llvm-project/llvm/utils/TableGen/CodeGenTarget.cpp

860 lines
33 KiB
C++

//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class wraps target description classes used by the various code
// generation TableGen backends. This makes it easier to access the data and
// provides a single place that needs to check it for validity. All of these
// classes abort on error conditions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenDAGPatterns.h"
#include "CodeGenIntrinsics.h"
#include "CodeGenSchedule.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Timer.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
using namespace llvm;
cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
static cl::opt<unsigned>
AsmParserNum("asmparsernum", cl::init(0),
cl::desc("Make -gen-asm-parser emit assembly parser #N"),
cl::cat(AsmParserCat));
static cl::opt<unsigned>
AsmWriterNum("asmwriternum", cl::init(0),
cl::desc("Make -gen-asm-writer emit assembly writer #N"),
cl::cat(AsmWriterCat));
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
}
StringRef llvm::getName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "UNKNOWN";
case MVT::iPTR: return "TLI.getPointerTy()";
case MVT::iPTRAny: return "TLI.getPointerTy()";
default: return getEnumName(T);
}
}
StringRef llvm::getEnumName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "MVT::Other";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::Any: return "MVT::Any";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::vAny: return "MVT::vAny";
case MVT::f16: return "MVT::f16";
case MVT::bf16: return "MVT::bf16";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::x86mmx: return "MVT::x86mmx";
case MVT::Glue: return "MVT::Glue";
case MVT::isVoid: return "MVT::isVoid";
case MVT::v1i1: return "MVT::v1i1";
case MVT::v2i1: return "MVT::v2i1";
case MVT::v4i1: return "MVT::v4i1";
case MVT::v8i1: return "MVT::v8i1";
case MVT::v16i1: return "MVT::v16i1";
case MVT::v32i1: return "MVT::v32i1";
case MVT::v64i1: return "MVT::v64i1";
case MVT::v128i1: return "MVT::v128i1";
case MVT::v512i1: return "MVT::v512i1";
case MVT::v1024i1: return "MVT::v1024i1";
case MVT::v1i8: return "MVT::v1i8";
case MVT::v2i8: return "MVT::v2i8";
case MVT::v4i8: return "MVT::v4i8";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v32i8: return "MVT::v32i8";
case MVT::v64i8: return "MVT::v64i8";
case MVT::v128i8: return "MVT::v128i8";
case MVT::v256i8: return "MVT::v256i8";
case MVT::v1i16: return "MVT::v1i16";
case MVT::v2i16: return "MVT::v2i16";
case MVT::v3i16: return "MVT::v3i16";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v16i16: return "MVT::v16i16";
case MVT::v32i16: return "MVT::v32i16";
case MVT::v64i16: return "MVT::v64i16";
case MVT::v128i16: return "MVT::v128i16";
case MVT::v1i32: return "MVT::v1i32";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v3i32: return "MVT::v3i32";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v5i32: return "MVT::v5i32";
case MVT::v8i32: return "MVT::v8i32";
case MVT::v16i32: return "MVT::v16i32";
case MVT::v32i32: return "MVT::v32i32";
case MVT::v64i32: return "MVT::v64i32";
case MVT::v128i32: return "MVT::v128i32";
case MVT::v256i32: return "MVT::v256i32";
case MVT::v512i32: return "MVT::v512i32";
case MVT::v1024i32: return "MVT::v1024i32";
case MVT::v2048i32: return "MVT::v2048i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v4i64: return "MVT::v4i64";
case MVT::v8i64: return "MVT::v8i64";
case MVT::v16i64: return "MVT::v16i64";
case MVT::v32i64: return "MVT::v32i64";
case MVT::v1i128: return "MVT::v1i128";
case MVT::v2f16: return "MVT::v2f16";
case MVT::v3f16: return "MVT::v3f16";
case MVT::v4f16: return "MVT::v4f16";
case MVT::v8f16: return "MVT::v8f16";
case MVT::v16f16: return "MVT::v16f16";
case MVT::v32f16: return "MVT::v32f16";
case MVT::v64f16: return "MVT::v64f16";
case MVT::v128f16: return "MVT::v128f16";
case MVT::v2bf16: return "MVT::v2bf16";
case MVT::v3bf16: return "MVT::v3bf16";
case MVT::v4bf16: return "MVT::v4bf16";
case MVT::v8bf16: return "MVT::v8bf16";
case MVT::v16bf16: return "MVT::v16bf16";
case MVT::v32bf16: return "MVT::v32bf16";
case MVT::v64bf16: return "MVT::v64bf16";
case MVT::v128bf16: return "MVT::v128bf16";
case MVT::v1f32: return "MVT::v1f32";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v3f32: return "MVT::v3f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v5f32: return "MVT::v5f32";
case MVT::v8f32: return "MVT::v8f32";
case MVT::v16f32: return "MVT::v16f32";
case MVT::v32f32: return "MVT::v32f32";
case MVT::v64f32: return "MVT::v64f32";
case MVT::v128f32: return "MVT::v128f32";
case MVT::v256f32: return "MVT::v256f32";
case MVT::v512f32: return "MVT::v512f32";
case MVT::v1024f32: return "MVT::v1024f32";
case MVT::v2048f32: return "MVT::v2048f32";
case MVT::v1f64: return "MVT::v1f64";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v4f64: return "MVT::v4f64";
case MVT::v8f64: return "MVT::v8f64";
case MVT::v16f64: return "MVT::v16f64";
case MVT::v32f64: return "MVT::v32f64";
case MVT::nxv1i1: return "MVT::nxv1i1";
case MVT::nxv2i1: return "MVT::nxv2i1";
case MVT::nxv4i1: return "MVT::nxv4i1";
case MVT::nxv8i1: return "MVT::nxv8i1";
case MVT::nxv16i1: return "MVT::nxv16i1";
case MVT::nxv32i1: return "MVT::nxv32i1";
case MVT::nxv64i1: return "MVT::nxv64i1";
case MVT::nxv1i8: return "MVT::nxv1i8";
case MVT::nxv2i8: return "MVT::nxv2i8";
case MVT::nxv4i8: return "MVT::nxv4i8";
case MVT::nxv8i8: return "MVT::nxv8i8";
case MVT::nxv16i8: return "MVT::nxv16i8";
case MVT::nxv32i8: return "MVT::nxv32i8";
case MVT::nxv64i8: return "MVT::nxv64i8";
case MVT::nxv1i16: return "MVT::nxv1i16";
case MVT::nxv2i16: return "MVT::nxv2i16";
case MVT::nxv4i16: return "MVT::nxv4i16";
case MVT::nxv8i16: return "MVT::nxv8i16";
case MVT::nxv16i16: return "MVT::nxv16i16";
case MVT::nxv32i16: return "MVT::nxv32i16";
case MVT::nxv1i32: return "MVT::nxv1i32";
case MVT::nxv2i32: return "MVT::nxv2i32";
case MVT::nxv4i32: return "MVT::nxv4i32";
case MVT::nxv8i32: return "MVT::nxv8i32";
case MVT::nxv16i32: return "MVT::nxv16i32";
case MVT::nxv32i32: return "MVT::nxv32i32";
case MVT::nxv1i64: return "MVT::nxv1i64";
case MVT::nxv2i64: return "MVT::nxv2i64";
case MVT::nxv4i64: return "MVT::nxv4i64";
case MVT::nxv8i64: return "MVT::nxv8i64";
case MVT::nxv16i64: return "MVT::nxv16i64";
case MVT::nxv32i64: return "MVT::nxv32i64";
case MVT::nxv1f16: return "MVT::nxv1f16";
case MVT::nxv2f16: return "MVT::nxv2f16";
case MVT::nxv4f16: return "MVT::nxv4f16";
case MVT::nxv8f16: return "MVT::nxv8f16";
case MVT::nxv16f16: return "MVT::nxv16f16";
case MVT::nxv32f16: return "MVT::nxv32f16";
case MVT::nxv2bf16: return "MVT::nxv2bf16";
case MVT::nxv4bf16: return "MVT::nxv4bf16";
case MVT::nxv8bf16: return "MVT::nxv8bf16";
case MVT::nxv1f32: return "MVT::nxv1f32";
case MVT::nxv2f32: return "MVT::nxv2f32";
case MVT::nxv4f32: return "MVT::nxv4f32";
case MVT::nxv8f32: return "MVT::nxv8f32";
case MVT::nxv16f32: return "MVT::nxv16f32";
case MVT::nxv1f64: return "MVT::nxv1f64";
case MVT::nxv2f64: return "MVT::nxv2f64";
case MVT::nxv4f64: return "MVT::nxv4f64";
case MVT::nxv8f64: return "MVT::nxv8f64";
case MVT::token: return "MVT::token";
case MVT::Metadata: return "MVT::Metadata";
case MVT::iPTR: return "MVT::iPTR";
case MVT::iPTRAny: return "MVT::iPTRAny";
case MVT::Untyped: return "MVT::Untyped";
case MVT::exnref: return "MVT::exnref";
default: llvm_unreachable("ILLEGAL VALUE TYPE!");
}
}
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
///
std::string llvm::getQualifiedName(const Record *R) {
std::string Namespace;
if (R->getValue("Namespace"))
Namespace = std::string(R->getValueAsString("Namespace"));
if (Namespace.empty())
return std::string(R->getName());
return Namespace + "::" + R->getName().str();
}
/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget(RecordKeeper &records)
: Records(records), CGH(records) {
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
if (Targets.size() == 0)
PrintFatalError("ERROR: No 'Target' subclasses defined!");
if (Targets.size() != 1)
PrintFatalError("ERROR: Multiple subclasses of Target defined!");
TargetRec = Targets[0];
}
CodeGenTarget::~CodeGenTarget() {
}
const StringRef CodeGenTarget::getName() const {
return TargetRec->getName();
}
StringRef CodeGenTarget::getInstNamespace() const {
for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
// Make sure not to pick up "TargetOpcode" by accidentally getting
// the namespace off the PHI instruction or something.
if (Inst->Namespace != "TargetOpcode")
return Inst->Namespace;
}
return "";
}
Record *CodeGenTarget::getInstructionSet() const {
return TargetRec->getValueAsDef("InstructionSet");
}
bool CodeGenTarget::getAllowRegisterRenaming() const {
return TargetRec->getValueAsInt("AllowRegisterRenaming");
}
/// getAsmParser - Return the AssemblyParser definition for this target.
///
Record *CodeGenTarget::getAsmParser() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
if (AsmParserNum >= LI.size())
PrintFatalError("Target does not have an AsmParser #" +
Twine(AsmParserNum) + "!");
return LI[AsmParserNum];
}
/// getAsmParserVariant - Return the AssemblyParserVariant definition for
/// this target.
///
Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
std::vector<Record*> LI =
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
if (i >= LI.size())
PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
"!");
return LI[i];
}
/// getAsmParserVariantCount - Return the AssemblyParserVariant definition
/// available for this target.
///
unsigned CodeGenTarget::getAsmParserVariantCount() const {
std::vector<Record*> LI =
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
return LI.size();
}
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
if (AsmWriterNum >= LI.size())
PrintFatalError("Target does not have an AsmWriter #" +
Twine(AsmWriterNum) + "!");
return LI[AsmWriterNum];
}
CodeGenRegBank &CodeGenTarget::getRegBank() const {
if (!RegBank)
RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
return *RegBank;
}
Optional<CodeGenRegisterClass *>
CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
CodeGenRegBank &RegBank,
const CodeGenSubRegIndex *SubIdx) const {
std::vector<CodeGenRegisterClass *> Candidates;
auto &RegClasses = RegBank.getRegClasses();
// Try to find a register class which supports ValueTy, and also contains
// SubIdx.
for (CodeGenRegisterClass &RC : RegClasses) {
// Is there a subclass of this class which contains this subregister index?
CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
if (!SubClassWithSubReg)
continue;
// We have a class. Check if it supports this value type.
if (llvm::none_of(SubClassWithSubReg->VTs,
[&ValueTy](const ValueTypeByHwMode &ClassVT) {
return ClassVT == ValueTy;
}))
continue;
// We have a register class which supports both the value type and
// subregister index. Remember it.
Candidates.push_back(SubClassWithSubReg);
}
// If we didn't find anything, we're done.
if (Candidates.empty())
return None;
// Find and return the largest of our candidate classes.
llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
const CodeGenRegisterClass *B) {
if (A->getMembers().size() > B->getMembers().size())
return true;
if (A->getMembers().size() < B->getMembers().size())
return false;
// Order by name as a tie-breaker.
return StringRef(A->getName()) < B->getName();
});
return Candidates[0];
}
void CodeGenTarget::ReadRegAltNameIndices() const {
RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
llvm::sort(RegAltNameIndices, LessRecord());
}
/// getRegisterByName - If there is a register with the specific AsmName,
/// return it.
const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
if (I == Regs.end())
return nullptr;
return I->second;
}
std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
const {
const CodeGenRegister *Reg = getRegBank().getReg(R);
std::vector<ValueTypeByHwMode> Result;
for (const auto &RC : getRegBank().getRegClasses()) {
if (RC.contains(Reg)) {
ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
Result.insert(Result.end(), InVTs.begin(), InVTs.end());
}
}
// Remove duplicates.
llvm::sort(Result);
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
return Result;
}
void CodeGenTarget::ReadLegalValueTypes() const {
for (const auto &RC : getRegBank().getRegClasses())
LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
// Remove duplicates.
llvm::sort(LegalValueTypes);
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
LegalValueTypes.end()),
LegalValueTypes.end());
}
CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
if (!SchedModels)
SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
return *SchedModels;
}
void CodeGenTarget::ReadInstructions() const {
NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
"CodeGenTarget", "CodeGenTarget", TimeRegions);
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
if (Insts.size() <= 2)
PrintFatalError("No 'Instruction' subclasses defined!");
// Parse the instructions defined in the .td file.
for (unsigned i = 0, e = Insts.size(); i != e; ++i)
Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
}
static const CodeGenInstruction *
GetInstByName(const char *Name,
const DenseMap<const Record*,
std::unique_ptr<CodeGenInstruction>> &Insts,
RecordKeeper &Records) {
const Record *Rec = Records.getDef(Name);
const auto I = Insts.find(Rec);
if (!Rec || I == Insts.end())
PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
return I->second.get();
}
static const char *const FixedInstrs[] = {
#define HANDLE_TARGET_OPCODE(OPC) #OPC,
#include "llvm/Support/TargetOpcodes.def"
nullptr};
unsigned CodeGenTarget::getNumFixedInstructions() {
return array_lengthof(FixedInstrs) - 1;
}
/// Return all of the instructions defined by the target, ordered by
/// their enum value.
void CodeGenTarget::ComputeInstrsByEnum() const {
const auto &Insts = getInstructions();
for (const char *const *p = FixedInstrs; *p; ++p) {
const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
assert(Instr && "Missing target independent instruction");
assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
InstrsByEnum.push_back(Instr);
}
unsigned EndOfPredefines = InstrsByEnum.size();
assert(EndOfPredefines == getNumFixedInstructions() &&
"Missing generic opcode");
for (const auto &I : Insts) {
const CodeGenInstruction *CGI = I.second.get();
if (CGI->Namespace != "TargetOpcode") {
InstrsByEnum.push_back(CGI);
if (CGI->TheDef->getValueAsBit("isPseudo"))
++NumPseudoInstructions;
}
}
assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
// All of the instructions are now in random order based on the map iteration.
llvm::sort(
InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
[](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
const auto &D1 = *Rec1->TheDef;
const auto &D2 = *Rec2->TheDef;
return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
});
}
/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}
/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
/// encodings, reverse the bit order of all instructions.
void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
if (!isLittleEndianEncoding())
return;
std::vector<Record *> Insts =
Records.getAllDerivedDefinitions("InstructionEncoding");
for (Record *R : Insts) {
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
BitsInit *BI = R->getValueAsBitsInit("Inst");
unsigned numBits = BI->getNumBits();
SmallVector<Init *, 16> NewBits(numBits);
for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
unsigned bitSwapIdx = numBits - bit - 1;
Init *OrigBit = BI->getBit(bit);
Init *BitSwap = BI->getBit(bitSwapIdx);
NewBits[bit] = BitSwap;
NewBits[bitSwapIdx] = OrigBit;
}
if (numBits % 2) {
unsigned middle = (numBits + 1) / 2;
NewBits[middle] = BI->getBit(middle);
}
BitsInit *NewBI = BitsInit::get(NewBits);
// Update the bits in reversed order so that emitInstrOpBits will get the
// correct endianness.
R->getValue("Inst")->setValue(NewBI);
}
}
/// guessInstructionProperties - Return true if it's OK to guess instruction
/// properties instead of raising an error.
///
/// This is configurable as a temporary migration aid. It will eventually be
/// permanently false.
bool CodeGenTarget::guessInstructionProperties() const {
return getInstructionSet()->getValueAsBit("guessInstructionProperties");
}
//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
Ty = ::getValueType(R->getValueAsDef("Ty"));
NumOperands = R->getValueAsInt("NumOperands");
SelectFunc = std::string(R->getValueAsString("SelectFunc"));
RootNodes = R->getValueAsListOfDefs("RootNodes");
// FIXME: This is a hack to statically increase the priority of patterns which
// maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
// possible pattern match we'll need to dynamically calculate the complexity
// of all patterns a dag can potentially map to.
int64_t RawComplexity = R->getValueAsInt("Complexity");
if (RawComplexity == -1)
Complexity = NumOperands * 3;
else
Complexity = RawComplexity;
// FIXME: Why is this different from parseSDPatternOperatorProperties?
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOptInGlue") {
Properties |= 1 << SDNPOptInGlue;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (PropList[i]->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else if (PropList[i]->getName() == "SDNPWantRoot") {
Properties |= 1 << SDNPWantRoot;
} else if (PropList[i]->getName() == "SDNPWantParent") {
Properties |= 1 << SDNPWantParent;
} else {
PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
PropList[i]->getName() +
"' on ComplexPattern '" + R->getName() +
"'!");
}
}
//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//
CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
Intrinsics.reserve(Defs.size());
for (unsigned I = 0, e = Defs.size(); I != e; ++I)
Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
llvm::sort(Intrinsics,
[](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
return std::tie(LHS.TargetPrefix, LHS.Name) <
std::tie(RHS.TargetPrefix, RHS.Name);
});
Targets.push_back({"", 0, 0});
for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
Targets.back().Count = I - Targets.back().Offset;
Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
}
Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
}
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
TheDef = R;
std::string DefName = std::string(R->getName());
ArrayRef<SMLoc> DefLoc = R->getLoc();
ModRef = ReadWriteMem;
Properties = 0;
isOverloaded = false;
isCommutative = false;
canThrow = false;
isNoReturn = false;
isNoSync = false;
isNoFree = false;
isWillReturn = false;
isCold = false;
isNoDuplicate = false;
isConvergent = false;
isSpeculatable = false;
hasSideEffects = false;
if (DefName.size() <= 4 ||
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
PrintFatalError(DefLoc,
"Intrinsic '" + DefName + "' does not start with 'int_'!");
EnumName = std::string(DefName.begin()+4, DefName.end());
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
Name = std::string(R->getValueAsString("LLVMName"));
if (Name == "") {
// If an explicit name isn't specified, derive one from the DefName.
Name = "llvm.";
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
} else {
// Verify it starts with "llvm.".
if (Name.size() <= 5 ||
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
"'s name does not start with 'llvm.'!");
}
// If TargetPrefix is specified, make sure that Name starts with
// "llvm.<targetprefix>.".
if (!TargetPrefix.empty()) {
if (Name.size() < 6+TargetPrefix.size() ||
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
!= (TargetPrefix + "."))
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
"' does not start with 'llvm." +
TargetPrefix + ".'!");
}
ListInit *RetTypes = R->getValueAsListInit("RetTypes");
ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
// First collate a list of overloaded types.
std::vector<MVT::SimpleValueType> OverloadedVTs;
for (ListInit *TypeList : {RetTypes, ParamTypes}) {
for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
if (TyEl->isSubClassOf("LLVMMatchType"))
continue;
MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
if (MVT(VT).isOverloaded()) {
OverloadedVTs.push_back(VT);
isOverloaded = true;
}
}
}
// Parse the list of return types.
ListInit *TypeList = RetTypes;
for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
assert(MatchTy < OverloadedVTs.size() &&
"Invalid matching number!");
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
!TyEl->isSubClassOf("LLVMTruncatedType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else {
VT = getValueType(TyEl->getValueAsDef("VT"));
}
// Reject invalid types.
if (VT == MVT::isVoid)
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
" has void in result type list!");
IS.RetVTs.push_back(VT);
IS.RetTypeDefs.push_back(TyEl);
}
// Parse the list of parameter types.
TypeList = ParamTypes;
for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
if (MatchTy >= OverloadedVTs.size()) {
PrintError(R->getLoc(),
"Parameter #" + Twine(i) + " has out of bounds matching "
"number " + Twine(MatchTy));
PrintFatalError(DefLoc,
Twine("ParamTypes is ") + TypeList->getAsString());
}
VT = OverloadedVTs[MatchTy];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
!TyEl->isSubClassOf("LLVMTruncatedType")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else
VT = getValueType(TyEl->getValueAsDef("VT"));
// Reject invalid types.
if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
" has void in result type list!");
IS.ParamVTs.push_back(VT);
IS.ParamTypeDefs.push_back(TyEl);
}
// Parse the intrinsic properties.
ListInit *PropList = R->getValueAsListInit("IntrProperties");
for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
Record *Property = PropList->getElementAsRecord(i);
assert(Property->isSubClassOf("IntrinsicProperty") &&
"Expected a property!");
if (Property->getName() == "IntrNoMem")
ModRef = NoMem;
else if (Property->getName() == "IntrReadMem")
ModRef = ModRefBehavior(ModRef & ~MR_Mod);
else if (Property->getName() == "IntrWriteMem")
ModRef = ModRefBehavior(ModRef & ~MR_Ref);
else if (Property->getName() == "IntrArgMemOnly")
ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
else if (Property->getName() == "IntrInaccessibleMemOnly")
ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
MR_InaccessibleMem);
else if (Property->getName() == "Commutative")
isCommutative = true;
else if (Property->getName() == "Throws")
canThrow = true;
else if (Property->getName() == "IntrNoDuplicate")
isNoDuplicate = true;
else if (Property->getName() == "IntrConvergent")
isConvergent = true;
else if (Property->getName() == "IntrNoReturn")
isNoReturn = true;
else if (Property->getName() == "IntrNoSync")
isNoSync = true;
else if (Property->getName() == "IntrNoFree")
isNoFree = true;
else if (Property->getName() == "IntrWillReturn")
isWillReturn = true;
else if (Property->getName() == "IntrCold")
isCold = true;
else if (Property->getName() == "IntrSpeculatable")
isSpeculatable = true;
else if (Property->getName() == "IntrHasSideEffects")
hasSideEffects = true;
else if (Property->isSubClassOf("NoCapture")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
} else if (Property->isSubClassOf("NoAlias")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
} else if (Property->isSubClassOf("Returned")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
} else if (Property->isSubClassOf("ReadOnly")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
} else if (Property->isSubClassOf("WriteOnly")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
} else if (Property->isSubClassOf("ReadNone")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
} else if (Property->isSubClassOf("ImmArg")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
} else if (Property->isSubClassOf("Align")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
uint64_t Align = Property->getValueAsInt("Align");
ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
} else
llvm_unreachable("Unknown property!");
}
// Also record the SDPatternOperator Properties.
Properties = parseSDPatternOperatorProperties(R);
// Sort the argument attributes for later benefit.
llvm::sort(ArgumentAttributes);
}
bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
if (ParamIdx >= IS.ParamVTs.size())
return false;
MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
}
bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
// Convert argument index to attribute index starting from `FirstArgIndex`.
ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
return std::binary_search(ArgumentAttributes.begin(),
ArgumentAttributes.end(), Val);
}