
|
/// Appends a human-readable name for this declaration into the given stream.
|
|
///
|
|
/// This is the method invoked by Sema when displaying a NamedDecl
|
|
/// in a diagnostic. It does not necessarily produce the same
|
|
/// result as printName(); for example, class template
|
|
/// specializations are printed with their template arguments.
|
|
virtual void getNameForDiagnostic(raw_ostream &OS,
|
|
const PrintingPolicy &Policy,
|
|
bool Qualified) const;
|
|
|
|
/// Determine whether this declaration, if known to be well-formed within
|
|
/// its context, will replace the declaration OldD if introduced into scope.
|
|
///
|
|
/// A declaration will replace another declaration if, for example, it is
|
|
/// a redeclaration of the same variable or function, but not if it is a
|
|
/// declaration of a different kind (function vs. class) or an overloaded
|
|
/// function.
|
|
///
|
|
/// \param IsKnownNewer \c true if this declaration is known to be newer
|
|
/// than \p OldD (for instance, if this declaration is newly-created).
|
|
bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
|
|
|
|
/// Determine whether this declaration has linkage.
|
|
bool hasLinkage() const;
|
|
|
|
using Decl::isModulePrivate;
|
|
using Decl::setModulePrivate;
|
|
|
|
/// Determine whether this declaration is a C++ class member.
|
|
bool isCXXClassMember() const {
|
|
const DeclContext *DC = getDeclContext();
|
|
|
|
// C++0x [class.mem]p1:
|
|
// The enumerators of an unscoped enumeration defined in
|
|
// the class are members of the class.
|
|
if (isa<EnumDecl>(DC))
|
|
DC = DC->getRedeclContext();
|
|
|
|
return DC->isRecord();
|
|
}
|
|
|
|
/// Determine whether the given declaration is an instance member of
|
|
/// a C++ class.
|
|
bool isCXXInstanceMember() const;
|
|
|
|
/// Determine what kind of linkage this entity has.
|
|
///
|
|
/// This is not the linkage as defined by the standard or the codegen notion
|
|
/// of linkage. It is just an implementation detail that is used to compute
|
|
/// those.
|
|
Linkage getLinkageInternal() const;
|
|
|
|
/// Get the linkage from a semantic point of view. Entities in
|
|
/// anonymous namespaces are external (in c++98).
|
|
Linkage getFormalLinkage() const {
|
|
return clang::getFormalLinkage(getLinkageInternal());
|
|
}
|
|
|
|
/// True if this decl has external linkage.
|
|
bool hasExternalFormalLinkage() const {
|
|
return isExternalFormalLinkage(getLinkageInternal());
|
|
}
|
|
|
|
bool isExternallyVisible() const {
|
|
return clang::isExternallyVisible(getLinkageInternal());
|
|
}
|
|
|
|
/// Determine whether this declaration can be redeclared in a
|
|
/// different translation unit.
|
|
bool isExternallyDeclarable() const {
|
|
return isExternallyVisible() && !getOwningModuleForLinkage();
|
|
}
|
|
|
|
/// Determines the visibility of this entity.
|
|
Visibility getVisibility() const {
|
|
return getLinkageAndVisibility().getVisibility();
|
|
}
|
|
|
|
/// Determines the linkage and visibility of this entity.
|
|
LinkageInfo getLinkageAndVisibility() const;
|
|
|
|
/// Kinds of explicit visibility.
|
|
enum ExplicitVisibilityKind {
|
|
/// Do an LV computation for, ultimately, a type.
|
|
/// Visibility may be restricted by type visibility settings and
|
|
/// the visibility of template arguments.
|
|
VisibilityForType,
|
|
|
|
/// Do an LV computation for, ultimately, a non-type declaration.
|
|
/// Visibility may be restricted by value visibility settings and
|
|
/// the visibility of template arguments.
|
|
VisibilityForValue
|
|
};
|
|
|
|
/// If visibility was explicitly specified for this
|
|
/// declaration, return that visibility.
|
|
Optional<Visibility>
|
|
getExplicitVisibility(ExplicitVisibilityKind kind) const;
|
|
|
|
/// True if the computed linkage is valid. Used for consistency
|
|
/// checking. Should always return true.
|
|
bool isLinkageValid() const;
|
|
|
|
/// True if something has required us to compute the linkage
|
|
/// of this declaration.
|
|
///
|
|
/// Language features which can retroactively change linkage (like a
|
|
/// typedef name for linkage purposes) may need to consider this,
|
|
/// but hopefully only in transitory ways during parsing.
|
|
bool hasLinkageBeenComputed() const {
|
|
return hasCachedLinkage();
|
|
}
|
|
|
|
/// Looks through UsingDecls and ObjCCompatibleAliasDecls for
|
|
/// the underlying named decl.
|
|
NamedDecl *getUnderlyingDecl() {
|
|
// Fast-path the common case.
|
|
if (this->getKind() != UsingShadow &&
|
|
this->getKind() != ConstructorUsingShadow &&
|
|
this->getKind() != ObjCCompatibleAlias &&
|
|
this->getKind() != NamespaceAlias)
|
|
return this;
|
|
|
|
return getUnderlyingDeclImpl();
|
|
}
|
|
const NamedDecl *getUnderlyingDecl() const {
|
|
return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
|
|
}
|
|
|
|
NamedDecl *getMostRecentDecl() {
|
|
return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
|
|
}
|
|
const NamedDecl *getMostRecentDecl() const {
|
|
return const_cast<NamedDecl*>(this)->getMostRecentDecl();
|
|
}
|
|
|
|
ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
|
|
ND.printName(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// Represents the declaration of a label. Labels also have a
|
|
/// corresponding LabelStmt, which indicates the position that the label was
|
|
/// defined at. For normal labels, the location of the decl is the same as the
|
|
/// location of the statement. For GNU local labels (__label__), the decl
|
|
/// location is where the __label__ is.
|
|
class LabelDecl : public NamedDecl {
|
|
LabelStmt *TheStmt;
|
|
StringRef MSAsmName;
|
|
bool MSAsmNameResolved = false;
|
|
|
|
/// For normal labels, this is the same as the main declaration
|
|
/// label, i.e., the location of the identifier; for GNU local labels,
|
|
/// this is the location of the __label__ keyword.
|
|
SourceLocation LocStart;
|
|
|
|
LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
|
|
LabelStmt *S, SourceLocation StartL)
|
|
: NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
|
|
|
|
void anchor() override;
|
|
|
|
public:
|
|
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdentL, IdentifierInfo *II);
|
|
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdentL, IdentifierInfo *II,
|
|
SourceLocation GnuLabelL);
|
|
static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
LabelStmt *getStmt() const { return TheStmt; }
|
|
void setStmt(LabelStmt *T) { TheStmt = T; }
|
|
|
|
bool isGnuLocal() const { return LocStart != getLocation(); }
|
|
void setLocStart(SourceLocation L) { LocStart = L; }
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(LocStart, getLocation());
|
|
}
|
|
|
|
bool isMSAsmLabel() const { return !MSAsmName.empty(); }
|
|
bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
|
|
void setMSAsmLabel(StringRef Name);
|
|
StringRef getMSAsmLabel() const { return MSAsmName; }
|
|
void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Label; }
|
|
};
|
|
|
|
/// Represent a C++ namespace.
|
|
class NamespaceDecl : public NamedDecl, public DeclContext,
|
|
public Redeclarable<NamespaceDecl>
|
|
{
|
|
/// The starting location of the source range, pointing
|
|
/// to either the namespace or the inline keyword.
|
|
SourceLocation LocStart;
|
|
|
|
/// The ending location of the source range.
|
|
SourceLocation RBraceLoc;
|
|
|
|
/// A pointer to either the anonymous namespace that lives just inside
|
|
/// this namespace or to the first namespace in the chain (the latter case
|
|
/// only when this is not the first in the chain), along with a
|
|
/// boolean value indicating whether this is an inline namespace.
|
|
llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
|
|
|
|
NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, NamespaceDecl *PrevDecl);
|
|
|
|
using redeclarable_base = Redeclarable<NamespaceDecl>;
|
|
|
|
NamespaceDecl *getNextRedeclarationImpl() override;
|
|
NamespaceDecl *getPreviousDeclImpl() override;
|
|
NamespaceDecl *getMostRecentDeclImpl() override;
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
|
|
static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
|
|
bool Inline, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
NamespaceDecl *PrevDecl);
|
|
|
|
static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
using redecl_range = redeclarable_base::redecl_range;
|
|
using redecl_iterator = redeclarable_base::redecl_iterator;
|
|
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
using redeclarable_base::isFirstDecl;
|
|
|
|
/// Returns true if this is an anonymous namespace declaration.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// namespace {
|
|
/// ...
|
|
/// };
|
|
/// \endcode
|
|
/// q.v. C++ [namespace.unnamed]
|
|
bool isAnonymousNamespace() const {
|
|
return !getIdentifier();
|
|
}
|
|
|
|
/// Returns true if this is an inline namespace declaration.
|
|
bool isInline() const {
|
|
return AnonOrFirstNamespaceAndInline.getInt();
|
|
}
|
|
|
|
/// Set whether this is an inline namespace declaration.
|
|
void setInline(bool Inline) {
|
|
AnonOrFirstNamespaceAndInline.setInt(Inline);
|
|
}
|
|
|
|
/// Get the original (first) namespace declaration.
|
|
NamespaceDecl *getOriginalNamespace();
|
|
|
|
/// Get the original (first) namespace declaration.
|
|
const NamespaceDecl *getOriginalNamespace() const;
|
|
|
|
/// Return true if this declaration is an original (first) declaration
|
|
/// of the namespace. This is false for non-original (subsequent) namespace
|
|
/// declarations and anonymous namespaces.
|
|
bool isOriginalNamespace() const;
|
|
|
|
/// Retrieve the anonymous namespace nested inside this namespace,
|
|
/// if any.
|
|
NamespaceDecl *getAnonymousNamespace() const {
|
|
return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
|
|
}
|
|
|
|
void setAnonymousNamespace(NamespaceDecl *D) {
|
|
getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
|
|
}
|
|
|
|
/// Retrieves the canonical declaration of this namespace.
|
|
NamespaceDecl *getCanonicalDecl() override {
|
|
return getOriginalNamespace();
|
|
}
|
|
const NamespaceDecl *getCanonicalDecl() const {
|
|
return getOriginalNamespace();
|
|
}
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(LocStart, RBraceLoc);
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
|
|
SourceLocation getRBraceLoc() const { return RBraceLoc; }
|
|
void setLocStart(SourceLocation L) { LocStart = L; }
|
|
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Namespace; }
|
|
static DeclContext *castToDeclContext(const NamespaceDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
|
|
}
|
|
static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// Represent the declaration of a variable (in which case it is
|
|
/// an lvalue) a function (in which case it is a function designator) or
|
|
/// an enum constant.
|
|
class ValueDecl : public NamedDecl {
|
|
QualType DeclType;
|
|
|
|
void anchor() override;
|
|
|
|
protected:
|
|
ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
|
|
DeclarationName N, QualType T)
|
|
: NamedDecl(DK, DC, L, N), DeclType(T) {}
|
|
|
|
public:
|
|
QualType getType() const { return DeclType; }
|
|
void setType(QualType newType) { DeclType = newType; }
|
|
|
|
/// Determine whether this symbol is weakly-imported,
|
|
/// or declared with the weak or weak-ref attr.
|
|
bool isWeak() const;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
|
|
};
|
|
|
|
/// A struct with extended info about a syntactic
|
|
/// name qualifier, to be used for the case of out-of-line declarations.
|
|
struct QualifierInfo {
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// The number of "outer" template parameter lists.
|
|
/// The count includes all of the template parameter lists that were matched
|
|
/// against the template-ids occurring into the NNS and possibly (in the
|
|
/// case of an explicit specialization) a final "template <>".
|
|
unsigned NumTemplParamLists = 0;
|
|
|
|
/// A new-allocated array of size NumTemplParamLists,
|
|
/// containing pointers to the "outer" template parameter lists.
|
|
/// It includes all of the template parameter lists that were matched
|
|
/// against the template-ids occurring into the NNS and possibly (in the
|
|
/// case of an explicit specialization) a final "template <>".
|
|
TemplateParameterList** TemplParamLists = nullptr;
|
|
|
|
QualifierInfo() = default;
|
|
QualifierInfo(const QualifierInfo &) = delete;
|
|
QualifierInfo& operator=(const QualifierInfo &) = delete;
|
|
|
|
/// Sets info about "outer" template parameter lists.
|
|
void setTemplateParameterListsInfo(ASTContext &Context,
|
|
ArrayRef<TemplateParameterList *> TPLists);
|
|
};
|
|
|
|
/// Represents a ValueDecl that came out of a declarator.
|
|
/// Contains type source information through TypeSourceInfo.
|
|
class DeclaratorDecl : public ValueDecl {
|
|
// A struct representing both a TInfo and a syntactic qualifier,
|
|
// to be used for the (uncommon) case of out-of-line declarations.
|
|
struct ExtInfo : public QualifierInfo {
|
|
TypeSourceInfo *TInfo;
|
|
};
|
|
|
|
llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
|
|
|
|
/// The start of the source range for this declaration,
|
|
/// ignoring outer template declarations.
|
|
SourceLocation InnerLocStart;
|
|
|
|
bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
|
|
ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
|
|
const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
|
|
|
|
protected:
|
|
DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
|
|
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
|
|
SourceLocation StartL)
|
|
: ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
|
|
TypeSourceInfo *getTypeSourceInfo() const {
|
|
return hasExtInfo()
|
|
? getExtInfo()->TInfo
|
|
: DeclInfo.get<TypeSourceInfo*>();
|
|
}
|
|
|
|
void setTypeSourceInfo(TypeSourceInfo *TI) {
|
|
if (hasExtInfo())
|
|
getExtInfo()->TInfo = TI;
|
|
else
|
|
DeclInfo = TI;
|
|
}
|
|
|
|
/// Return start of source range ignoring outer template declarations.
|
|
SourceLocation getInnerLocStart() const { return InnerLocStart; }
|
|
void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
|
|
|
|
/// Return start of source range taking into account any outer template
|
|
/// declarations.
|
|
SourceLocation getOuterLocStart() const;
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return getOuterLocStart();
|
|
}
|
|
|
|
/// Retrieve the nested-name-specifier that qualifies the name of this
|
|
/// declaration, if it was present in the source.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
|
|
: nullptr;
|
|
}
|
|
|
|
/// Retrieve the nested-name-specifier (with source-location
|
|
/// information) that qualifies the name of this declaration, if it was
|
|
/// present in the source.
|
|
NestedNameSpecifierLoc getQualifierLoc() const {
|
|
return hasExtInfo() ? getExtInfo()->QualifierLoc
|
|
: NestedNameSpecifierLoc();
|
|
}
|
|
|
|
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
|
|
|
|
unsigned getNumTemplateParameterLists() const {
|
|
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
|
|
}
|
|
|
|
TemplateParameterList *getTemplateParameterList(unsigned index) const {
|
|
assert(index < getNumTemplateParameterLists());
|
|
return getExtInfo()->TemplParamLists[index];
|
|
}
|
|
|
|
void setTemplateParameterListsInfo(ASTContext &Context,
|
|
ArrayRef<TemplateParameterList *> TPLists);
|
|
|
|
SourceLocation getTypeSpecStartLoc() const;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K >= firstDeclarator && K <= lastDeclarator;
|
|
}
|
|
};
|
|
|
|
/// Structure used to store a statement, the constant value to
|
|
/// which it was evaluated (if any), and whether or not the statement
|
|
/// is an integral constant expression (if known).
|
|
struct EvaluatedStmt {
|
|
/// Whether this statement was already evaluated.
|
|
bool WasEvaluated : 1;
|
|
|
|
/// Whether this statement is being evaluated.
|
|
bool IsEvaluating : 1;
|
|
|
|
/// Whether we already checked whether this statement was an
|
|
/// integral constant expression.
|
|
bool CheckedICE : 1;
|
|
|
|
/// Whether we are checking whether this statement is an
|
|
/// integral constant expression.
|
|
bool CheckingICE : 1;
|
|
|
|
/// Whether this statement is an integral constant expression,
|
|
/// or in C++11, whether the statement is a constant expression. Only
|
|
/// valid if CheckedICE is true.
|
|
bool IsICE : 1;
|
|
|
|
Stmt *Value;
|
|
APValue Evaluated;
|
|
|
|
EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
|
|
CheckingICE(false), IsICE(false) {}
|
|
|
|
};
|
|
|
|
/// Represents a variable declaration or definition.
|
|
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
|
|
public:
|
|
/// Initialization styles.
|
|
enum InitializationStyle {
|
|
/// C-style initialization with assignment
|
|
CInit,
|
|
|
|
/// Call-style initialization (C++98)
|
|
CallInit,
|
|
|
|
/// Direct list-initialization (C++11)
|
|
ListInit
|
|
};
|
|
|
|
/// Kinds of thread-local storage.
|
|
enum TLSKind {
|
|
/// Not a TLS variable.
|
|
TLS_None,
|
|
|
|
/// TLS with a known-constant initializer.
|
|
TLS_Static,
|
|
|
|
/// TLS with a dynamic initializer.
|
|
TLS_Dynamic
|
|
};
|
|
|
|
/// Return the string used to specify the storage class \p SC.
|
|
///
|
|
/// It is illegal to call this function with SC == None.
|
|
static const char *getStorageClassSpecifierString(StorageClass SC);
|
|
|
|
protected:
|
|
// A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
|
|
// have allocated the auxiliary struct of information there.
|
|
//
|
|
// TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
|
|
// this as *many* VarDecls are ParmVarDecls that don't have default
|
|
// arguments. We could save some space by moving this pointer union to be
|
|
// allocated in trailing space when necessary.
|
|
using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
|
|
|
|
/// The initializer for this variable or, for a ParmVarDecl, the
|
|
/// C++ default argument.
|
|
mutable InitType Init;
|
|
|
|
private:
|
|
friend class ASTDeclReader;
|
|
friend class ASTNodeImporter;
|
|
friend class StmtIteratorBase;
|
|
|
|
class VarDeclBitfields {
|
|
friend class ASTDeclReader;
|
|
friend class VarDecl;
|
|
|
|
unsigned SClass : 3;
|
|
unsigned TSCSpec : 2;
|
|
unsigned InitStyle : 2;
|
|
|
|
/// Whether this variable is an ARC pseudo-__strong variable; see
|
|
/// isARCPseudoStrong() for details.
|
|
unsigned ARCPseudoStrong : 1;
|
|
};
|
|
enum { NumVarDeclBits = 8 };
|
|
|
|
protected:
|
|
enum { NumParameterIndexBits = 8 };
|
|
|
|
enum DefaultArgKind {
|
|
DAK_None,
|
|
DAK_Unparsed,
|
|
DAK_Uninstantiated,
|
|
DAK_Normal
|
|
};
|
|
|
|
class ParmVarDeclBitfields {
|
|
friend class ASTDeclReader;
|
|
friend class ParmVarDecl;
|
|
|
|
unsigned : NumVarDeclBits;
|
|
|
|
/// Whether this parameter inherits a default argument from a
|
|
/// prior declaration.
|
|
unsigned HasInheritedDefaultArg : 1;
|
|
|
|
/// Describes the kind of default argument for this parameter. By default
|
|
/// this is none. If this is normal, then the default argument is stored in
|
|
/// the \c VarDecl initializer expression unless we were unable to parse
|
|
/// (even an invalid) expression for the default argument.
|
|
unsigned DefaultArgKind : 2;
|
|
|
|
/// Whether this parameter undergoes K&R argument promotion.
|
|
unsigned IsKNRPromoted : 1;
|
|
|
|
/// Whether this parameter is an ObjC method parameter or not.
|
|
unsigned IsObjCMethodParam : 1;
|
|
|
|
/// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
|
|
/// Otherwise, the number of function parameter scopes enclosing
|
|
/// the function parameter scope in which this parameter was
|
|
/// declared.
|
|
unsigned ScopeDepthOrObjCQuals : 7;
|
|
|
|
/// The number of parameters preceding this parameter in the
|
|
/// function parameter scope in which it was declared.
|
|
unsigned ParameterIndex : NumParameterIndexBits;
|
|
};
|
|
|
|
class NonParmVarDeclBitfields {
|
|
friend class ASTDeclReader;
|
|
friend class ImplicitParamDecl;
|
|
friend class VarDecl;
|
|
|
|
unsigned : NumVarDeclBits;
|
|
|
|
// FIXME: We need something similar to CXXRecordDecl::DefinitionData.
|
|
/// Whether this variable is a definition which was demoted due to
|
|
/// module merge.
|
|
unsigned IsThisDeclarationADemotedDefinition : 1;
|
|
|
|
/// Whether this variable is the exception variable in a C++ catch
|
|
/// or an Objective-C @catch statement.
|
|
unsigned ExceptionVar : 1;
|
|
|
|
/// Whether this local variable could be allocated in the return
|
|
/// slot of its function, enabling the named return value optimization
|
|
/// (NRVO).
|
|
unsigned NRVOVariable : 1;
|
|
|
|
/// Whether this variable is the for-range-declaration in a C++0x
|
|
/// for-range statement.
|
|
unsigned CXXForRangeDecl : 1;
|
|
|
|
/// Whether this variable is the for-in loop declaration in Objective-C.
|
|
unsigned ObjCForDecl : 1;
|
|
|
|
/// Whether this variable is (C++1z) inline.
|
|
unsigned IsInline : 1;
|
|
|
|
/// Whether this variable has (C++1z) inline explicitly specified.
|
|
unsigned IsInlineSpecified : 1;
|
|
|
|
/// Whether this variable is (C++0x) constexpr.
|
|
unsigned IsConstexpr : 1;
|
|
|
|
/// Whether this variable is the implicit variable for a lambda
|
|
/// init-capture.
|
|
unsigned IsInitCapture : 1;
|
|
|
|
/// Whether this local extern variable's previous declaration was
|
|
/// declared in the same block scope. This controls whether we should merge
|
|
/// the type of this declaration with its previous declaration.
|
|
unsigned PreviousDeclInSameBlockScope : 1;
|
|
|
|
/// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
|
|
/// something else.
|
|
unsigned ImplicitParamKind : 3;
|
|
|
|
unsigned EscapingByref : 1;
|
|
};
|
|
|
|
union {
|
|
unsigned AllBits;
|
|
VarDeclBitfields VarDeclBits;
|
|
ParmVarDeclBitfields ParmVarDeclBits;
|
|
NonParmVarDeclBitfields NonParmVarDeclBits;
|
|
};
|
|
|
|
VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
|
|
TypeSourceInfo *TInfo, StorageClass SC);
|
|
|
|
using redeclarable_base = Redeclarable<VarDecl>;
|
|
|
|
VarDecl *getNextRedeclarationImpl() override {
|
|
return getNextRedeclaration();
|
|
}
|
|
|
|
VarDecl *getPreviousDeclImpl() override {
|
|
return getPreviousDecl();
|
|
}
|
|
|
|
VarDecl *getMostRecentDeclImpl() override {
|
|
return getMostRecentDecl();
|
|
}
|
|
|
|
public:
|
|
using redecl_range = redeclarable_base::redecl_range;
|
|
using redecl_iterator = redeclarable_base::redecl_iterator;
|
|
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
using redeclarable_base::isFirstDecl;
|
|
|
|
static VarDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S);
|
|
|
|
static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
/// Returns the storage class as written in the source. For the
|
|
/// computed linkage of symbol, see getLinkage.
|
|
StorageClass getStorageClass() const {
|
|
return (StorageClass) VarDeclBits.SClass;
|
|
}
|
|
void setStorageClass(StorageClass SC);
|
|
|
|
void setTSCSpec(ThreadStorageClassSpecifier TSC) {
|
|
VarDeclBits.TSCSpec = TSC;
|
|
assert(VarDeclBits.TSCSpec == TSC && "truncation");
|
|
}
|
|
ThreadStorageClassSpecifier getTSCSpec() const {
|
|
return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
|
|
}
|
|
TLSKind getTLSKind() const;
|
|
|
|
/// Returns true if a variable with function scope is a non-static local
|
|
/// variable.
|
|
bool hasLocalStorage() const {
|
|
if (getStorageClass() == SC_None) {
|
|
// OpenCL v1.2 s6.5.3: The __constant or constant address space name is
|
|
// used to describe variables allocated in global memory and which are
|
|
// accessed inside a kernel(s) as read-only variables. As such, variables
|
|
// in constant address space cannot have local storage.
|
|
if (getType().getAddressSpace() == LangAS::opencl_constant)
|
|
return false;
|
|
// Second check is for C++11 [dcl.stc]p4.
|
|
return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
|
|
}
|
|
|
|
// Global Named Register (GNU extension)
|
|
if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
|
|
return false;
|
|
|
|
// Return true for: Auto, Register.
|
|
// Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
|
|
|
|
return getStorageClass() >= SC_Auto;
|
|
}
|
|
|
|
/// Returns true if a variable with function scope is a static local
|
|
/// variable.
|
|
bool isStaticLocal() const {
|
|
return (getStorageClass() == SC_Static ||
|
|
// C++11 [dcl.stc]p4
|
|
(getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
|
|
&& !isFileVarDecl();
|
|
}
|
|
|
|
/// Returns true if a variable has extern or __private_extern__
|
|
/// storage.
|
|
bool hasExternalStorage() const {
|
|
return getStorageClass() == SC_Extern ||
|
|
getStorageClass() == SC_PrivateExtern;
|
|
}
|
|
|
|
/// Returns true for all variables that do not have local storage.
|
|
///
|
|
/// This includes all global variables as well as static variables declared
|
|
/// within a function.
|
|
bool hasGlobalStorage() const { return !hasLocalStorage(); }
|
|
|
|
/// Get the storage duration of this variable, per C++ [basic.stc].
|
|
StorageDuration getStorageDuration() const {
|
|
return hasLocalStorage() ? SD_Automatic :
|
|
getTSCSpec() ? SD_Thread : SD_Static;
|
|
}
|
|
|
|
/// Compute the language linkage.
|
|
LanguageLinkage getLanguageLinkage() const;
|
|
|
|
/// Determines whether this variable is a variable with external, C linkage.
|
|
bool isExternC() const;
|
|
|
|
/// Determines whether this variable's context is, or is nested within,
|
|
/// a C++ extern "C" linkage spec.
|
|
bool isInExternCContext() const;
|
|
|
|
/// Determines whether this variable's context is, or is nested within,
|
|
/// a C++ extern "C++" linkage spec.
|
|
bool isInExternCXXContext() const;
|
|
|
|
/// Returns true for local variable declarations other than parameters.
|
|
/// Note that this includes static variables inside of functions. It also
|
|
/// includes variables inside blocks.
|
|
///
|
|
/// void foo() { int x; static int y; extern int z; }
|
|
bool isLocalVarDecl() const {
|
|
if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
|
|
return false;
|
|
if (const DeclContext *DC = getLexicalDeclContext())
|
|
return DC->getRedeclContext()->isFunctionOrMethod();
|
|
return false;
|
|
}
|
|
|
|
/// Similar to isLocalVarDecl but also includes parameters.
|
|
bool isLocalVarDeclOrParm() const {
|
|
return isLocalVarDecl() || getKind() == Decl::ParmVar;
|
|
}
|
|
|
|
/// Similar to isLocalVarDecl, but excludes variables declared in blocks.
|
|
bool isFunctionOrMethodVarDecl() const {
|
|
if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
|
|
return false;
|
|
const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
|
|
return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
|
|
}
|
|
|
|
/// Determines whether this is a static data member.
|
|
///
|
|
/// This will only be true in C++, and applies to, e.g., the
|
|
/// variable 'x' in:
|
|
/// \code
|
|
/// struct S {
|
|
/// static int x;
|
|
/// };
|
|
/// \endcode
|
|
bool isStaticDataMember() const {
|
|
// If it wasn't static, it would be a FieldDecl.
|
|
return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
|
|
}
|
|
|
|
VarDecl *getCanonicalDecl() override;
|
|
const VarDecl *getCanonicalDecl() const {
|
|
return const_cast<VarDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
enum DefinitionKind {
|
|
/// This declaration is only a declaration.
|
|
DeclarationOnly,
|
|
|
|
/// This declaration is a tentative definition.
|
|
TentativeDefinition,
|
|
|
|
/// This declaration is definitely a definition.
|
|
Definition
|
|
};
|
|
|
|
/// Check whether this declaration is a definition. If this could be
|
|
/// a tentative definition (in C), don't check whether there's an overriding
|
|
/// definition.
|
|
DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
|
|
DefinitionKind isThisDeclarationADefinition() const {
|
|
return isThisDeclarationADefinition(getASTContext());
|
|
}
|
|
|
|
/// Check whether this variable is defined in this translation unit.
|
|
DefinitionKind hasDefinition(ASTContext &) const;
|
|
DefinitionKind hasDefinition() const {
|
|
return hasDefinition(getASTContext());
|
|
}
|
|
|
|
/// Get the tentative definition that acts as the real definition in a TU.
|
|
/// Returns null if there is a proper definition available.
|
|
VarDecl *getActingDefinition();
|
|
const VarDecl *getActingDefinition() const {
|
|
return const_cast<VarDecl*>(this)->getActingDefinition();
|
|
}
|
|
|
|
/// Get the real (not just tentative) definition for this declaration.
|
|
VarDecl *getDefinition(ASTContext &);
|
|
const VarDecl *getDefinition(ASTContext &C) const {
|
|
return const_cast<VarDecl*>(this)->getDefinition(C);
|
|
}
|
|
VarDecl *getDefinition() {
|
|
return getDefinition(getASTContext());
|
|
}
|
|
const VarDecl *getDefinition() const {
|
|
return const_cast<VarDecl*>(this)->getDefinition();
|
|
}
|
|
|
|
/// Determine whether this is or was instantiated from an out-of-line
|
|
/// definition of a static data member.
|
|
bool isOutOfLine() const override;
|
|
|
|
/// Returns true for file scoped variable declaration.
|
|
bool isFileVarDecl() const {
|
|
Kind K = getKind();
|
|
if (K == ParmVar || K == ImplicitParam)
|
|
return false;
|
|
|
|
if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
|
|
return true;
|
|
|
|
if (isStaticDataMember())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Get the initializer for this variable, no matter which
|
|
/// declaration it is attached to.
|
|
const Expr *getAnyInitializer() const {
|
|
const VarDecl *D;
|
|
return getAnyInitializer(D);
|
|
}
|
|
|
|
/// Get the initializer for this variable, no matter which
|
|
/// declaration it is attached to. Also get that declaration.
|
|
const Expr *getAnyInitializer(const VarDecl *&D) const;
|
|
|
|
bool hasInit() const;
|
|
const Expr *getInit() const {
|
|
return const_cast<VarDecl *>(this)->getInit();
|
|
}
|
|
Expr *getInit();
|
|
|
|
/// Retrieve the address of the initializer expression.
|
|
Stmt **getInitAddress();
|
|
|
|
void setInit(Expr *I);
|
|
|
|
/// Determine whether this variable's value might be usable in a
|
|
/// constant expression, according to the relevant language standard.
|
|
/// This only checks properties of the declaration, and does not check
|
|
/// whether the initializer is in fact a constant expression.
|
|
bool mightBeUsableInConstantExpressions(ASTContext &C) const;
|
|
|
|
/// Determine whether this variable's value can be used in a
|
|
/// constant expression, according to the relevant language standard,
|
|
/// including checking whether it was initialized by a constant expression.
|
|
bool isUsableInConstantExpressions(ASTContext &C) const;
|
|
|
|
EvaluatedStmt *ensureEvaluatedStmt() const;
|
|
|
|
/// Attempt to evaluate the value of the initializer attached to this
|
|
/// declaration, and produce notes explaining why it cannot be evaluated or is
|
|
/// not a constant expression. Returns a pointer to the value if evaluation
|
|
/// succeeded, 0 otherwise.
|
|
APValue *evaluateValue() const;
|
|
APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
|
|
|
|
/// Return the already-evaluated value of this variable's
|
|
/// initializer, or NULL if the value is not yet known. Returns pointer
|
|
/// to untyped APValue if the value could not be evaluated.
|
|
APValue *getEvaluatedValue() const;
|
|
|
|
/// Determines whether it is already known whether the
|
|
/// initializer is an integral constant expression or not.
|
|
bool isInitKnownICE() const;
|
|
|
|
/// Determines whether the initializer is an integral constant
|
|
/// expression, or in C++11, whether the initializer is a constant
|
|
/// expression.
|
|
///
|
|
/// \pre isInitKnownICE()
|
|
bool isInitICE() const;
|
|
|
|
/// Determine whether the value of the initializer attached to this
|
|
/// declaration is an integral constant expression.
|
|
bool checkInitIsICE() const;
|
|
|
|
void setInitStyle(InitializationStyle Style) {
|
|
VarDeclBits.InitStyle = Style;
|
|
}
|
|
|
|
/// The style of initialization for this declaration.
|
|
///
|
|
/// C-style initialization is "int x = 1;". Call-style initialization is
|
|
/// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
|
|
/// the expression inside the parens or a "ClassType(a,b,c)" class constructor
|
|
/// expression for class types. List-style initialization is C++11 syntax,
|
|
/// e.g. "int x{1};". Clients can distinguish between different forms of
|
|
/// initialization by checking this value. In particular, "int x = {1};" is
|
|
/// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
|
|
/// Init expression in all three cases is an InitListExpr.
|
|
InitializationStyle getInitStyle() const {
|
|
return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
|
|
}
|
|
|
|
/// Whether the initializer is a direct-initializer (list or call).
|
|
bool isDirectInit() const {
|
|
return getInitStyle() != CInit;
|
|
}
|
|
|
|
/// If this definition should pretend to be a declaration.
|
|
bool isThisDeclarationADemotedDefinition() const {
|
|
return isa<ParmVarDecl>(this) ? false :
|
|
NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
|
|
}
|
|
|
|
/// This is a definition which should be demoted to a declaration.
|
|
///
|
|
/// In some cases (mostly module merging) we can end up with two visible
|
|
/// definitions one of which needs to be demoted to a declaration to keep
|
|
/// the AST invariants.
|
|
void demoteThisDefinitionToDeclaration() {
|
|
assert(isThisDeclarationADefinition() && "Not a definition!");
|
|
assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
|
|
NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
|
|
}
|
|
|
|
/// Determine whether this variable is the exception variable in a
|
|
/// C++ catch statememt or an Objective-C \@catch statement.
|
|
bool isExceptionVariable() const {
|
|
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
|
|
}
|
|
void setExceptionVariable(bool EV) {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.ExceptionVar = EV;
|
|
}
|
|
|
|
/// Determine whether this local variable can be used with the named
|
|
/// return value optimization (NRVO).
|
|
///
|
|
/// The named return value optimization (NRVO) works by marking certain
|
|
/// non-volatile local variables of class type as NRVO objects. These
|
|
/// locals can be allocated within the return slot of their containing
|
|
/// function, in which case there is no need to copy the object to the
|
|
/// return slot when returning from the function. Within the function body,
|
|
/// each return that returns the NRVO object will have this variable as its
|
|
/// NRVO candidate.
|
|
bool isNRVOVariable() const {
|
|
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
|
|
}
|
|
void setNRVOVariable(bool NRVO) {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.NRVOVariable = NRVO;
|
|
}
|
|
|
|
/// Determine whether this variable is the for-range-declaration in
|
|
/// a C++0x for-range statement.
|
|
bool isCXXForRangeDecl() const {
|
|
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
|
|
}
|
|
void setCXXForRangeDecl(bool FRD) {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.CXXForRangeDecl = FRD;
|
|
}
|
|
|
|
/// Determine whether this variable is a for-loop declaration for a
|
|
/// for-in statement in Objective-C.
|
|
bool isObjCForDecl() const {
|
|
return NonParmVarDeclBits.ObjCForDecl;
|
|
}
|
|
|
|
void setObjCForDecl(bool FRD) {
|
|
NonParmVarDeclBits.ObjCForDecl = FRD;
|
|
}
|
|
|
|
/// Determine whether this variable is an ARC pseudo-__strong variable. A
|
|
/// pseudo-__strong variable has a __strong-qualified type but does not
|
|
/// actually retain the object written into it. Generally such variables are
|
|
/// also 'const' for safety. There are 3 cases where this will be set, 1) if
|
|
/// the variable is annotated with the objc_externally_retained attribute, 2)
|
|
/// if its 'self' in a non-init method, or 3) if its the variable in an for-in
|
|
/// loop.
|
|
bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
|
|
void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
|
|
|
|
/// Whether this variable is (C++1z) inline.
|
|
bool isInline() const {
|
|
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
|
|
}
|
|
bool isInlineSpecified() const {
|
|
return isa<ParmVarDecl>(this) ? false
|
|
: NonParmVarDeclBits.IsInlineSpecified;
|
|
}
|
|
void setInlineSpecified() {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.IsInline = true;
|
|
NonParmVarDeclBits.IsInlineSpecified = true;
|
|
}
|
|
void setImplicitlyInline() {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.IsInline = true;
|
|
}
|
|
|
|
/// Whether this variable is (C++11) constexpr.
|
|
bool isConstexpr() const {
|
|
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
|
|
}
|
|
void setConstexpr(bool IC) {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.IsConstexpr = IC;
|
|
}
|
|
|
|
/// Whether this variable is the implicit variable for a lambda init-capture.
|
|
bool isInitCapture() const {
|
|
return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
|
|
}
|
|
void setInitCapture(bool IC) {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.IsInitCapture = IC;
|
|
}
|
|
|
|
/// Determine whether this variable is actually a function parameter pack or
|
|
/// init-capture pack.
|
|
bool isParameterPack() const;
|
|
|
|
/// Whether this local extern variable declaration's previous declaration
|
|
/// was declared in the same block scope. Only correct in C++.
|
|
bool isPreviousDeclInSameBlockScope() const {
|
|
return isa<ParmVarDecl>(this)
|
|
? false
|
|
: NonParmVarDeclBits.PreviousDeclInSameBlockScope;
|
|
}
|
|
void setPreviousDeclInSameBlockScope(bool Same) {
|
|
assert(!isa<ParmVarDecl>(this));
|
|
NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
|
|
}
|
|
|
|
/// Indicates the capture is a __block variable that is captured by a block
|
|
/// that can potentially escape (a block for which BlockDecl::doesNotEscape
|
|
/// returns false).
|
|
bool isEscapingByref() const;
|
|
|
|
/// Indicates the capture is a __block variable that is never captured by an
|
|
/// escaping block.
|
|
bool isNonEscapingByref() const;
|
|
|
|
void setEscapingByref() {
|
|
NonParmVarDeclBits.EscapingByref = true;
|
|
}
|
|
|
|
/// Retrieve the variable declaration from which this variable could
|
|
/// be instantiated, if it is an instantiation (rather than a non-template).
|
|
VarDecl *getTemplateInstantiationPattern() const;
|
|
|
|
/// If this variable is an instantiated static data member of a
|
|
/// class template specialization, returns the templated static data member
|
|
/// from which it was instantiated.
|
|
VarDecl *getInstantiatedFromStaticDataMember() const;
|
|
|
|
/// If this variable is an instantiation of a variable template or a
|
|
/// static data member of a class template, determine what kind of
|
|
/// template specialization or instantiation this is.
|
|
TemplateSpecializationKind getTemplateSpecializationKind() const;
|
|
|
|
/// Get the template specialization kind of this variable for the purposes of
|
|
/// template instantiation. This differs from getTemplateSpecializationKind()
|
|
/// for an instantiation of a class-scope explicit specialization.
|
|
TemplateSpecializationKind
|
|
getTemplateSpecializationKindForInstantiation() const;
|
|
|
|
/// If this variable is an instantiation of a variable template or a
|
|
/// static data member of a class template, determine its point of
|
|
/// instantiation.
|
|
SourceLocation getPointOfInstantiation() const;
|
|
|
|
/// If this variable is an instantiation of a static data member of a
|
|
/// class template specialization, retrieves the member specialization
|
|
/// information.
|
|
MemberSpecializationInfo *getMemberSpecializationInfo() const;
|
|
|
|
/// For a static data member that was instantiated from a static
|
|
/// data member of a class template, set the template specialiation kind.
|
|
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation = SourceLocation());
|
|
|
|
/// Specify that this variable is an instantiation of the
|
|
/// static data member VD.
|
|
void setInstantiationOfStaticDataMember(VarDecl *VD,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
/// Retrieves the variable template that is described by this
|
|
/// variable declaration.
|
|
///
|
|
/// Every variable template is represented as a VarTemplateDecl and a
|
|
/// VarDecl. The former contains template properties (such as
|
|
/// the template parameter lists) while the latter contains the
|
|
/// actual description of the template's
|
|
/// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
|
|
/// VarDecl that from a VarTemplateDecl, while
|
|
/// getDescribedVarTemplate() retrieves the VarTemplateDecl from
|
|
/// a VarDecl.
|
|
VarTemplateDecl *getDescribedVarTemplate() const;
|
|
|
|
void setDescribedVarTemplate(VarTemplateDecl *Template);
|
|
|
|
// Is this variable known to have a definition somewhere in the complete
|
|
// program? This may be true even if the declaration has internal linkage and
|
|
// has no definition within this source file.
|
|
bool isKnownToBeDefined() const;
|
|
|
|
/// Do we need to emit an exit-time destructor for this variable?
|
|
bool isNoDestroy(const ASTContext &) const;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
|
|
};
|
|
|
|
class ImplicitParamDecl : public VarDecl {
|
|
void anchor() override;
|
|
|
|
public:
|
|
/// Defines the kind of the implicit parameter: is this an implicit parameter
|
|
/// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
|
|
/// context or something else.
|
|
enum ImplicitParamKind : unsigned {
|
|
/// Parameter for Objective-C 'self' argument
|
|
ObjCSelf,
|
|
|
|
/// Parameter for Objective-C '_cmd' argument
|
|
ObjCCmd,
|
|
|
|
/// Parameter for C++ 'this' argument
|
|
CXXThis,
|
|
|
|
/// Parameter for C++ virtual table pointers
|
|
CXXVTT,
|
|
|
|
/// Parameter for captured context
|
|
CapturedContext,
|
|
|
|
/// Other implicit parameter
|
|
Other,
|
|
};
|
|
|
|
/// Create implicit parameter.
|
|
static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
QualType T, ImplicitParamKind ParamKind);
|
|
static ImplicitParamDecl *Create(ASTContext &C, QualType T,
|
|
ImplicitParamKind ParamKind);
|
|
|
|
static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, QualType Type,
|
|
ImplicitParamKind ParamKind)
|
|
: VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
|
|
/*TInfo=*/nullptr, SC_None) {
|
|
NonParmVarDeclBits.ImplicitParamKind = ParamKind;
|
|
setImplicit();
|
|
}
|
|
|
|
ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
|
|
: VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
|
|
SourceLocation(), /*Id=*/nullptr, Type,
|
|
/*TInfo=*/nullptr, SC_None) {
|
|
NonParmVarDeclBits.ImplicitParamKind = ParamKind;
|
|
setImplicit();
|
|
}
|
|
|
|
/// Returns the implicit parameter kind.
|
|
ImplicitParamKind getParameterKind() const {
|
|
return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == ImplicitParam; }
|
|
};
|
|
|
|
/// Represents a parameter to a function.
|
|
class ParmVarDecl : public VarDecl {
|
|
public:
|
|
enum { MaxFunctionScopeDepth = 255 };
|
|
enum { MaxFunctionScopeIndex = 255 };
|
|
|
|
protected:
|
|
ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
|
|
TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
|
|
: VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
|
|
assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
|
|
assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
|
|
assert(ParmVarDeclBits.IsKNRPromoted == false);
|
|
assert(ParmVarDeclBits.IsObjCMethodParam == false);
|
|
setDefaultArg(DefArg);
|
|
}
|
|
|
|
public:
|
|
static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S, Expr *DefArg);
|
|
|
|
static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
void setObjCMethodScopeInfo(unsigned parameterIndex) {
|
|
ParmVarDeclBits.IsObjCMethodParam = true;
|
|
setParameterIndex(parameterIndex);
|
|
}
|
|
|
|
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
|
|
assert(!ParmVarDeclBits.IsObjCMethodParam);
|
|
|
|
ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
|
|
assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
|
|
&& "truncation!");
|
|
|
|
setParameterIndex(parameterIndex);
|
|
}
|
|
|
|
bool isObjCMethodParameter() const {
|
|
return ParmVarDeclBits.IsObjCMethodParam;
|
|
}
|
|
|
|
unsigned getFunctionScopeDepth() const {
|
|
if (ParmVarDeclBits.IsObjCMethodParam) return 0;
|
|
return ParmVarDeclBits.ScopeDepthOrObjCQuals;
|
|
}
|
|
|
|
/// Returns the index of this parameter in its prototype or method scope.
|
|
unsigned getFunctionScopeIndex() const {
|
|
return getParameterIndex();
|
|
}
|
|
|
|
ObjCDeclQualifier getObjCDeclQualifier() const {
|
|
if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
|
|
return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
|
|
}
|
|
void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
|
|
assert(ParmVarDeclBits.IsObjCMethodParam);
|
|
ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
|
|
}
|
|
|
|
/// True if the value passed to this parameter must undergo
|
|
/// K&R-style default argument promotion:
|
|
///
|
|
/// C99 6.5.2.2.
|
|
/// If the expression that denotes the called function has a type
|
|
/// that does not include a prototype, the integer promotions are
|
|
/// performed on each argument, and arguments that have type float
|
|
/// are promoted to double.
|
|
bool isKNRPromoted() const {
|
|
return ParmVarDeclBits.IsKNRPromoted;
|
|
}
|
|
void setKNRPromoted(bool promoted) {
|
|
ParmVarDeclBits.IsKNRPromoted = promoted;
|
|
}
|
|
|
|
Expr *getDefaultArg();
|
|
const Expr *getDefaultArg() const {
|
|
return const_cast<ParmVarDecl *>(this)->getDefaultArg();
|
|
}
|
|
|
|
void setDefaultArg(Expr *defarg);
|
|
|
|
/// Retrieve the source range that covers the entire default
|
|
/// argument.
|
|
SourceRange getDefaultArgRange() const;
|
|
void setUninstantiatedDefaultArg(Expr *arg);
|
|
Expr *getUninstantiatedDefaultArg();
|
|
const Expr *getUninstantiatedDefaultArg() const {
|
|
return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
|
|
}
|
|
|
|
/// Determines whether this parameter has a default argument,
|
|
/// either parsed or not.
|
|
bool hasDefaultArg() const;
|
|
|
|
/// Determines whether this parameter has a default argument that has not
|
|
/// yet been parsed. This will occur during the processing of a C++ class
|
|
/// whose member functions have default arguments, e.g.,
|
|
/// @code
|
|
/// class X {
|
|
/// public:
|
|
/// void f(int x = 17); // x has an unparsed default argument now
|
|
/// }; // x has a regular default argument now
|
|
/// @endcode
|
|
bool hasUnparsedDefaultArg() const {
|
|
return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
|
|
}
|
|
|
|
bool hasUninstantiatedDefaultArg() const {
|
|
return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
|
|
}
|
|
|
|
/// Specify that this parameter has an unparsed default argument.
|
|
/// The argument will be replaced with a real default argument via
|
|
/// setDefaultArg when the class definition enclosing the function
|
|
/// declaration that owns this default argument is completed.
|
|
void setUnparsedDefaultArg() {
|
|
ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
|
|
}
|
|
|
|
bool hasInheritedDefaultArg() const {
|
|
return ParmVarDeclBits.HasInheritedDefaultArg;
|
|
}
|
|
|
|
void setHasInheritedDefaultArg(bool I = true) {
|
|
ParmVarDeclBits.HasInheritedDefaultArg = I;
|
|
}
|
|
|
|
QualType getOriginalType() const;
|
|
|
|
/// Sets the function declaration that owns this
|
|
/// ParmVarDecl. Since ParmVarDecls are often created before the
|
|
/// FunctionDecls that own them, this routine is required to update
|
|
/// the DeclContext appropriately.
|
|
void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == ParmVar; }
|
|
|
|
private:
|
|
enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
|
|
|
|
void setParameterIndex(unsigned parameterIndex) {
|
|
if (parameterIndex >= ParameterIndexSentinel) {
|
|
setParameterIndexLarge(parameterIndex);
|
|
return;
|
|
}
|
|
|
|
ParmVarDeclBits.ParameterIndex = parameterIndex;
|
|
assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
|
|
}
|
|
unsigned getParameterIndex() const {
|
|
unsigned d = ParmVarDeclBits.ParameterIndex;
|
|
return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
|
|
}
|
|
|
|
void setParameterIndexLarge(unsigned parameterIndex);
|
|
unsigned getParameterIndexLarge() const;
|
|
};
|
|
|
|
enum class MultiVersionKind {
|
|
None,
|
|
Target,
|
|
CPUSpecific,
|
|
CPUDispatch
|
|
};
|
|
|
|
/// Represents a function declaration or definition.
|
|
///
|
|
/// Since a given function can be declared several times in a program,
|
|
/// there may be several FunctionDecls that correspond to that
|
|
/// function. Only one of those FunctionDecls will be found when
|
|
/// traversing the list of declarations in the context of the
|
|
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
|
|
/// contains all of the information known about the function. Other,
|
|
/// previous declarations of the function are available via the
|
|
/// getPreviousDecl() chain.
|
|
class FunctionDecl : public DeclaratorDecl,
|
|
public DeclContext,
|
|
public Redeclarable<FunctionDecl> {
|
|
// This class stores some data in DeclContext::FunctionDeclBits
|
|
// to save some space. Use the provided accessors to access it.
|
|
public:
|
|
/// The kind of templated function a FunctionDecl can be.
|
|
enum TemplatedKind {
|
|
// Not templated.
|
|
TK_NonTemplate,
|
|
// The pattern in a function template declaration.
|
|
TK_FunctionTemplate,
|
|
// A non-template function that is an instantiation or explicit
|
|
// specialization of a member of a templated class.
|
|
TK_MemberSpecialization,
|
|
// An instantiation or explicit specialization of a function template.
|
|
// Note: this might have been instantiated from a templated class if it
|
|
// is a class-scope explicit specialization.
|
|
TK_FunctionTemplateSpecialization,
|
|
// A function template specialization that hasn't yet been resolved to a
|
|
// particular specialized function template.
|
|
TK_DependentFunctionTemplateSpecialization
|
|
};
|
|
|
|
private:
|
|
/// A new[]'d array of pointers to VarDecls for the formal
|
|
/// parameters of this function. This is null if a prototype or if there are
|
|
/// no formals.
|
|
ParmVarDecl **ParamInfo = nullptr;
|
|
|
|
LazyDeclStmtPtr Body;
|
|
|
|
unsigned ODRHash;
|
|
|
|
/// End part of this FunctionDecl's source range.
|
|
///
|
|
/// We could compute the full range in getSourceRange(). However, when we're
|
|
/// dealing with a function definition deserialized from a PCH/AST file,
|
|
/// we can only compute the full range once the function body has been
|
|
/// de-serialized, so it's far better to have the (sometimes-redundant)
|
|
/// EndRangeLoc.
|
|
SourceLocation EndRangeLoc;
|
|
|
|
/// The template or declaration that this declaration
|
|
/// describes or was instantiated from, respectively.
|
|
///
|
|
/// For non-templates, this value will be NULL. For function
|
|
/// declarations that describe a function template, this will be a
|
|
/// pointer to a FunctionTemplateDecl. For member functions
|
|
/// of class template specializations, this will be a MemberSpecializationInfo
|
|
/// pointer containing information about the specialization.
|
|
/// For function template specializations, this will be a
|
|
/// FunctionTemplateSpecializationInfo, which contains information about
|
|
/// the template being specialized and the template arguments involved in
|
|
/// that specialization.
|
|
llvm::PointerUnion4<FunctionTemplateDecl *,
|
|
MemberSpecializationInfo *,
|
|
FunctionTemplateSpecializationInfo *,
|
|
DependentFunctionTemplateSpecializationInfo *>
|
|
TemplateOrSpecialization;
|
|
|
|
/// Provides source/type location info for the declaration name embedded in
|
|
/// the DeclaratorDecl base class.
|
|
DeclarationNameLoc DNLoc;
|
|
|
|
/// Specify that this function declaration is actually a function
|
|
/// template specialization.
|
|
///
|
|
/// \param C the ASTContext.
|
|
///
|
|
/// \param Template the function template that this function template
|
|
/// specialization specializes.
|
|
///
|
|
/// \param TemplateArgs the template arguments that produced this
|
|
/// function template specialization from the template.
|
|
///
|
|
/// \param InsertPos If non-NULL, the position in the function template
|
|
/// specialization set where the function template specialization data will
|
|
/// be inserted.
|
|
///
|
|
/// \param TSK the kind of template specialization this is.
|
|
///
|
|
/// \param TemplateArgsAsWritten location info of template arguments.
|
|
///
|
|
/// \param PointOfInstantiation point at which the function template
|
|
/// specialization was first instantiated.
|
|
void setFunctionTemplateSpecialization(ASTContext &C,
|
|
FunctionTemplateDecl *Template,
|
|
const TemplateArgumentList *TemplateArgs,
|
|
void *InsertPos,
|
|
TemplateSpecializationKind TSK,
|
|
const TemplateArgumentListInfo *TemplateArgsAsWritten,
|
|
SourceLocation PointOfInstantiation);
|
|
|
|
/// Specify that this record is an instantiation of the
|
|
/// member function FD.
|
|
void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
|
|
|
|
// This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
|
|
// need to access this bit but we want to avoid making ASTDeclWriter
|
|
// a friend of FunctionDeclBitfields just for this.
|
|
bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
|
|
|
|
/// Whether an ODRHash has been stored.
|
|
bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
|
|
|
|
/// State that an ODRHash has been stored.
|
|
void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
|
|
|
|
protected:
|
|
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo, QualType T,
|
|
TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
|
|
ConstexprSpecKind ConstexprKind);
|
|
|
|
using redeclarable_base = Redeclarable<FunctionDecl>;
|
|
|
|
FunctionDecl *getNextRedeclarationImpl() override {
|
|
return getNextRedeclaration();
|
|
}
|
|
|
|
FunctionDecl *getPreviousDeclImpl() override {
|
|
return getPreviousDecl();
|
|
}
|
|
|
|
FunctionDecl *getMostRecentDeclImpl() override {
|
|
return getMostRecentDecl();
|
|
}
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
|
|
using redecl_range = redeclarable_base::redecl_range;
|
|
using redecl_iterator = redeclarable_base::redecl_iterator;
|
|
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
using redeclarable_base::isFirstDecl;
|
|
|
|
static FunctionDecl *
|
|
Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation NLoc, DeclarationName N, QualType T,
|
|
TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
|
|
bool hasWrittenPrototype = true,
|
|
ConstexprSpecKind ConstexprKind = CSK_unspecified) {
|
|
DeclarationNameInfo NameInfo(N, NLoc);
|
|
return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
|
|
isInlineSpecified, hasWrittenPrototype,
|
|
ConstexprKind);
|
|
}
|
|
|
|
static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo, QualType T,
|
|
TypeSourceInfo *TInfo, StorageClass SC,
|
|
bool isInlineSpecified, bool hasWrittenPrototype,
|
|
ConstexprSpecKind ConstexprKind);
|
|
|
|
static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
DeclarationNameInfo getNameInfo() const {
|
|
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
|
|
}
|
|
|
|
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
|
|
bool Qualified) const override;
|
|
|
|
void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
// Function definitions.
|
|
//
|
|
// A function declaration may be:
|
|
// - a non defining declaration,
|
|
// - a definition. A function may be defined because:
|
|
// - it has a body, or will have it in the case of late parsing.
|
|
// - it has an uninstantiated body. The body does not exist because the
|
|
// function is not used yet, but the declaration is considered a
|
|
// definition and does not allow other definition of this function.
|
|
// - it does not have a user specified body, but it does not allow
|
|
// redefinition, because it is deleted/defaulted or is defined through
|
|
// some other mechanism (alias, ifunc).
|
|
|
|
/// Returns true if the function has a body.
|
|
///
|
|
/// The function body might be in any of the (re-)declarations of this
|
|
/// function. The variant that accepts a FunctionDecl pointer will set that
|
|
/// function declaration to the actual declaration containing the body (if
|
|
/// there is one).
|
|
bool hasBody(const FunctionDecl *&Definition) const;
|
|
|
|
bool hasBody() const override {
|
|
const FunctionDecl* Definition;
|
|
return hasBody(Definition);
|
|
}
|
|
|
|
/// Returns whether the function has a trivial body that does not require any
|
|
/// specific codegen.
|
|
bool hasTrivialBody() const;
|
|
|
|
/// Returns true if the function has a definition that does not need to be
|
|
/// instantiated.
|
|
///
|
|
/// The variant that accepts a FunctionDecl pointer will set that function
|
|
/// declaration to the declaration that is a definition (if there is one).
|
|
bool isDefined(const FunctionDecl *&Definition) const;
|
|
|
|
virtual bool isDefined() const {
|
|
const FunctionDecl* Definition;
|
|
return isDefined(Definition);
|
|
}
|
|
|
|
/// Get the definition for this declaration.
|
|
FunctionDecl *getDefinition() {
|
|
const FunctionDecl *Definition;
|
|
if (isDefined(Definition))
|
|
return const_cast<FunctionDecl *>(Definition);
|
|
return nullptr;
|
|
}
|
|
const FunctionDecl *getDefinition() const {
|
|
return const_cast<FunctionDecl *>(this)->getDefinition();
|
|
}
|
|
|
|
/// Retrieve the body (definition) of the function. The function body might be
|
|
/// in any of the (re-)declarations of this function. The variant that accepts
|
|
/// a FunctionDecl pointer will set that function declaration to the actual
|
|
/// declaration containing the body (if there is one).
|
|
/// NOTE: For checking if there is a body, use hasBody() instead, to avoid
|
|
/// unnecessary AST de-serialization of the body.
|
|
Stmt *getBody(const FunctionDecl *&Definition) const;
|
|
|
|
Stmt *getBody() const override {
|
|
const FunctionDecl* Definition;
|
|
return getBody(Definition);
|
|
}
|
|
|
|
/// Returns whether this specific declaration of the function is also a
|
|
/// definition that does not contain uninstantiated body.
|
|
///
|
|
/// This does not determine whether the function has been defined (e.g., in a
|
|
/// previous definition); for that information, use isDefined.
|
|
bool isThisDeclarationADefinition() const {
|
|
return isDeletedAsWritten() || isDefaulted() || Body || hasSkippedBody() ||
|
|
isLateTemplateParsed() || willHaveBody() || hasDefiningAttr();
|
|
}
|
|
|
|
/// Returns whether this specific declaration of the function has a body.
|
|
bool doesThisDeclarationHaveABody() const {
|
|
return Body || isLateTemplateParsed();
|
|
}
|
|
|
|
void setBody(Stmt *B);
|
|
void setLazyBody(uint64_t Offset) { Body = Offset; }
|
|
|
|
/// Whether this function is variadic.
|
|
bool isVariadic() const;
|
|
|
|
/// Whether this function is marked as virtual explicitly.
|
|
bool isVirtualAsWritten() const {
|
|
return FunctionDeclBits.IsVirtualAsWritten;
|
|
}
|
|
|
|
/// State that this function is marked as virtual explicitly.
|
|
void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
|
|
|
|
/// Whether this virtual function is pure, i.e. makes the containing class
|
|
/// abstract.
|
|
bool isPure() const { return FunctionDeclBits.IsPure; }
|
|
void setPure(bool P = true);
|
|
|
|
/// Whether this templated function will be late parsed.
|
|
bool isLateTemplateParsed() const {
|
|
return FunctionDeclBits.IsLateTemplateParsed;
|
|
}
|
|
|
|
/// State that this templated function will be late parsed.
|
|
void setLateTemplateParsed(bool ILT = true) {
|
|
FunctionDeclBits.IsLateTemplateParsed = ILT;
|
|
}
|
|
|
|
/// Whether this function is "trivial" in some specialized C++ senses.
|
|
/// Can only be true for default constructors, copy constructors,
|
|
/// copy assignment operators, and destructors. Not meaningful until
|
|
/// the class has been fully built by Sema.
|
|
bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
|
|
void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
|
|
|
|
bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
|
|
void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
|
|
|
|
/// Whether this function is defaulted per C++0x. Only valid for
|
|
/// special member functions.
|
|
bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
|
|
void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
|
|
|
|
/// Whether this function is explicitly defaulted per C++0x. Only valid
|
|
/// for special member functions.
|
|
bool isExplicitlyDefaulted() const {
|
|
return FunctionDeclBits.IsExplicitlyDefaulted;
|
|
}
|
|
|
|
/// State that this function is explicitly defaulted per C++0x. Only valid
|
|
/// for special member functions.
|
|
void setExplicitlyDefaulted(bool ED = true) {
|
|
FunctionDeclBits.IsExplicitlyDefaulted = ED;
|
|
}
|
|
|
|
/// Whether falling off this function implicitly returns null/zero.
|
|
/// If a more specific implicit return value is required, front-ends
|
|
/// should synthesize the appropriate return statements.
|
|
bool hasImplicitReturnZero() const {
|
|
return FunctionDeclBits.HasImplicitReturnZero;
|
|
}
|
|
|
|
/// State that falling off this function implicitly returns null/zero.
|
|
/// If a more specific implicit return value is required, front-ends
|
|
/// should synthesize the appropriate return statements.
|
|
void setHasImplicitReturnZero(bool IRZ) {
|
|
FunctionDeclBits.HasImplicitReturnZero = IRZ;
|
|
}
|
|
|
|
/// Whether this function has a prototype, either because one
|
|
/// was explicitly written or because it was "inherited" by merging
|
|
/// a declaration without a prototype with a declaration that has a
|
|
/// prototype.
|
|
bool hasPrototype() const {
|
|
return hasWrittenPrototype() || hasInheritedPrototype();
|
|
}
|
|
|
|
/// Whether this function has a written prototype.
|
|
bool hasWrittenPrototype() const {
|
|
return FunctionDeclBits.HasWrittenPrototype;
|
|
}
|
|
|
|
/// State that this function has a written prototype.
|
|
void setHasWrittenPrototype(bool P = true) {
|
|
FunctionDeclBits.HasWrittenPrototype = P;
|
|
}
|
|
|
|
/// Whether this function inherited its prototype from a
|
|
/// previous declaration.
|
|
bool hasInheritedPrototype() const {
|
|
return FunctionDeclBits.HasInheritedPrototype;
|
|
}
|
|
|
|
/// State that this function inherited its prototype from a
|
|
/// previous declaration.
|
|
void setHasInheritedPrototype(bool P = true) {
|
|
FunctionDeclBits.HasInheritedPrototype = P;
|
|
}
|
|
|
|
/// Whether this is a (C++11) constexpr function or constexpr constructor.
|
|
bool isConstexpr() const {
|
|
return FunctionDeclBits.ConstexprKind != CSK_unspecified;
|
|
}
|
|
void setConstexprKind(ConstexprSpecKind CSK) {
|
|
FunctionDeclBits.ConstexprKind = CSK;
|
|
}
|
|
ConstexprSpecKind getConstexprKind() const {
|
|
return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
|
|
}
|
|
bool isConstexprSpecified() const {
|
|
return FunctionDeclBits.ConstexprKind == CSK_constexpr;
|
|
}
|
|
bool isConsteval() const {
|
|
return FunctionDeclBits.ConstexprKind == CSK_consteval;
|
|
}
|
|
|
|
/// Whether the instantiation of this function is pending.
|
|
/// This bit is set when the decision to instantiate this function is made
|
|
/// and unset if and when the function body is created. That leaves out
|
|
/// cases where instantiation did not happen because the template definition
|
|
/// was not seen in this TU. This bit remains set in those cases, under the
|
|
/// assumption that the instantiation will happen in some other TU.
|
|
bool instantiationIsPending() const {
|
|
return FunctionDeclBits.InstantiationIsPending;
|
|
}
|
|
|
|
/// State that the instantiation of this function is pending.
|
|
/// (see instantiationIsPending)
|
|
void setInstantiationIsPending(bool IC) {
|
|
FunctionDeclBits.InstantiationIsPending = IC;
|
|
}
|
|
|
|
/// Indicates the function uses __try.
|
|
bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
|
|
void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
|
|
|
|
/// Whether this function has been deleted.
|
|
///
|
|
/// A function that is "deleted" (via the C++0x "= delete" syntax)
|
|
/// acts like a normal function, except that it cannot actually be
|
|
/// called or have its address taken. Deleted functions are
|
|
/// typically used in C++ overload resolution to attract arguments
|
|
/// whose type or lvalue/rvalue-ness would permit the use of a
|
|
/// different overload that would behave incorrectly. For example,
|
|
/// one might use deleted functions to ban implicit conversion from
|
|
/// a floating-point number to an Integer type:
|
|
///
|
|
/// @code
|
|
/// struct Integer {
|
|
/// Integer(long); // construct from a long
|
|
/// Integer(double) = delete; // no construction from float or double
|
|
/// Integer(long double) = delete; // no construction from long double
|
|
/// };
|
|
/// @endcode
|
|
// If a function is deleted, its first declaration must be.
|
|
bool isDeleted() const {
|
|
return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
|
|
}
|
|
|
|
bool isDeletedAsWritten() const {
|
|
return FunctionDeclBits.IsDeleted && !isDefaulted();
|
|
}
|
|
|
|
void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
|
|
|
|
/// Determines whether this function is "main", which is the
|
|
/// entry point into an executable program.
|
|
bool isMain() const;
|
|
|
|
/// Determines whether this function is a MSVCRT user defined entry
|
|
/// point.
|
|
bool isMSVCRTEntryPoint() const;
|
|
|
|
/// Determines whether this operator new or delete is one
|
|
/// of the reserved global placement operators:
|
|
/// void *operator new(size_t, void *);
|
|
/// void *operator new[](size_t, void *);
|
|
/// void operator delete(void *, void *);
|
|
/// void operator delete[](void *, void *);
|
|
/// These functions have special behavior under [new.delete.placement]:
|
|
/// These functions are reserved, a C++ program may not define
|
|
/// functions that displace the versions in the Standard C++ library.
|
|
/// The provisions of [basic.stc.dynamic] do not apply to these
|
|
/// reserved placement forms of operator new and operator delete.
|
|
///
|
|
/// This function must be an allocation or deallocation function.
|
|
bool isReservedGlobalPlacementOperator() const;
|
|
|
|
/// Determines whether this function is one of the replaceable
|
|
/// global allocation functions:
|
|
/// void *operator new(size_t);
|
|
/// void *operator new(size_t, const std::nothrow_t &) noexcept;
|
|
/// void *operator new[](size_t);
|
|
/// void *operator new[](size_t, const std::nothrow_t &) noexcept;
|
|
/// void operator delete(void *) noexcept;
|
|
/// void operator delete(void *, std::size_t) noexcept; [C++1y]
|
|
/// void operator delete(void *, const std::nothrow_t &) noexcept;
|
|
/// void operator delete[](void *) noexcept;
|
|
/// void operator delete[](void *, std::size_t) noexcept; [C++1y]
|
|
/// void operator delete[](void *, const std::nothrow_t &) noexcept;
|
|
/// These functions have special behavior under C++1y [expr.new]:
|
|
/// An implementation is allowed to omit a call to a replaceable global
|
|
/// allocation function. [...]
|
|
///
|
|
/// If this function is an aligned allocation/deallocation function, return
|
|
/// true through IsAligned.
|
|
bool isReplaceableGlobalAllocationFunction(bool *IsAligned = nullptr) const;
|
|
|
|
/// Determine whether this is a destroying operator delete.
|
|
bool isDestroyingOperatorDelete() const;
|
|
|
|
/// Compute the language linkage.
|
|
LanguageLinkage getLanguageLinkage() const;
|
|
|
|
/// Determines whether this function is a function with
|
|
/// external, C linkage.
|
|
bool isExternC() const;
|
|
|
|
/// Determines whether this function's context is, or is nested within,
|
|
/// a C++ extern "C" linkage spec.
|
|
bool isInExternCContext() const;
|
|
|
|
/// Determines whether this function's context is, or is nested within,
|
|
/// a C++ extern "C++" linkage spec.
|
|
bool isInExternCXXContext() const;
|
|
|
|
/// Determines whether this is a global function.
|
|
bool isGlobal() const;
|
|
|
|
/// Determines whether this function is known to be 'noreturn', through
|
|
/// an attribute on its declaration or its type.
|
|
bool isNoReturn() const;
|
|
|
|
/// True if the function was a definition but its body was skipped.
|
|
bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
|
|
void setHasSkippedBody(bool Skipped = true) {
|
|
FunctionDeclBits.HasSkippedBody = Skipped;
|
|
}
|
|
|
|
/// True if this function will eventually have a body, once it's fully parsed.
|
|
bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
|
|
void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
|
|
|
|
/// True if this function is considered a multiversioned function.
|
|
bool isMultiVersion() const {
|
|
return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
|
|
}
|
|
|
|
/// Sets the multiversion state for this declaration and all of its
|
|
/// redeclarations.
|
|
void setIsMultiVersion(bool V = true) {
|
|
getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
|
|
}
|
|
|
|
/// Gets the kind of multiversioning attribute this declaration has. Note that
|
|
/// this can return a value even if the function is not multiversion, such as
|
|
/// the case of 'target'.
|
|
MultiVersionKind getMultiVersionKind() const;
|
|
|
|
|
|
/// True if this function is a multiversioned dispatch function as a part of
|
|
/// the cpu_specific/cpu_dispatch functionality.
|
|
bool isCPUDispatchMultiVersion() const;
|
|
/// True if this function is a multiversioned processor specific function as a
|
|
/// part of the cpu_specific/cpu_dispatch functionality.
|
|
bool isCPUSpecificMultiVersion() const;
|
|
|
|
/// True if this function is a multiversioned dispatch function as a part of
|
|
/// the target functionality.
|
|
bool isTargetMultiVersion() const;
|
|
|
|
void setPreviousDeclaration(FunctionDecl * PrevDecl);
|
|
|
|
FunctionDecl *getCanonicalDecl() override;
|
|
const FunctionDecl *getCanonicalDecl() const {
|
|
return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
|
|
|
|
// ArrayRef interface to parameters.
|
|
ArrayRef<ParmVarDecl *> parameters() const {
|
|
return {ParamInfo, getNumParams()};
|
|
}
|
|
MutableArrayRef<ParmVarDecl *> parameters() {
|
|
return {ParamInfo, getNumParams()};
|
|
}
|
|
|
|
// Iterator access to formal parameters.
|
|
using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
|
|
using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
|
|
|
|
bool param_empty() const { return parameters().empty(); }
|
|
param_iterator param_begin() { return parameters().begin(); }
|
|
param_iterator param_end() { return parameters().end(); }
|
|
param_const_iterator param_begin() const { return parameters().begin(); }
|
|
param_const_iterator param_end() const { return parameters().end(); }
|
|
size_t param_size() const { return parameters().size(); }
|
|
|
|
/// Return the number of parameters this function must have based on its
|
|
/// FunctionType. This is the length of the ParamInfo array after it has been
|
|
/// created.
|
|
unsigned getNumParams() const;
|
|
|
|
const ParmVarDecl *getParamDecl(unsigned i) const {
|
|
assert(i < getNumParams() && "Illegal param #");
|
|
return ParamInfo[i];
|
|
}
|
|
ParmVarDecl *getParamDecl(unsigned i) {
|
|
assert(i < getNumParams() && "Illegal param #");
|
|
return ParamInfo[i];
|
|
}
|
|
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
|
|
setParams(getASTContext(), NewParamInfo);
|
|
}
|
|
|
|
/// Returns the minimum number of arguments needed to call this function. This
|
|
/// may be fewer than the number of function parameters, if some of the
|
|
/// parameters have default arguments (in C++).
|
|
unsigned getMinRequiredArguments() const;
|
|
|
|
QualType getReturnType() const {
|
|
return getType()->castAs<FunctionType>()->getReturnType();
|
|
}
|
|
|
|
/// Attempt to compute an informative source range covering the
|
|
/// function return type. This may omit qualifiers and other information with
|
|
/// limited representation in the AST.
|
|
SourceRange getReturnTypeSourceRange() const;
|
|
|
|
/// Get the declared return type, which may differ from the actual return
|
|
/// type if the return type is deduced.
|
|
QualType getDeclaredReturnType() const {
|
|
auto *TSI = getTypeSourceInfo();
|
|
QualType T = TSI ? TSI->getType() : getType();
|
|
return T->castAs<FunctionType>()->getReturnType();
|
|
}
|
|
|
|
/// Gets the ExceptionSpecificationType as declared.
|
|
ExceptionSpecificationType getExceptionSpecType() const {
|
|
auto *TSI = getTypeSourceInfo();
|
|
QualType T = TSI ? TSI->getType() : getType();
|
|
const auto *FPT = T->getAs<FunctionProtoType>();
|
|
return FPT ? FPT->getExceptionSpecType() : EST_None;
|
|
}
|
|
|
|
/// Attempt to compute an informative source range covering the
|
|
/// function exception specification, if any.
|
|
SourceRange getExceptionSpecSourceRange() const;
|
|
|
|
/// Determine the type of an expression that calls this function.
|
|
QualType getCallResultType() const {
|
|
return getType()->castAs<FunctionType>()->getCallResultType(
|
|
getASTContext());
|
|
}
|
|
|
|
/// Returns the storage class as written in the source. For the
|
|
/// computed linkage of symbol, see getLinkage.
|
|
StorageClass getStorageClass() const {
|
|
return static_cast<StorageClass>(FunctionDeclBits.SClass);
|
|
}
|
|
|
|
/// Sets the storage class as written in the source.
|
|
void setStorageClass(StorageClass SClass) {
|
|
FunctionDeclBits.SClass = SClass;
|
|
}
|
|
|
|
/// Determine whether the "inline" keyword was specified for this
|
|
/// function.
|
|
bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
|
|
|
|
/// Set whether the "inline" keyword was specified for this function.
|
|
void setInlineSpecified(bool I) {
|
|
FunctionDeclBits.IsInlineSpecified = I;
|
|
FunctionDeclBits.IsInline = I;
|
|
}
|
|
|
|
/// Flag that this function is implicitly inline.
|
|
void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
|
|
|
|
/// Determine whether this function should be inlined, because it is
|
|
/// either marked "inline" or "constexpr" or is a member function of a class
|
|
/// that was defined in the class body.
|
|
bool isInlined() const { return FunctionDeclBits.IsInline; }
|
|
|
|
bool isInlineDefinitionExternallyVisible() const;
|
|
|
|
bool isMSExternInline() const;
|
|
|
|
bool doesDeclarationForceExternallyVisibleDefinition() const;
|
|
|
|
bool isStatic() const { return getStorageClass() == SC_Static; }
|
|
|
|
/// Whether this function declaration represents an C++ overloaded
|
|
/// operator, e.g., "operator+".
|
|
bool isOverloadedOperator() const {
|
|
return getOverloadedOperator() != OO_None;
|
|
}
|
|
|
|
OverloadedOperatorKind getOverloadedOperator() const;
|
|
|
|
const IdentifierInfo *getLiteralIdentifier() const;
|
|
|
|
/// If this function is an instantiation of a member function
|
|
/// of a class template specialization, retrieves the function from
|
|
/// which it was instantiated.
|
|
///
|
|
/// This routine will return non-NULL for (non-templated) member
|
|
/// functions of class templates and for instantiations of function
|
|
/// templates. For example, given:
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// void f(T);
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// The declaration for X<int>::f is a (non-templated) FunctionDecl
|
|
/// whose parent is the class template specialization X<int>. For
|
|
/// this declaration, getInstantiatedFromFunction() will return
|
|
/// the FunctionDecl X<T>::A. When a complete definition of
|
|
/// X<int>::A is required, it will be instantiated from the
|
|
/// declaration returned by getInstantiatedFromMemberFunction().
|
|
FunctionDecl *getInstantiatedFromMemberFunction() const;
|
|
|
|
/// What kind of templated function this is.
|
|
TemplatedKind getTemplatedKind() const;
|
|
|
|
/// If this function is an instantiation of a member function of a
|
|
/// class template specialization, retrieves the member specialization
|
|
/// information.
|
|
MemberSpecializationInfo *getMemberSpecializationInfo() const;
|
|
|
|
/// Specify that this record is an instantiation of the
|
|
/// member function FD.
|
|
void setInstantiationOfMemberFunction(FunctionDecl *FD,
|
|
TemplateSpecializationKind TSK) {
|
|
setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
|
|
}
|
|
|
|
/// Retrieves the function template that is described by this
|
|
/// function declaration.
|
|
///
|
|
/// Every function template is represented as a FunctionTemplateDecl
|
|
/// and a FunctionDecl (or something derived from FunctionDecl). The
|
|
/// former contains template properties (such as the template
|
|
/// parameter lists) while the latter contains the actual
|
|
/// description of the template's
|
|
/// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
|
|
/// FunctionDecl that describes the function template,
|
|
/// getDescribedFunctionTemplate() retrieves the
|
|
/// FunctionTemplateDecl from a FunctionDecl.
|
|
FunctionTemplateDecl *getDescribedFunctionTemplate() const;
|
|
|
|
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
|
|
|
|
/// Determine whether this function is a function template
|
|
/// specialization.
|
|
bool isFunctionTemplateSpecialization() const {
|
|
return getPrimaryTemplate() != nullptr;
|
|
}
|
|
|
|
/// If this function is actually a function template specialization,
|
|
/// retrieve information about this function template specialization.
|
|
/// Otherwise, returns NULL.
|
|
FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
|
|
|
|
/// Determines whether this function is a function template
|
|
/// specialization or a member of a class template specialization that can
|
|
/// be implicitly instantiated.
|
|
bool isImplicitlyInstantiable() const;
|
|
|
|
/// Determines if the given function was instantiated from a
|
|
/// function template.
|
|
bool isTemplateInstantiation() const;
|
|
|
|
/// Retrieve the function declaration from which this function could
|
|
/// be instantiated, if it is an instantiation (rather than a non-template
|
|
/// or a specialization, for example).
|
|
FunctionDecl *getTemplateInstantiationPattern() const;
|
|
|
|
/// Retrieve the primary template that this function template
|
|
/// specialization either specializes or was instantiated from.
|
|
///
|
|
/// If this function declaration is not a function template specialization,
|
|
/// returns NULL.
|
|
FunctionTemplateDecl *getPrimaryTemplate() const;
|
|
|
|
/// Retrieve the template arguments used to produce this function
|
|
/// template specialization from the primary template.
|
|
///
|
|
/// If this function declaration is not a function template specialization,
|
|
/// returns NULL.
|
|
const TemplateArgumentList *getTemplateSpecializationArgs() const;
|
|
|
|
/// Retrieve the template argument list as written in the sources,
|
|
/// if any.
|
|
///
|
|
/// If this function declaration is not a function template specialization
|
|
/// or if it had no explicit template argument list, returns NULL.
|
|
/// Note that it an explicit template argument list may be written empty,
|
|
/// e.g., template<> void foo<>(char* s);
|
|
const ASTTemplateArgumentListInfo*
|
|
getTemplateSpecializationArgsAsWritten() const;
|
|
|
|
/// Specify that this function declaration is actually a function
|
|
/// template specialization.
|
|
///
|
|
/// \param Template the function template that this function template
|
|
/// specialization specializes.
|
|
///
|
|
/// \param TemplateArgs the template arguments that produced this
|
|
/// function template specialization from the template.
|
|
///
|
|
/// \param InsertPos If non-NULL, the position in the function template
|
|
/// specialization set where the function template specialization data will
|
|
/// be inserted.
|
|
///
|
|
/// \param TSK the kind of template specialization this is.
|
|
///
|
|
/// \param TemplateArgsAsWritten location info of template arguments.
|
|
///
|
|
/// \param PointOfInstantiation point at which the function template
|
|
/// specialization was first instantiated.
|
|
void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
|
|
const TemplateArgumentList *TemplateArgs,
|
|
void *InsertPos,
|
|
TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
|
|
const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
|
|
SourceLocation PointOfInstantiation = SourceLocation()) {
|
|
setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
|
|
InsertPos, TSK, TemplateArgsAsWritten,
|
|
PointOfInstantiation);
|
|
}
|
|
|
|
/// Specifies that this function declaration is actually a
|
|
/// dependent function template specialization.
|
|
void setDependentTemplateSpecialization(ASTContext &Context,
|
|
const UnresolvedSetImpl &Templates,
|
|
const TemplateArgumentListInfo &TemplateArgs);
|
|
|
|
DependentFunctionTemplateSpecializationInfo *
|
|
getDependentSpecializationInfo() const;
|
|
|
|
/// Determine what kind of template instantiation this function
|
|
/// represents.
|
|
TemplateSpecializationKind getTemplateSpecializationKind() const;
|
|
|
|
/// Determine the kind of template specialization this function represents
|
|
/// for the purpose of template instantiation.
|
|
TemplateSpecializationKind
|
|
getTemplateSpecializationKindForInstantiation() const;
|
|
|
|
/// Determine what kind of template instantiation this function
|
|
/// represents.
|
|
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation = SourceLocation());
|
|
|
|
/// Retrieve the (first) point of instantiation of a function template
|
|
/// specialization or a member of a class template specialization.
|
|
///
|
|
/// \returns the first point of instantiation, if this function was
|
|
/// instantiated from a template; otherwise, returns an invalid source
|
|
/// location.
|
|
SourceLocation getPointOfInstantiation() const;
|
|
|
|
/// Determine whether this is or was instantiated from an out-of-line
|
|
/// definition of a member function.
|
|
bool isOutOfLine() const override;
|
|
|
|
/// Identify a memory copying or setting function.
|
|
/// If the given function is a memory copy or setting function, returns
|
|
/// the corresponding Builtin ID. If the function is not a memory function,
|
|
/// returns 0.
|
|
unsigned getMemoryFunctionKind() const;
|
|
|
|
/// Returns ODRHash of the function. This value is calculated and
|
|
/// stored on first call, then the stored value returned on the other calls.
|
|
unsigned getODRHash();
|
|
|
|
/// Returns cached ODRHash of the function. This must have been previously
|
|
/// computed and stored.
|
|
unsigned getODRHash() const;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K >= firstFunction && K <= lastFunction;
|
|
}
|
|
static DeclContext *castToDeclContext(const FunctionDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
|
|
}
|
|
static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// Represents a member of a struct/union/class.
|
|
class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
|
|
unsigned BitField : 1;
|
|
unsigned Mutable : 1;
|
|
mutable unsigned CachedFieldIndex : 30;
|
|
|
|
/// The kinds of value we can store in InitializerOrBitWidth.
|
|
///
|
|
/// Note that this is compatible with InClassInitStyle except for
|
|
/// ISK_CapturedVLAType.
|
|
enum InitStorageKind {
|
|
/// If the pointer is null, there's nothing special. Otherwise,
|
|
/// this is a bitfield and the pointer is the Expr* storing the
|
|
/// bit-width.
|
|
ISK_NoInit = (unsigned) ICIS_NoInit,
|
|
|
|
/// The pointer is an (optional due to delayed parsing) Expr*
|
|
/// holding the copy-initializer.
|
|
ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
|
|
|
|
/// The pointer is an (optional due to delayed parsing) Expr*
|
|
/// holding the list-initializer.
|
|
ISK_InClassListInit = (unsigned) ICIS_ListInit,
|
|
|
|
/// The pointer is a VariableArrayType* that's been captured;
|
|
/// the enclosing context is a lambda or captured statement.
|
|
ISK_CapturedVLAType,
|
|
};
|
|
|
|
/// If this is a bitfield with a default member initializer, this
|
|
/// structure is used to represent the two expressions.
|
|
struct InitAndBitWidth {
|
|
Expr *Init;
|
|
Expr *BitWidth;
|
|
};
|
|
|
|
/// Storage for either the bit-width, the in-class initializer, or
|
|
/// both (via InitAndBitWidth), or the captured variable length array bound.
|
|
///
|
|
/// If the storage kind is ISK_InClassCopyInit or
|
|
/// ISK_InClassListInit, but the initializer is null, then this
|
|
/// field has an in-class initializer that has not yet been parsed
|
|
/// and attached.
|
|
// FIXME: Tail-allocate this to reduce the size of FieldDecl in the
|
|
// overwhelmingly common case that we have none of these things.
|
|
llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
|
|
|
|
protected:
|
|
FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
|
|
InClassInitStyle InitStyle)
|
|
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
|
|
BitField(false), Mutable(Mutable), CachedFieldIndex(0),
|
|
InitStorage(nullptr, (InitStorageKind) InitStyle) {
|
|
if (BW)
|
|
setBitWidth(BW);
|
|
}
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
|
|
static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, QualType T,
|
|
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
|
|
InClassInitStyle InitStyle);
|
|
|
|
static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// Returns the index of this field within its record,
|
|
/// as appropriate for passing to ASTRecordLayout::getFieldOffset.
|
|
unsigned getFieldIndex() const;
|
|
|
|
/// Determines whether this field is mutable (C++ only).
|
|
bool isMutable() const { return Mutable; }
|
|
|
|
/// Determines whether this field is a bitfield.
|
|
bool isBitField() const { return BitField; }
|
|
|
|
/// Determines whether this is an unnamed bitfield.
|
|
bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
|
|
|
|
/// Determines whether this field is a
|
|
/// representative for an anonymous struct or union. Such fields are
|
|
/// unnamed and are implicitly generated by the implementation to
|
|
/// store the data for the anonymous union or struct.
|
|
bool isAnonymousStructOrUnion() const;
|
|
|
|
Expr *getBitWidth() const {
|
|
if (!BitField)
|
|
return nullptr;
|
|
void *Ptr = InitStorage.getPointer();
|
|
if (getInClassInitStyle())
|
|
return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
|
|
return static_cast<Expr*>(Ptr);
|
|
}
|
|
|
|
unsigned getBitWidthValue(const ASTContext &Ctx) const;
|
|
|
|
/// Set the bit-field width for this member.
|
|
// Note: used by some clients (i.e., do not remove it).
|
|
void setBitWidth(Expr *Width) {
|
|
assert(!hasCapturedVLAType() && !BitField &&
|
|
"bit width or captured type already set");
|
|
assert(Width && "no bit width specified");
|
|
InitStorage.setPointer(
|
|
InitStorage.getInt()
|
|
? new (getASTContext())
|
|
InitAndBitWidth{getInClassInitializer(), Width}
|
|
: static_cast<void*>(Width));
|
|
BitField = true;
|
|
}
|
|
|
|
/// Remove the bit-field width from this member.
|
|
// Note: used by some clients (i.e., do not remove it).
|
|
void removeBitWidth() {
|
|
assert(isBitField() && "no bitfield width to remove");
|
|
InitStorage.setPointer(getInClassInitializer());
|
|
BitField = false;
|
|
}
|
|
|
|
/// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
|
|
/// at all and instead act as a separator between contiguous runs of other
|
|
/// bit-fields.
|
|
bool isZeroLengthBitField(const ASTContext &Ctx) const;
|
|
|
|
/// Determine if this field is a subobject of zero size, that is, either a
|
|
/// zero-length bit-field or a field of empty class type with the
|
|
/// [[no_unique_address]] attribute.
|
|
bool isZeroSize(const ASTContext &Ctx) const;
|
|
|
|
/// Get the kind of (C++11) default member initializer that this field has.
|
|
InClassInitStyle getInClassInitStyle() const {
|
|
InitStorageKind storageKind = InitStorage.getInt();
|
|
return (storageKind == ISK_CapturedVLAType
|
|
? ICIS_NoInit : (InClassInitStyle) storageKind);
|
|
}
|
|
|
|
/// Determine whether this member has a C++11 default member initializer.
|
|
bool hasInClassInitializer() const {
|
|
return getInClassInitStyle() != ICIS_NoInit;
|
|
}
|
|
|
|
/// Get the C++11 default member initializer for this member, or null if one
|
|
/// has not been set. If a valid declaration has a default member initializer,
|
|
/// but this returns null, then we have not parsed and attached it yet.
|
|
Expr *getInClassInitializer() const {
|
|
if (!hasInClassInitializer())
|
|
return nullptr;
|
|
void *Ptr = InitStorage.getPointer();
|
|
if (BitField)
|
|
return static_cast<InitAndBitWidth*>(Ptr)->Init;
|
|
return static_cast<Expr*>(Ptr);
|
|
}
|
|
|
|
/// Set the C++11 in-class initializer for this member.
|
|
void setInClassInitializer(Expr *Init) {
|
|
assert(hasInClassInitializer() && !getInClassInitializer());
|
|
if (BitField)
|
|
static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
|
|
else
|
|
InitStorage.setPointer(Init);
|
|
}
|
|
|
|
/// Remove the C++11 in-class initializer from this member.
|
|
void removeInClassInitializer() {
|
|
assert(hasInClassInitializer() && "no initializer to remove");
|
|
InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
|
|
}
|
|
|
|
/// Determine whether this member captures the variable length array
|
|
/// type.
|
|
bool hasCapturedVLAType() const {
|
|
return InitStorage.getInt() == ISK_CapturedVLAType;
|
|
}
|
|
|
|
/// Get the captured variable length array type.
|
|
const VariableArrayType *getCapturedVLAType() const {
|
|
return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
|
|
InitStorage.getPointer())
|
|
: nullptr;
|
|
}
|
|
|
|
/// Set the captured variable length array type for this field.
|
|
void setCapturedVLAType(const VariableArrayType *VLAType);
|
|
|
|
/// Returns the parent of this field declaration, which
|
|
/// is the struct in which this field is defined.
|
|
const RecordDecl *getParent() const {
|
|
return cast<RecordDecl>(getDeclContext());
|
|
}
|
|
|
|
RecordDecl *getParent() {
|
|
return cast<RecordDecl>(getDeclContext());
|
|
}
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
/// Retrieves the canonical declaration of this field.
|
|
FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
|
|
const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
|
|
};
|
|
|
|
/// An instance of this object exists for each enum constant
|
|
/// that is defined. For example, in "enum X {a,b}", each of a/b are
|
|
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
|
|
/// TagType for the X EnumDecl.
|
|
class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
|
|
Stmt *Init; // an integer constant expression
|
|
llvm::APSInt Val; // The value.
|
|
|
|
protected:
|
|
EnumConstantDecl(DeclContext *DC, SourceLocation L,
|
|
IdentifierInfo *Id, QualType T, Expr *E,
|
|
const llvm::APSInt &V)
|
|
: ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
|
|
|
|
public:
|
|
friend class StmtIteratorBase;
|
|
|
|
static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
|
|
SourceLocation L, IdentifierInfo *Id,
|
|
QualType T, Expr *E,
|
|
const llvm::APSInt &V);
|
|
static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
const Expr *getInitExpr() const { return (const Expr*) Init; }
|
|
Expr *getInitExpr() { return (Expr*) Init; }
|
|
const llvm::APSInt &getInitVal() const { return Val; }
|
|
|
|
void setInitExpr(Expr *E) { Init = (Stmt*) E; }
|
|
void setInitVal(const llvm::APSInt &V) { Val = V; }
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
/// Retrieves the canonical declaration of this enumerator.
|
|
EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
|
|
const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == EnumConstant; }
|
|
};
|
|
|
|
/// Represents a field injected from an anonymous union/struct into the parent
|
|
/// scope. These are always implicit.
|
|
class IndirectFieldDecl : public ValueDecl,
|
|
public Mergeable<IndirectFieldDecl> {
|
|
NamedDecl **Chaining;
|
|
unsigned ChainingSize;
|
|
|
|
IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
|
|
DeclarationName N, QualType T,
|
|
MutableArrayRef<NamedDecl *> CH);
|
|
|
|
void anchor() override;
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
|
|
static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, IdentifierInfo *Id,
|
|
QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
|
|
|
|
static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
|
|
|
|
ArrayRef<NamedDecl *> chain() const {
|
|
return llvm::makeArrayRef(Chaining, ChainingSize);
|
|
}
|
|
chain_iterator chain_begin() const { return chain().begin(); }
|
|
chain_iterator chain_end() const { return chain().end(); }
|
|
|
|
unsigned getChainingSize() const { return ChainingSize; }
|
|
|
|
FieldDecl *getAnonField() const {
|
|
assert(chain().size() >= 2);
|
|
return cast<FieldDecl>(chain().back());
|
|
}
|
|
|
|
VarDecl *getVarDecl() const {
|
|
assert(chain().size() >= 2);
|
|
return dyn_cast<VarDecl>(chain().front());
|
|
}
|
|
|
|
IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
|
|
const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == IndirectField; }
|
|
};
|
|
|
|
/// Represents a declaration of a type.
|
|
class TypeDecl : public NamedDecl {
|
|
friend class ASTContext;
|
|
|
|
/// This indicates the Type object that represents
|
|
/// this TypeDecl. It is a cache maintained by
|
|
/// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
|
|
/// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
|
|
mutable const Type *TypeForDecl = nullptr;
|
|
|
|
/// The start of the source range for this declaration.
|
|
SourceLocation LocStart;
|
|
|
|
void anchor() override;
|
|
|
|
protected:
|
|
TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
|
|
SourceLocation StartL = SourceLocation())
|
|
: NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
|
|
|
|
public:
|
|
// Low-level accessor. If you just want the type defined by this node,
|
|
// check out ASTContext::getTypeDeclType or one of
|
|
// ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
|
|
// already know the specific kind of node this is.
|
|
const Type *getTypeForDecl() const { return TypeForDecl; }
|
|
void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
|
|
void setLocStart(SourceLocation L) { LocStart = L; }
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
if (LocStart.isValid())
|
|
return SourceRange(LocStart, getLocation());
|
|
else
|
|
return SourceRange(getLocation());
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
|
|
};
|
|
|
|
/// Base class for declarations which introduce a typedef-name.
|
|
class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
|
|
struct alignas(8) ModedTInfo {
|
|
TypeSourceInfo *first;
|
|
QualType second;
|
|
};
|
|
|
|
/// If int part is 0, we have not computed IsTransparentTag.
|
|
/// Otherwise, IsTransparentTag is (getInt() >> 1).
|
|
mutable llvm::PointerIntPair<
|
|
llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
|
|
MaybeModedTInfo;
|
|
|
|
void anchor() override;
|
|
|
|
protected:
|
|
TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, TypeSourceInfo *TInfo)
|
|
: TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
|
|
MaybeModedTInfo(TInfo, 0) {}
|
|
|
|
using redeclarable_base = Redeclarable<TypedefNameDecl>;
|
|
|
|
TypedefNameDecl *getNextRedeclarationImpl() override {
|
|
return getNextRedeclaration();
|
|
}
|
|
|
|
TypedefNameDecl *getPreviousDeclImpl() override {
|
|
return getPreviousDecl();
|
|
}
|
|
|
|
TypedefNameDecl *getMostRecentDeclImpl() override {
|
|
return getMostRecentDecl();
|
|
}
|
|
|
|
public:
|
|
using redecl_range = redeclarable_base::redecl_range;
|
|
using redecl_iterator = redeclarable_base::redecl_iterator;
|
|
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
using redeclarable_base::isFirstDecl;
|
|
|
|
bool isModed() const {
|
|
return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
|
|
}
|
|
|
|
TypeSourceInfo *getTypeSourceInfo() const {
|
|
return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
|
|
: MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
|
|
}
|
|
|
|
QualType getUnderlyingType() const {
|
|
return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
|
|
: MaybeModedTInfo.getPointer()
|
|
.get<TypeSourceInfo *>()
|
|
->getType();
|
|
}
|
|
|
|
void setTypeSourceInfo(TypeSourceInfo *newType) {
|
|
MaybeModedTInfo.setPointer(newType);
|
|
}
|
|
|
|
void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
|
|
MaybeModedTInfo.setPointer(new (getASTContext(), 8)
|
|
ModedTInfo({unmodedTSI, modedTy}));
|
|
}
|
|
|
|
/// Retrieves the canonical declaration of this typedef-name.
|
|
TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
|
|
const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
|
|
|
|
/// Retrieves the tag declaration for which this is the typedef name for
|
|
/// linkage purposes, if any.
|
|
///
|
|
/// \param AnyRedecl Look for the tag declaration in any redeclaration of
|
|
/// this typedef declaration.
|
|
TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
|
|
|
|
/// Determines if this typedef shares a name and spelling location with its
|
|
/// underlying tag type, as is the case with the NS_ENUM macro.
|
|
bool isTransparentTag() const {
|
|
if (MaybeModedTInfo.getInt())
|
|
return MaybeModedTInfo.getInt() & 0x2;
|
|
return isTransparentTagSlow();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K >= firstTypedefName && K <= lastTypedefName;
|
|
}
|
|
|
|
private:
|
|
bool isTransparentTagSlow() const;
|
|
};
|
|
|
|
/// Represents the declaration of a typedef-name via the 'typedef'
|
|
/// type specifier.
|
|
class TypedefDecl : public TypedefNameDecl {
|
|
TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
|
|
: TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
|
|
|
|
public:
|
|
static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, TypeSourceInfo *TInfo);
|
|
static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Typedef; }
|
|
};
|
|
|
|
/// Represents the declaration of a typedef-name via a C++11
|
|
/// alias-declaration.
|
|
class TypeAliasDecl : public TypedefNameDecl {
|
|
/// The template for which this is the pattern, if any.
|
|
TypeAliasTemplateDecl *Template;
|
|
|
|
TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
|
|
: TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
|
|
Template(nullptr) {}
|
|
|
|
public:
|
|
static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, TypeSourceInfo *TInfo);
|
|
static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
|
|
void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == TypeAlias; }
|
|
};
|
|
|
|
/// Represents the declaration of a struct/union/class/enum.
|
|
class TagDecl : public TypeDecl,
|
|
public DeclContext,
|
|
public Redeclarable<TagDecl> {
|
|
// This class stores some data in DeclContext::TagDeclBits
|
|
// to save some space. Use the provided accessors to access it.
|
|
public:
|
|
// This is really ugly.
|
|
using TagKind = TagTypeKind;
|
|
|
|
private:
|
|
SourceRange BraceRange;
|
|
|
|
// A struct representing syntactic qualifier info,
|
|
// to be used for the (uncommon) case of out-of-line declarations.
|
|
using ExtInfo = QualifierInfo;
|
|
|
|
/// If the (out-of-line) tag declaration name
|
|
/// is qualified, it points to the qualifier info (nns and range);
|
|
/// otherwise, if the tag declaration is anonymous and it is part of
|
|
/// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
|
|
/// otherwise, if the tag declaration is anonymous and it is used as a
|
|
/// declaration specifier for variables, it points to the first VarDecl (used
|
|
/// for mangling);
|
|
/// otherwise, it is a null (TypedefNameDecl) pointer.
|
|
llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
|
|
|
|
bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
|
|
ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
|
|
const ExtInfo *getExtInfo() const {
|
|
return TypedefNameDeclOrQualifier.get<ExtInfo *>();
|
|
}
|
|
|
|
protected:
|
|
TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
|
|
SourceLocation StartL);
|
|
|
|
using redeclarable_base = Redeclarable<TagDecl>;
|
|
|
|
TagDecl *getNextRedeclarationImpl() override {
|
|
return getNextRedeclaration();
|
|
}
|
|
|
|
TagDecl *getPreviousDeclImpl() override {
|
|
return getPreviousDecl();
|
|
}
|
|
|
|
TagDecl *getMostRecentDeclImpl() override {
|
|
return getMostRecentDecl();
|
|
}
|
|
|
|
/// Completes the definition of this tag declaration.
|
|
///
|
|
/// This is a helper function for derived classes.
|
|
void completeDefinition();
|
|
|
|
/// True if this decl is currently being defined.
|
|
void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
|
|
|
|
/// Indicates whether it is possible for declarations of this kind
|
|
/// to have an out-of-date definition.
|
|
///
|
|
/// This option is only enabled when modules are enabled.
|
|
void setMayHaveOutOfDateDef(bool V = true) {
|
|
TagDeclBits.MayHaveOutOfDateDef = V;
|
|
}
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
|
|
using redecl_range = redeclarable_base::redecl_range;
|
|
using redecl_iterator = redeclarable_base::redecl_iterator;
|
|
|
|
using redeclarable_base::redecls_begin;
|
|
using redeclarable_base::redecls_end;
|
|
using redeclarable_base::redecls;
|
|
using redeclarable_base::getPreviousDecl;
|
|
using redeclarable_base::getMostRecentDecl;
|
|
using redeclarable_base::isFirstDecl;
|
|
|
|
SourceRange getBraceRange() const { return BraceRange; }
|
|
void setBraceRange(SourceRange R) { BraceRange = R; }
|
|
|
|
/// Return SourceLocation representing start of source
|
|
/// range ignoring outer template declarations.
|
|
SourceLocation getInnerLocStart() const { return getBeginLoc(); }
|
|
|
|
/// Return SourceLocation representing start of source
|
|
/// range taking into account any outer template declarations.
|
|
SourceLocation getOuterLocStart() const;
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
TagDecl *getCanonicalDecl() override;
|
|
const TagDecl *getCanonicalDecl() const {
|
|
return const_cast<TagDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
/// Return true if this declaration is a completion definition of the type.
|
|
/// Provided for consistency.
|
|
bool isThisDeclarationADefinition() const {
|
|
return isCompleteDefinition();
|
|
}
|
|
|
|
/// Return true if this decl has its body fully specified.
|
|
bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
|
|
|
|
/// True if this decl has its body fully specified.
|
|
void setCompleteDefinition(bool V = true) {
|
|
TagDeclBits.IsCompleteDefinition = V;
|
|
}
|
|
|
|
/// Return true if this complete decl is
|
|
/// required to be complete for some existing use.
|
|
bool isCompleteDefinitionRequired() const {
|
|
return TagDeclBits.IsCompleteDefinitionRequired;
|
|
}
|
|
|
|
/// True if this complete decl is
|
|
/// required to be complete for some existing use.
|
|
void setCompleteDefinitionRequired(bool V = true) {
|
|
TagDeclBits.IsCompleteDefinitionRequired = V;
|
|
}
|
|
|
|
/// Return true if this decl is currently being defined.
|
|
bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
|
|
|
|
/// True if this tag declaration is "embedded" (i.e., defined or declared
|
|
/// for the very first time) in the syntax of a declarator.
|
|
bool isEmbeddedInDeclarator() const {
|
|
return TagDeclBits.IsEmbeddedInDeclarator;
|
|
}
|
|
|
|
/// True if this tag declaration is "embedded" (i.e., defined or declared
|
|
/// for the very first time) in the syntax of a declarator.
|
|
void setEmbeddedInDeclarator(bool isInDeclarator) {
|
|
TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
|
|
}
|
|
|
|
/// True if this tag is free standing, e.g. "struct foo;".
|
|
bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
|
|
|
|
/// True if this tag is free standing, e.g. "struct foo;".
|
|
void setFreeStanding(bool isFreeStanding = true) {
|
|
TagDeclBits.IsFreeStanding = isFreeStanding;
|
|
}
|
|
|
|
/// Indicates whether it is possible for declarations of this kind
|
|
/// to have an out-of-date definition.
|
|
///
|
|
/// This option is only enabled when modules are enabled.
|
|
bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
|
|
|
|
/// Whether this declaration declares a type that is
|
|
/// dependent, i.e., a type that somehow depends on template
|
|
/// parameters.
|
|
bool isDependentType() const { return isDependentContext(); }
|
|
|
|
/// Starts the definition of this tag declaration.
|
|
///
|
|
/// This method should be invoked at the beginning of the definition
|
|
/// of this tag declaration. It will set the tag type into a state
|
|
/// where it is in the process of being defined.
|
|
void startDefinition();
|
|
|
|
/// Returns the TagDecl that actually defines this
|
|
/// struct/union/class/enum. When determining whether or not a
|
|
/// struct/union/class/enum has a definition, one should use this
|
|
/// method as opposed to 'isDefinition'. 'isDefinition' indicates
|
|
/// whether or not a specific TagDecl is defining declaration, not
|
|
/// whether or not the struct/union/class/enum type is defined.
|
|
/// This method returns NULL if there is no TagDecl that defines
|
|
/// the struct/union/class/enum.
|
|
TagDecl *getDefinition() const;
|
|
|
|
StringRef getKindName() const {
|
|
return TypeWithKeyword::getTagTypeKindName(getTagKind());
|
|
}
|
|
|
|
TagKind getTagKind() const {
|
|
return static_cast<TagKind>(TagDeclBits.TagDeclKind);
|
|
}
|
|
|
|
void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
|
|
|
|
bool isStruct() const { return getTagKind() == TTK_Struct; }
|
|
bool isInterface() const { return getTagKind() == TTK_Interface; }
|
|
bool isClass() const { return getTagKind() == TTK_Class; }
|
|
bool isUnion() const { return getTagKind() == TTK_Union; }
|
|
bool isEnum() const { return getTagKind() == TTK_Enum; }
|
|
|
|
/// Is this tag type named, either directly or via being defined in
|
|
/// a typedef of this type?
|
|
///
|
|
/// C++11 [basic.link]p8:
|
|
/// A type is said to have linkage if and only if:
|
|
/// - it is a class or enumeration type that is named (or has a
|
|
/// name for linkage purposes) and the name has linkage; ...
|
|
/// C++11 [dcl.typedef]p9:
|
|
/// If the typedef declaration defines an unnamed class (or enum),
|
|
/// the first typedef-name declared by the declaration to be that
|
|
/// class type (or enum type) is used to denote the class type (or
|
|
/// enum type) for linkage purposes only.
|
|
///
|
|
/// C does not have an analogous rule, but the same concept is
|
|
/// nonetheless useful in some places.
|
|
bool hasNameForLinkage() const {
|
|
return (getDeclName() || getTypedefNameForAnonDecl());
|
|
}
|
|
|
|
TypedefNameDecl *getTypedefNameForAnonDecl() const {
|
|
return hasExtInfo() ? nullptr
|
|
: TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
|
|
}
|
|
|
|
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
|
|
|
|
/// Retrieve the nested-name-specifier that qualifies the name of this
|
|
/// declaration, if it was present in the source.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
|
|
: nullptr;
|
|
}
|
|
|
|
/// Retrieve the nested-name-specifier (with source-location
|
|
/// information) that qualifies the name of this declaration, if it was
|
|
/// present in the source.
|
|
NestedNameSpecifierLoc getQualifierLoc() const {
|
|
return hasExtInfo() ? getExtInfo()->QualifierLoc
|
|
: NestedNameSpecifierLoc();
|
|
}
|
|
|
|
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
|
|
|
|
unsigned getNumTemplateParameterLists() const {
|
|
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
|
|
}
|
|
|
|
TemplateParameterList *getTemplateParameterList(unsigned i) const {
|
|
assert(i < getNumTemplateParameterLists());
|
|
return getExtInfo()->TemplParamLists[i];
|
|
}
|
|
|
|
void setTemplateParameterListsInfo(ASTContext &Context,
|
|
ArrayRef<TemplateParameterList *> TPLists);
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
|
|
|
|
static DeclContext *castToDeclContext(const TagDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
|
|
}
|
|
|
|
static TagDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// Represents an enum. In C++11, enums can be forward-declared
|
|
/// with a fixed underlying type, and in C we allow them to be forward-declared
|
|
/// with no underlying type as an extension.
|
|
class EnumDecl : public TagDecl {
|
|
// This class stores some data in DeclContext::EnumDeclBits
|
|
// to save some space. Use the provided accessors to access it.
|
|
|
|
/// This represent the integer type that the enum corresponds
|
|
/// to for code generation purposes. Note that the enumerator constants may
|
|
/// have a different type than this does.
|
|
///
|
|
/// If the underlying integer type was explicitly stated in the source
|
|
/// code, this is a TypeSourceInfo* for that type. Otherwise this type
|
|
/// was automatically deduced somehow, and this is a Type*.
|
|
///
|
|
/// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
|
|
/// some cases it won't.
|
|
///
|
|
/// The underlying type of an enumeration never has any qualifiers, so
|
|
/// we can get away with just storing a raw Type*, and thus save an
|
|
/// extra pointer when TypeSourceInfo is needed.
|
|
llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
|
|
|
|
/// The integer type that values of this type should
|
|
/// promote to. In C, enumerators are generally of an integer type
|
|
/// directly, but gcc-style large enumerators (and all enumerators
|
|
/// in C++) are of the enum type instead.
|
|
QualType PromotionType;
|
|
|
|
/// If this enumeration is an instantiation of a member enumeration
|
|
/// of a class template specialization, this is the member specialization
|
|
/// information.
|
|
MemberSpecializationInfo *SpecializationInfo = nullptr;
|
|
|
|
/// Store the ODRHash after first calculation.
|
|
/// The corresponding flag HasODRHash is in EnumDeclBits
|
|
/// and can be accessed with the provided accessors.
|
|
unsigned ODRHash;
|
|
|
|
EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
|
|
bool Scoped, bool ScopedUsingClassTag, bool Fixed);
|
|
|
|
void anchor() override;
|
|
|
|
void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
/// Sets the width in bits required to store all the
|
|
/// non-negative enumerators of this enum.
|
|
void setNumPositiveBits(unsigned Num) {
|
|
EnumDeclBits.NumPositiveBits = Num;
|
|
assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
|
|
}
|
|
|
|
/// Returns the width in bits required to store all the
|
|
/// negative enumerators of this enum. (see getNumNegativeBits)
|
|
void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
|
|
|
|
/// True if this tag declaration is a scoped enumeration. Only
|
|
/// possible in C++11 mode.
|
|
void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
|
|
|
|
/// If this tag declaration is a scoped enum,
|
|
/// then this is true if the scoped enum was declared using the class
|
|
/// tag, false if it was declared with the struct tag. No meaning is
|
|
/// associated if this tag declaration is not a scoped enum.
|
|
void setScopedUsingClassTag(bool ScopedUCT = true) {
|
|
EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
|
|
}
|
|
|
|
/// True if this is an Objective-C, C++11, or
|
|
/// Microsoft-style enumeration with a fixed underlying type.
|
|
void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
|
|
|
|
/// True if a valid hash is stored in ODRHash.
|
|
bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
|
|
void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
|
|
EnumDecl *getCanonicalDecl() override {
|
|
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
|
|
}
|
|
const EnumDecl *getCanonicalDecl() const {
|
|
return const_cast<EnumDecl*>(this)->getCanonicalDecl();
|
|
}
|
|
|
|
EnumDecl *getPreviousDecl() {
|
|
return cast_or_null<EnumDecl>(
|
|
static_cast<TagDecl *>(this)->getPreviousDecl());
|
|
}
|
|
const EnumDecl *getPreviousDecl() const {
|
|
return const_cast<EnumDecl*>(this)->getPreviousDecl();
|
|
}
|
|
|
|
EnumDecl *getMostRecentDecl() {
|
|
return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
|
|
}
|
|
const EnumDecl *getMostRecentDecl() const {
|
|
return const_cast<EnumDecl*>(this)->getMostRecentDecl();
|
|
}
|
|
|
|
EnumDecl *getDefinition() const {
|
|
return cast_or_null<EnumDecl>(TagDecl::getDefinition());
|
|
}
|
|
|
|
static EnumDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, EnumDecl *PrevDecl,
|
|
bool IsScoped, bool IsScopedUsingClassTag,
|
|
bool IsFixed);
|
|
static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
/// When created, the EnumDecl corresponds to a
|
|
/// forward-declared enum. This method is used to mark the
|
|
/// declaration as being defined; its enumerators have already been
|
|
/// added (via DeclContext::addDecl). NewType is the new underlying
|
|
/// type of the enumeration type.
|
|
void completeDefinition(QualType NewType,
|
|
QualType PromotionType,
|
|
unsigned NumPositiveBits,
|
|
unsigned NumNegativeBits);
|
|
|
|
// Iterates through the enumerators of this enumeration.
|
|
using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
|
|
using enumerator_range =
|
|
llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
|
|
|
|
enumerator_range enumerators() const {
|
|
return enumerator_range(enumerator_begin(), enumerator_end());
|
|
}
|
|
|
|
enumerator_iterator enumerator_begin() const {
|
|
const EnumDecl *E = getDefinition();
|
|
if (!E)
|
|
E = this;
|
|
return enumerator_iterator(E->decls_begin());
|
|
}
|
|
|
|
enumerator_iterator enumerator_end() const {
|
|
const EnumDecl *E = getDefinition();
|
|
if (!E)
|
|
E = this;
|
|
return enumerator_iterator(E->decls_end());
|
|
}
|
|
|
|
/// Return the integer type that enumerators should promote to.
|
|
QualType getPromotionType() const { return PromotionType; }
|
|
|
|
/// Set the promotion type.
|
|
void setPromotionType(QualType T) { PromotionType = T; }
|
|
|
|
/// Return the integer type this enum decl corresponds to.
|
|
/// This returns a null QualType for an enum forward definition with no fixed
|
|
/// underlying type.
|
|
QualType getIntegerType() const {
|
|
if (!IntegerType)
|
|
return QualType();
|
|
if (const Type *T = IntegerType.dyn_cast<const Type*>())
|
|
return QualType(T, 0);
|
|
return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
|
|
}
|
|
|
|
/// Set the underlying integer type.
|
|
void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
|
|
|
|
/// Set the underlying integer type source info.
|
|
void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
|
|
|
|
/// Return the type source info for the underlying integer type,
|
|
/// if no type source info exists, return 0.
|
|
TypeSourceInfo *getIntegerTypeSourceInfo() const {
|
|
return IntegerType.dyn_cast<TypeSourceInfo*>();
|
|
}
|
|
|
|
/// Retrieve the source range that covers the underlying type if
|
|
/// specified.
|
|
SourceRange getIntegerTypeRange() const LLVM_READONLY;
|
|
|
|
/// Returns the width in bits required to store all the
|
|
/// non-negative enumerators of this enum.
|
|
unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
|
|
|
|
/// Returns the width in bits required to store all the
|
|
/// negative enumerators of this enum. These widths include
|
|
/// the rightmost leading 1; that is:
|
|
///
|
|
/// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
|
|
/// ------------------------ ------- -----------------
|
|
/// -1 1111111 1
|
|
/// -10 1110110 5
|
|
/// -101 1001011 8
|
|
unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
|
|
|
|
/// Returns true if this is a C++11 scoped enumeration.
|
|
bool isScoped() const { return EnumDeclBits.IsScoped; }
|
|
|
|
/// Returns true if this is a C++11 scoped enumeration.
|
|
bool isScopedUsingClassTag() const {
|
|
return EnumDeclBits.IsScopedUsingClassTag;
|
|
}
|
|
|
|
/// Returns true if this is an Objective-C, C++11, or
|
|
/// Microsoft-style enumeration with a fixed underlying type.
|
|
bool isFixed() const { return EnumDeclBits.IsFixed; }
|
|
|
|
unsigned getODRHash();
|
|
|
|
/// Returns true if this can be considered a complete type.
|
|
bool isComplete() const {
|
|
// IntegerType is set for fixed type enums and non-fixed but implicitly
|
|
// int-sized Microsoft enums.
|
|
return isCompleteDefinition() || IntegerType;
|
|
}
|
|
|
|
/// Returns true if this enum is either annotated with
|
|
/// enum_extensibility(closed) or isn't annotated with enum_extensibility.
|
|
bool isClosed() const;
|
|
|
|
/// Returns true if this enum is annotated with flag_enum and isn't annotated
|
|
/// with enum_extensibility(open).
|
|
bool isClosedFlag() const;
|
|
|
|
/// Returns true if this enum is annotated with neither flag_enum nor
|
|
/// enum_extensibility(open).
|
|
bool isClosedNonFlag() const;
|
|
|
|
/// Retrieve the enum definition from which this enumeration could
|
|
/// be instantiated, if it is an instantiation (rather than a non-template).
|
|
EnumDecl *getTemplateInstantiationPattern() const;
|
|
|
|
/// Returns the enumeration (declared within the template)
|
|
/// from which this enumeration type was instantiated, or NULL if
|
|
/// this enumeration was not instantiated from any template.
|
|
EnumDecl *getInstantiatedFromMemberEnum() const;
|
|
|
|
/// If this enumeration is a member of a specialization of a
|
|
/// templated class, determine what kind of template specialization
|
|
/// or instantiation this is.
|
|
TemplateSpecializationKind getTemplateSpecializationKind() const;
|
|
|
|
/// For an enumeration member that was instantiated from a member
|
|
/// enumeration of a templated class, set the template specialiation kind.
|
|
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation = SourceLocation());
|
|
|
|
/// If this enumeration is an instantiation of a member enumeration of
|
|
/// a class template specialization, retrieves the member specialization
|
|
/// information.
|
|
MemberSpecializationInfo *getMemberSpecializationInfo() const {
|
|
return SpecializationInfo;
|
|
}
|
|
|
|
/// Specify that this enumeration is an instantiation of the
|
|
/// member enumeration ED.
|
|
void setInstantiationOfMemberEnum(EnumDecl *ED,
|
|
TemplateSpecializationKind TSK) {
|
|
setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Enum; }
|
|
};
|
|
|
|
/// Represents a struct/union/class. For example:
|
|
/// struct X; // Forward declaration, no "body".
|
|
/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
|
|
/// This decl will be marked invalid if *any* members are invalid.
|
|
class RecordDecl : public TagDecl {
|
|
// This class stores some data in DeclContext::RecordDeclBits
|
|
// to save some space. Use the provided accessors to access it.
|
|
public:
|
|
friend class DeclContext;
|
|
/// Enum that represents the different ways arguments are passed to and
|
|
/// returned from function calls. This takes into account the target-specific
|
|
/// and version-specific rules along with the rules determined by the
|
|
/// language.
|
|
enum ArgPassingKind : unsigned {
|
|
/// The argument of this type can be passed directly in registers.
|
|
APK_CanPassInRegs,
|
|
|
|
/// The argument of this type cannot be passed directly in registers.
|
|
/// Records containing this type as a subobject are not forced to be passed
|
|
/// indirectly. This value is used only in C++. This value is required by
|
|
/// C++ because, in uncommon situations, it is possible for a class to have
|
|
/// only trivial copy/move constructors even when one of its subobjects has
|
|
/// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
|
|
/// constructor in the derived class is deleted).
|
|
APK_CannotPassInRegs,
|
|
|
|
/// The argument of this type cannot be passed directly in registers.
|
|
/// Records containing this type as a subobject are forced to be passed
|
|
/// indirectly.
|
|
APK_CanNeverPassInRegs
|
|
};
|
|
|
|
protected:
|
|
RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, RecordDecl *PrevDecl);
|
|
|
|
public:
|
|
static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
|
|
static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
|
|
|
|
RecordDecl *getPreviousDecl() {
|
|
return cast_or_null<RecordDecl>(
|
|
static_cast<TagDecl *>(this)->getPreviousDecl());
|
|
}
|
|
const RecordDecl *getPreviousDecl() const {
|
|
return const_cast<RecordDecl*>(this)->getPreviousDecl();
|
|
}
|
|
|
|
RecordDecl *getMostRecentDecl() {
|
|
return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
|
|
}
|
|
const RecordDecl *getMostRecentDecl() const {
|
|
return const_cast<RecordDecl*>(this)->getMostRecentDecl();
|
|
}
|
|
|
|
bool hasFlexibleArrayMember() const {
|
|
return RecordDeclBits.HasFlexibleArrayMember;
|
|
}
|
|
|
|
void setHasFlexibleArrayMember(bool V) {
|
|
RecordDeclBits.HasFlexibleArrayMember = V;
|
|
}
|
|
|
|
/// Whether this is an anonymous struct or union. To be an anonymous
|
|
/// struct or union, it must have been declared without a name and
|
|
/// there must be no objects of this type declared, e.g.,
|
|
/// @code
|
|
/// union { int i; float f; };
|
|
/// @endcode
|
|
/// is an anonymous union but neither of the following are:
|
|
/// @code
|
|
/// union X { int i; float f; };
|
|
/// union { int i; float f; } obj;
|
|
/// @endcode
|
|
bool isAnonymousStructOrUnion() const {
|
|
return RecordDeclBits.AnonymousStructOrUnion;
|
|
}
|
|
|
|
void setAnonymousStructOrUnion(bool Anon) {
|
|
RecordDeclBits.AnonymousStructOrUnion = Anon;
|
|
}
|
|
|
|
bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
|
|
void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
|
|
|
|
bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
|
|
|
|
void setHasVolatileMember(bool val) {
|
|
RecordDeclBits.HasVolatileMember = val;
|
|
}
|
|
|
|
bool hasLoadedFieldsFromExternalStorage() const {
|
|
return RecordDeclBits.LoadedFieldsFromExternalStorage;
|
|
}
|
|
|
|
void setHasLoadedFieldsFromExternalStorage(bool val) const {
|
|
RecordDeclBits.LoadedFieldsFromExternalStorage = val;
|
|
}
|
|
|
|
/// Functions to query basic properties of non-trivial C structs.
|
|
bool isNonTrivialToPrimitiveDefaultInitialize() const {
|
|
return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
|
|
}
|
|
|
|
void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
|
|
RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
|
|
}
|
|
|
|
bool isNonTrivialToPrimitiveCopy() const {
|
|
return RecordDeclBits.NonTrivialToPrimitiveCopy;
|
|
}
|
|
|
|
void setNonTrivialToPrimitiveCopy(bool V) {
|
|
RecordDeclBits.NonTrivialToPrimitiveCopy = V;
|
|
}
|
|
|
|
bool isNonTrivialToPrimitiveDestroy() const {
|
|
return RecordDeclBits.NonTrivialToPrimitiveDestroy;
|
|
}
|
|
|
|
void setNonTrivialToPrimitiveDestroy(bool V) {
|
|
RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
|
|
}
|
|
|
|
/// Determine whether this class can be passed in registers. In C++ mode,
|
|
/// it must have at least one trivial, non-deleted copy or move constructor.
|
|
/// FIXME: This should be set as part of completeDefinition.
|
|
bool canPassInRegisters() const {
|
|
return getArgPassingRestrictions() == APK_CanPassInRegs;
|
|
}
|
|
|
|
ArgPassingKind getArgPassingRestrictions() const {
|
|
return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
|
|
}
|
|
|
|
void setArgPassingRestrictions(ArgPassingKind Kind) {
|
|
RecordDeclBits.ArgPassingRestrictions = Kind;
|
|
}
|
|
|
|
bool isParamDestroyedInCallee() const {
|
|
return RecordDeclBits.ParamDestroyedInCallee;
|
|
}
|
|
|
|
void setParamDestroyedInCallee(bool V) {
|
|
RecordDeclBits.ParamDestroyedInCallee = V;
|
|
}
|
|
|
|
/// Determines whether this declaration represents the
|
|
/// injected class name.
|
|
///
|
|
/// The injected class name in C++ is the name of the class that
|
|
/// appears inside the class itself. For example:
|
|
///
|
|
/// \code
|
|
/// struct C {
|
|
/// // C is implicitly declared here as a synonym for the class name.
|
|
/// };
|
|
///
|
|
/// C::C c; // same as "C c;"
|
|
/// \endcode
|
|
bool isInjectedClassName() const;
|
|
|
|
/// Determine whether this record is a class describing a lambda
|
|
/// function object.
|
|
bool isLambda() const;
|
|
|
|
/// Determine whether this record is a record for captured variables in
|
|
/// CapturedStmt construct.
|
|
bool isCapturedRecord() const;
|
|
|
|
/// Mark the record as a record for captured variables in CapturedStmt
|
|
/// construct.
|
|
void setCapturedRecord();
|
|
|
|
/// Returns the RecordDecl that actually defines
|
|
/// this struct/union/class. When determining whether or not a
|
|
/// struct/union/class is completely defined, one should use this
|
|
/// method as opposed to 'isCompleteDefinition'.
|
|
/// 'isCompleteDefinition' indicates whether or not a specific
|
|
/// RecordDecl is a completed definition, not whether or not the
|
|
/// record type is defined. This method returns NULL if there is
|
|
/// no RecordDecl that defines the struct/union/tag.
|
|
RecordDecl *getDefinition() const {
|
|
return cast_or_null<RecordDecl>(TagDecl::getDefinition());
|
|
}
|
|
|
|
// Iterator access to field members. The field iterator only visits
|
|
// the non-static data members of this class, ignoring any static
|
|
// data members, functions, constructors, destructors, etc.
|
|
using field_iterator = specific_decl_iterator<FieldDecl>;
|
|
using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
|
|
|
|
field_range fields() const { return field_range(field_begin(), field_end()); }
|
|
field_iterator field_begin() const;
|
|
|
|
field_iterator field_end() const {
|
|
return field_iterator(decl_iterator());
|
|
}
|
|
|
|
// Whether there are any fields (non-static data members) in this record.
|
|
bool field_empty() const {
|
|
return field_begin() == field_end();
|
|
}
|
|
|
|
/// Note that the definition of this type is now complete.
|
|
virtual void completeDefinition();
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) {
|
|
return K >= firstRecord && K <= lastRecord;
|
|
}
|
|
|
|
/// Get whether or not this is an ms_struct which can
|
|
/// be turned on with an attribute, pragma, or -mms-bitfields
|
|
/// commandline option.
|
|
bool isMsStruct(const ASTContext &C) const;
|
|
|
|
/// Whether we are allowed to insert extra padding between fields.
|
|
/// These padding are added to help AddressSanitizer detect
|
|
/// intra-object-overflow bugs.
|
|
bool mayInsertExtraPadding(bool EmitRemark = false) const;
|
|
|
|
/// Finds the first data member which has a name.
|
|
/// nullptr is returned if no named data member exists.
|
|
const FieldDecl *findFirstNamedDataMember() const;
|
|
|
|
private:
|
|
/// Deserialize just the fields.
|
|
void LoadFieldsFromExternalStorage() const;
|
|
};
|
|
|
|
class FileScopeAsmDecl : public Decl {
|
|
StringLiteral *AsmString;
|
|
SourceLocation RParenLoc;
|
|
|
|
FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
|
|
SourceLocation StartL, SourceLocation EndL)
|
|
: Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
|
|
StringLiteral *Str, SourceLocation AsmLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceLocation getAsmLoc() const { return getLocation(); }
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(getAsmLoc(), getRParenLoc());
|
|
}
|
|
|
|
const StringLiteral *getAsmString() const { return AsmString; }
|
|
StringLiteral *getAsmString() { return AsmString; }
|
|
void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == FileScopeAsm; }
|
|
};
|
|
|
|
/// Represents a block literal declaration, which is like an
|
|
/// unnamed FunctionDecl. For example:
|
|
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
|
|
class BlockDecl : public Decl, public DeclContext {
|
|
// This class stores some data in DeclContext::BlockDeclBits
|
|
// to save some space. Use the provided accessors to access it.
|
|
public:
|
|
/// A class which contains all the information about a particular
|
|
/// captured value.
|
|
class Capture {
|
|
enum {
|
|
flag_isByRef = 0x1,
|
|
flag_isNested = 0x2
|
|
};
|
|
|
|
/// The variable being captured.
|
|
llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
|
|
|
|
/// The copy expression, expressed in terms of a DeclRef (or
|
|
/// BlockDeclRef) to the captured variable. Only required if the
|
|
/// variable has a C++ class type.
|
|
Expr *CopyExpr;
|
|
|
|
public:
|
|
Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
|
|
: VariableAndFlags(variable,
|
|
(byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
|
|
CopyExpr(copy) {}
|
|
|
|
/// The variable being captured.
|
|
VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
|
|
|
|
/// Whether this is a "by ref" capture, i.e. a capture of a __block
|
|
/// variable.
|
|
bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
|
|
|
|
bool isEscapingByref() const {
|
|
return getVariable()->isEscapingByref();
|
|
}
|
|
|
|
bool isNonEscapingByref() const {
|
|
return getVariable()->isNonEscapingByref();
|
|
}
|
|
|
|
/// Whether this is a nested capture, i.e. the variable captured
|
|
/// is not from outside the immediately enclosing function/block.
|
|
bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
|
|
|
|
bool hasCopyExpr() const { return CopyExpr != nullptr; }
|
|
Expr *getCopyExpr() const { return CopyExpr; }
|
|
void setCopyExpr(Expr *e) { CopyExpr = e; }
|
|
};
|
|
|
|
private:
|
|
/// A new[]'d array of pointers to ParmVarDecls for the formal
|
|
/// parameters of this function. This is null if a prototype or if there are
|
|
/// no formals.
|
|
ParmVarDecl **ParamInfo = nullptr;
|
|
unsigned NumParams = 0;
|
|
|
|
Stmt *Body = nullptr;
|
|
TypeSourceInfo *SignatureAsWritten = nullptr;
|
|
|
|
const Capture *Captures = nullptr;
|
|
unsigned NumCaptures = 0;
|
|
|
|
unsigned ManglingNumber = 0;
|
|
Decl *ManglingContextDecl = nullptr;
|
|
|
|
protected:
|
|
BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
|
|
|
|
public:
|
|
static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
|
|
static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceLocation getCaretLocation() const { return getLocation(); }
|
|
|
|
bool isVariadic() const { return BlockDeclBits.IsVariadic; }
|
|
void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
|
|
|
|
CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
|
|
Stmt *getBody() const override { return (Stmt*) Body; }
|
|
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
|
|
|
|
void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
|
|
TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
|
|
|
|
// ArrayRef access to formal parameters.
|
|
ArrayRef<ParmVarDecl *> parameters() const {
|
|
return {ParamInfo, getNumParams()};
|
|
}
|
|
MutableArrayRef<ParmVarDecl *> parameters() {
|
|
return {ParamInfo, getNumParams()};
|
|
}
|
|
|
|
// Iterator access to formal parameters.
|
|
using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
|
|
using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
|
|
|
|
bool param_empty() const { return parameters().empty(); }
|
|
param_iterator param_begin() { return parameters().begin(); }
|
|
param_iterator param_end() { return parameters().end(); }
|
|
param_const_iterator param_begin() const { return parameters().begin(); }
|
|
param_const_iterator param_end() const { return parameters().end(); }
|
|
size_t param_size() const { return parameters().size(); }
|
|
|
|
unsigned getNumParams() const { return NumParams; }
|
|
|
|
const ParmVarDecl *getParamDecl(unsigned i) const {
|
|
assert(i < getNumParams() && "Illegal param #");
|
|
return ParamInfo[i];
|
|
}
|
|
ParmVarDecl *getParamDecl(unsigned i) {
|
|
assert(i < getNumParams() && "Illegal param #");
|
|
return ParamInfo[i];
|
|
}
|
|
|
|
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
|
|
|
|
/// True if this block (or its nested blocks) captures
|
|
/// anything of local storage from its enclosing scopes.
|
|
bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
|
|
|
|
/// Returns the number of captured variables.
|
|
/// Does not include an entry for 'this'.
|
|
unsigned getNumCaptures() const { return NumCaptures; }
|
|
|
|
using capture_const_iterator = ArrayRef<Capture>::const_iterator;
|
|
|
|
ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
|
|
|
|
capture_const_iterator capture_begin() const { return captures().begin(); }
|
|
capture_const_iterator capture_end() const { return captures().end(); }
|
|
|
|
bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
|
|
void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
|
|
|
|
bool blockMissingReturnType() const {
|
|
return BlockDeclBits.BlockMissingReturnType;
|
|
}
|
|
|
|
void setBlockMissingReturnType(bool val = true) {
|
|
BlockDeclBits.BlockMissingReturnType = val;
|
|
}
|
|
|
|
bool isConversionFromLambda() const {
|
|
return BlockDeclBits.IsConversionFromLambda;
|
|
}
|
|
|
|
void setIsConversionFromLambda(bool val = true) {
|
|
BlockDeclBits.IsConversionFromLambda = val;
|
|
}
|
|
|
|
bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
|
|
void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
|
|
|
|
bool canAvoidCopyToHeap() const {
|
|
return BlockDeclBits.CanAvoidCopyToHeap;
|
|
}
|
|
void setCanAvoidCopyToHeap(bool B = true) {
|
|
BlockDeclBits.CanAvoidCopyToHeap = B;
|
|
}
|
|
|
|
bool capturesVariable(const VarDecl *var) const;
|
|
|
|
void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
|
|
bool CapturesCXXThis);
|
|
|
|
unsigned getBlockManglingNumber() const {
|
|
return ManglingNumber;
|
|
}
|
|
|
|
Decl *getBlockManglingContextDecl() const {
|
|
return ManglingContextDecl;
|
|
}
|
|
|
|
void setBlockMangling(unsigned Number, Decl *Ctx) {
|
|
ManglingNumber = Number;
|
|
ManglingContextDecl = Ctx;
|
|
}
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Block; }
|
|
static DeclContext *castToDeclContext(const BlockDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
|
|
}
|
|
static BlockDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// Represents the body of a CapturedStmt, and serves as its DeclContext.
|
|
class CapturedDecl final
|
|
: public Decl,
|
|
public DeclContext,
|
|
private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
|
|
protected:
|
|
size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
|
|
return NumParams;
|
|
}
|
|
|
|
private:
|
|
/// The number of parameters to the outlined function.
|
|
unsigned NumParams;
|
|
|
|
/// The position of context parameter in list of parameters.
|
|
unsigned ContextParam;
|
|
|
|
/// The body of the outlined function.
|
|
llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
|
|
|
|
explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
|
|
|
|
ImplicitParamDecl *const *getParams() const {
|
|
return getTrailingObjects<ImplicitParamDecl *>();
|
|
}
|
|
|
|
ImplicitParamDecl **getParams() {
|
|
return getTrailingObjects<ImplicitParamDecl *>();
|
|
}
|
|
|
|
public:
|
|
friend class ASTDeclReader;
|
|
friend class ASTDeclWriter;
|
|
friend TrailingObjects;
|
|
|
|
static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
|
|
unsigned NumParams);
|
|
static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumParams);
|
|
|
|
Stmt *getBody() const override;
|
|
void setBody(Stmt *B);
|
|
|
|
bool isNothrow() const;
|
|
void setNothrow(bool Nothrow = true);
|
|
|
|
unsigned getNumParams() const { return NumParams; }
|
|
|
|
ImplicitParamDecl *getParam(unsigned i) const {
|
|
assert(i < NumParams);
|
|
return getParams()[i];
|
|
}
|
|
void setParam(unsigned i, ImplicitParamDecl *P) {
|
|
assert(i < NumParams);
|
|
getParams()[i] = P;
|
|
}
|
|
|
|
// ArrayRef interface to parameters.
|
|
ArrayRef<ImplicitParamDecl *> parameters() const {
|
|
return {getParams(), getNumParams()};
|
|
}
|
|
MutableArrayRef<ImplicitParamDecl *> parameters() {
|
|
return {getParams(), getNumParams()};
|
|
}
|
|
|
|
/// Retrieve the parameter containing captured variables.
|
|
ImplicitParamDecl *getContextParam() const {
|
|
assert(ContextParam < NumParams);
|
|
return getParam(ContextParam);
|
|
}
|
|
void setContextParam(unsigned i, ImplicitParamDecl *P) {
|
|
assert(i < NumParams);
|
|
ContextParam = i;
|
|
setParam(i, P);
|
|
}
|
|
unsigned getContextParamPosition() const { return ContextParam; }
|
|
|
|
using param_iterator = ImplicitParamDecl *const *;
|
|
using param_range = llvm::iterator_range<param_iterator>;
|
|
|
|
/// Retrieve an iterator pointing to the first parameter decl.
|
|
param_iterator param_begin() const { return getParams(); }
|
|
/// Retrieve an iterator one past the last parameter decl.
|
|
param_iterator param_end() const { return getParams() + NumParams; }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Captured; }
|
|
static DeclContext *castToDeclContext(const CapturedDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
|
|
}
|
|
static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
|
|
}
|
|
};
|
|
|
|
/// Describes a module import declaration, which makes the contents
|
|
/// of the named module visible in the current translation unit.
|
|
///
|
|
/// An import declaration imports the named module (or submodule). For example:
|
|
/// \code
|
|
/// @import std.vector;
|
|
/// \endcode
|
|
///
|
|
/// Import declarations can also be implicitly generated from
|
|
/// \#include/\#import directives.
|
|
class ImportDecl final : public Decl,
|
|
llvm::TrailingObjects<ImportDecl, SourceLocation> {
|
|
friend class ASTContext;
|
|
friend class ASTDeclReader;
|
|
friend class ASTReader;
|
|
friend TrailingObjects;
|
|
|
|
/// The imported module, along with a bit that indicates whether
|
|
/// we have source-location information for each identifier in the module
|
|
/// name.
|
|
///
|
|
/// When the bit is false, we only have a single source location for the
|
|
/// end of the import declaration.
|
|
llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
|
|
|
|
/// The next import in the list of imports local to the translation
|
|
/// unit being parsed (not loaded from an AST file).
|
|
ImportDecl *NextLocalImport = nullptr;
|
|
|
|
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
|
|
ArrayRef<SourceLocation> IdentifierLocs);
|
|
|
|
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
|
|
SourceLocation EndLoc);
|
|
|
|
ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
|
|
|
|
public:
|
|
/// Create a new module import declaration.
|
|
static ImportDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, Module *Imported,
|
|
ArrayRef<SourceLocation> IdentifierLocs);
|
|
|
|
/// Create a new module import declaration for an implicitly-generated
|
|
/// import.
|
|
static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, Module *Imported,
|
|
SourceLocation EndLoc);
|
|
|
|
/// Create a new, deserialized module import declaration.
|
|
static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumLocations);
|
|
|
|
/// Retrieve the module that was imported by the import declaration.
|
|
Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
|
|
|
|
/// Retrieves the locations of each of the identifiers that make up
|
|
/// the complete module name in the import declaration.
|
|
///
|
|
/// This will return an empty array if the locations of the individual
|
|
/// identifiers aren't available.
|
|
ArrayRef<SourceLocation> getIdentifierLocs() const;
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY;
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Import; }
|
|
};
|
|
|
|
/// Represents a C++ Modules TS module export declaration.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// export void foo();
|
|
/// \endcode
|
|
class ExportDecl final : public Decl, public DeclContext {
|
|
virtual void anchor();
|
|
|
|
private:
|
|
friend class ASTDeclReader;
|
|
|
|
/// The source location for the right brace (if valid).
|
|
SourceLocation RBraceLoc;
|
|
|
|
ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
|
|
: Decl(Export, DC, ExportLoc), DeclContext(Export),
|
|
RBraceLoc(SourceLocation()) {}
|
|
|
|
public:
|
|
static ExportDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation ExportLoc);
|
|
static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
SourceLocation getExportLoc() const { return getLocation(); }
|
|
SourceLocation getRBraceLoc() const { return RBraceLoc; }
|
|
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
|
|
|
|
bool hasBraces() const { return RBraceLoc.isValid(); }
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (hasBraces())
|
|
return RBraceLoc;
|
|
// No braces: get the end location of the (only) declaration in context
|
|
// (if present).
|
|
return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
|
|
}
|
|
|
|
SourceRange getSourceRange() const override LLVM_READONLY {
|
|
return SourceRange(getLocation(), getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Export; }
|
|
static DeclContext *castToDeclContext(const ExportDecl *D) {
|
|
return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
|
|
}
|
|
static ExportDecl *castFromDeclContext(const DeclContext *DC) {
|
|
return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
|
|
}
|
|
};
|
|
|
|
/// Represents an empty-declaration.
|
|
class EmptyDecl : public Decl {
|
|
EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
|
|
|
|
virtual void anchor();
|
|
|
|
public:
|
|
static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L);
|
|
static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
|
|
|
|
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
|
|
static bool classofKind(Kind K) { return K == Empty; }
|
|
};
|
|
|
|
/// Insertion operator for diagnostics. This allows sending NamedDecl's
|
|
/// into a diagnostic with <<.
|
|
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
|
|
const NamedDecl* ND) {
|
|
DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
|
|
DiagnosticsEngine::ak_nameddecl);
|
|
return DB;
|
|
}
|
|
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
|
|
const NamedDecl* ND) {
|
|
PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
|
|
DiagnosticsEngine::ak_nameddecl);
|
|
return PD;
|
|
}
|
|
|
|
template<typename decl_type>
|
|
void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
|
|
// Note: This routine is implemented here because we need both NamedDecl
|
|
// and Redeclarable to be defined.
|
|
assert(RedeclLink.isFirst() &&
|
|
"setPreviousDecl on a decl already in a redeclaration chain");
|
|
|
|
if (PrevDecl) {
|
|
// Point to previous. Make sure that this is actually the most recent
|
|
// redeclaration, or we can build invalid chains. If the most recent
|
|
// redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
|
|
First = PrevDecl->getFirstDecl();
|
|
assert(First->RedeclLink.isFirst() && "Expected first");
|
|
decl_type *MostRecent = First->getNextRedeclaration();
|
|
RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
|
|
|
|
// If the declaration was previously visible, a redeclaration of it remains
|
|
// visible even if it wouldn't be visible by itself.
|
|
static_cast<decl_type*>(this)->IdentifierNamespace |=
|
|
MostRecent->getIdentifierNamespace() &
|
|
(Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
|
|
} else {
|
|
// Make this first.
|
|
First = static_cast<decl_type*>(this);
|
|
}
|
|
|
|
// First one will point to this one as latest.
|
|
First->RedeclLink.setLatest(static_cast<decl_type*>(this));
|
|
|
|
assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
|
|
cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
|
|
}
|
|
|
|
// Inline function definitions.
|
|
|
|
/// Check if the given decl is complete.
|
|
///
|
|
/// We use this function to break a cycle between the inline definitions in
|
|
/// Type.h and Decl.h.
|
|
inline bool IsEnumDeclComplete(EnumDecl *ED) {
|
|
return ED->isComplete();
|
|
}
|
|
|
|
/// Check if the given decl is scoped.
|
|
///
|
|
/// We use this function to break a cycle between the inline definitions in
|
|
/// Type.h and Decl.h.
|
|
inline bool IsEnumDeclScoped(EnumDecl *ED) {
|
|
return ED->isScoped();
|
|
}
|
|
|
|
} // namespace clang
|
|
|
|
#endif // LLVM_CLANG_AST_DECL_H
|