forked from OSchip/llvm-project
3405 lines
130 KiB
C++
3405 lines
130 KiB
C++
//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Bitcode writer implementation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Bitcode/BitstreamWriter.h"
|
|
#include "llvm/Bitcode/LLVMBitCodes.h"
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/UseListOrder.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Program.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cctype>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
/// These are manifest constants used by the bitcode writer. They do not need to
|
|
/// be kept in sync with the reader, but need to be consistent within this file.
|
|
enum {
|
|
// VALUE_SYMTAB_BLOCK abbrev id's.
|
|
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
VST_ENTRY_7_ABBREV,
|
|
VST_ENTRY_6_ABBREV,
|
|
VST_BBENTRY_6_ABBREV,
|
|
|
|
// CONSTANTS_BLOCK abbrev id's.
|
|
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
CONSTANTS_INTEGER_ABBREV,
|
|
CONSTANTS_CE_CAST_Abbrev,
|
|
CONSTANTS_NULL_Abbrev,
|
|
|
|
// FUNCTION_BLOCK abbrev id's.
|
|
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
FUNCTION_INST_BINOP_ABBREV,
|
|
FUNCTION_INST_BINOP_FLAGS_ABBREV,
|
|
FUNCTION_INST_CAST_ABBREV,
|
|
FUNCTION_INST_RET_VOID_ABBREV,
|
|
FUNCTION_INST_RET_VAL_ABBREV,
|
|
FUNCTION_INST_UNREACHABLE_ABBREV,
|
|
FUNCTION_INST_GEP_ABBREV,
|
|
};
|
|
|
|
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown cast instruction!");
|
|
case Instruction::Trunc : return bitc::CAST_TRUNC;
|
|
case Instruction::ZExt : return bitc::CAST_ZEXT;
|
|
case Instruction::SExt : return bitc::CAST_SEXT;
|
|
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
|
|
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
|
|
case Instruction::UIToFP : return bitc::CAST_UITOFP;
|
|
case Instruction::SIToFP : return bitc::CAST_SITOFP;
|
|
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
|
|
case Instruction::FPExt : return bitc::CAST_FPEXT;
|
|
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
|
|
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
|
|
case Instruction::BitCast : return bitc::CAST_BITCAST;
|
|
case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown binary instruction!");
|
|
case Instruction::Add:
|
|
case Instruction::FAdd: return bitc::BINOP_ADD;
|
|
case Instruction::Sub:
|
|
case Instruction::FSub: return bitc::BINOP_SUB;
|
|
case Instruction::Mul:
|
|
case Instruction::FMul: return bitc::BINOP_MUL;
|
|
case Instruction::UDiv: return bitc::BINOP_UDIV;
|
|
case Instruction::FDiv:
|
|
case Instruction::SDiv: return bitc::BINOP_SDIV;
|
|
case Instruction::URem: return bitc::BINOP_UREM;
|
|
case Instruction::FRem:
|
|
case Instruction::SRem: return bitc::BINOP_SREM;
|
|
case Instruction::Shl: return bitc::BINOP_SHL;
|
|
case Instruction::LShr: return bitc::BINOP_LSHR;
|
|
case Instruction::AShr: return bitc::BINOP_ASHR;
|
|
case Instruction::And: return bitc::BINOP_AND;
|
|
case Instruction::Or: return bitc::BINOP_OR;
|
|
case Instruction::Xor: return bitc::BINOP_XOR;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
|
|
switch (Op) {
|
|
default: llvm_unreachable("Unknown RMW operation!");
|
|
case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
|
|
case AtomicRMWInst::Add: return bitc::RMW_ADD;
|
|
case AtomicRMWInst::Sub: return bitc::RMW_SUB;
|
|
case AtomicRMWInst::And: return bitc::RMW_AND;
|
|
case AtomicRMWInst::Nand: return bitc::RMW_NAND;
|
|
case AtomicRMWInst::Or: return bitc::RMW_OR;
|
|
case AtomicRMWInst::Xor: return bitc::RMW_XOR;
|
|
case AtomicRMWInst::Max: return bitc::RMW_MAX;
|
|
case AtomicRMWInst::Min: return bitc::RMW_MIN;
|
|
case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
|
|
case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
|
|
switch (Ordering) {
|
|
case NotAtomic: return bitc::ORDERING_NOTATOMIC;
|
|
case Unordered: return bitc::ORDERING_UNORDERED;
|
|
case Monotonic: return bitc::ORDERING_MONOTONIC;
|
|
case Acquire: return bitc::ORDERING_ACQUIRE;
|
|
case Release: return bitc::ORDERING_RELEASE;
|
|
case AcquireRelease: return bitc::ORDERING_ACQREL;
|
|
case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
|
|
}
|
|
llvm_unreachable("Invalid ordering");
|
|
}
|
|
|
|
static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
|
|
switch (SynchScope) {
|
|
case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
|
|
case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
|
|
}
|
|
llvm_unreachable("Invalid synch scope");
|
|
}
|
|
|
|
static void WriteStringRecord(unsigned Code, StringRef Str,
|
|
unsigned AbbrevToUse, BitstreamWriter &Stream) {
|
|
SmallVector<unsigned, 64> Vals;
|
|
|
|
// Code: [strchar x N]
|
|
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
|
|
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
|
|
AbbrevToUse = 0;
|
|
Vals.push_back(Str[i]);
|
|
}
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, Vals, AbbrevToUse);
|
|
}
|
|
|
|
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
|
|
switch (Kind) {
|
|
case Attribute::Alignment:
|
|
return bitc::ATTR_KIND_ALIGNMENT;
|
|
case Attribute::AlwaysInline:
|
|
return bitc::ATTR_KIND_ALWAYS_INLINE;
|
|
case Attribute::ArgMemOnly:
|
|
return bitc::ATTR_KIND_ARGMEMONLY;
|
|
case Attribute::Builtin:
|
|
return bitc::ATTR_KIND_BUILTIN;
|
|
case Attribute::ByVal:
|
|
return bitc::ATTR_KIND_BY_VAL;
|
|
case Attribute::Convergent:
|
|
return bitc::ATTR_KIND_CONVERGENT;
|
|
case Attribute::InAlloca:
|
|
return bitc::ATTR_KIND_IN_ALLOCA;
|
|
case Attribute::Cold:
|
|
return bitc::ATTR_KIND_COLD;
|
|
case Attribute::InaccessibleMemOnly:
|
|
return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
|
|
case Attribute::InaccessibleMemOrArgMemOnly:
|
|
return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
|
|
case Attribute::InlineHint:
|
|
return bitc::ATTR_KIND_INLINE_HINT;
|
|
case Attribute::InReg:
|
|
return bitc::ATTR_KIND_IN_REG;
|
|
case Attribute::JumpTable:
|
|
return bitc::ATTR_KIND_JUMP_TABLE;
|
|
case Attribute::MinSize:
|
|
return bitc::ATTR_KIND_MIN_SIZE;
|
|
case Attribute::Naked:
|
|
return bitc::ATTR_KIND_NAKED;
|
|
case Attribute::Nest:
|
|
return bitc::ATTR_KIND_NEST;
|
|
case Attribute::NoAlias:
|
|
return bitc::ATTR_KIND_NO_ALIAS;
|
|
case Attribute::NoBuiltin:
|
|
return bitc::ATTR_KIND_NO_BUILTIN;
|
|
case Attribute::NoCapture:
|
|
return bitc::ATTR_KIND_NO_CAPTURE;
|
|
case Attribute::NoDuplicate:
|
|
return bitc::ATTR_KIND_NO_DUPLICATE;
|
|
case Attribute::NoImplicitFloat:
|
|
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
|
|
case Attribute::NoInline:
|
|
return bitc::ATTR_KIND_NO_INLINE;
|
|
case Attribute::NoRecurse:
|
|
return bitc::ATTR_KIND_NO_RECURSE;
|
|
case Attribute::NonLazyBind:
|
|
return bitc::ATTR_KIND_NON_LAZY_BIND;
|
|
case Attribute::NonNull:
|
|
return bitc::ATTR_KIND_NON_NULL;
|
|
case Attribute::Dereferenceable:
|
|
return bitc::ATTR_KIND_DEREFERENCEABLE;
|
|
case Attribute::DereferenceableOrNull:
|
|
return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
|
|
case Attribute::NoRedZone:
|
|
return bitc::ATTR_KIND_NO_RED_ZONE;
|
|
case Attribute::NoReturn:
|
|
return bitc::ATTR_KIND_NO_RETURN;
|
|
case Attribute::NoUnwind:
|
|
return bitc::ATTR_KIND_NO_UNWIND;
|
|
case Attribute::OptimizeForSize:
|
|
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
|
|
case Attribute::OptimizeNone:
|
|
return bitc::ATTR_KIND_OPTIMIZE_NONE;
|
|
case Attribute::ReadNone:
|
|
return bitc::ATTR_KIND_READ_NONE;
|
|
case Attribute::ReadOnly:
|
|
return bitc::ATTR_KIND_READ_ONLY;
|
|
case Attribute::Returned:
|
|
return bitc::ATTR_KIND_RETURNED;
|
|
case Attribute::ReturnsTwice:
|
|
return bitc::ATTR_KIND_RETURNS_TWICE;
|
|
case Attribute::SExt:
|
|
return bitc::ATTR_KIND_S_EXT;
|
|
case Attribute::StackAlignment:
|
|
return bitc::ATTR_KIND_STACK_ALIGNMENT;
|
|
case Attribute::StackProtect:
|
|
return bitc::ATTR_KIND_STACK_PROTECT;
|
|
case Attribute::StackProtectReq:
|
|
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
|
|
case Attribute::StackProtectStrong:
|
|
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
|
|
case Attribute::SafeStack:
|
|
return bitc::ATTR_KIND_SAFESTACK;
|
|
case Attribute::StructRet:
|
|
return bitc::ATTR_KIND_STRUCT_RET;
|
|
case Attribute::SanitizeAddress:
|
|
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
|
|
case Attribute::SanitizeThread:
|
|
return bitc::ATTR_KIND_SANITIZE_THREAD;
|
|
case Attribute::SanitizeMemory:
|
|
return bitc::ATTR_KIND_SANITIZE_MEMORY;
|
|
case Attribute::UWTable:
|
|
return bitc::ATTR_KIND_UW_TABLE;
|
|
case Attribute::ZExt:
|
|
return bitc::ATTR_KIND_Z_EXT;
|
|
case Attribute::EndAttrKinds:
|
|
llvm_unreachable("Can not encode end-attribute kinds marker.");
|
|
case Attribute::None:
|
|
llvm_unreachable("Can not encode none-attribute.");
|
|
}
|
|
|
|
llvm_unreachable("Trying to encode unknown attribute");
|
|
}
|
|
|
|
static void WriteAttributeGroupTable(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
|
|
if (AttrGrps.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
|
|
AttributeSet AS = AttrGrps[i];
|
|
for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
|
|
AttributeSet A = AS.getSlotAttributes(i);
|
|
|
|
Record.push_back(VE.getAttributeGroupID(A));
|
|
Record.push_back(AS.getSlotIndex(i));
|
|
|
|
for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
|
|
I != E; ++I) {
|
|
Attribute Attr = *I;
|
|
if (Attr.isEnumAttribute()) {
|
|
Record.push_back(0);
|
|
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
|
|
} else if (Attr.isIntAttribute()) {
|
|
Record.push_back(1);
|
|
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
|
|
Record.push_back(Attr.getValueAsInt());
|
|
} else {
|
|
StringRef Kind = Attr.getKindAsString();
|
|
StringRef Val = Attr.getValueAsString();
|
|
|
|
Record.push_back(Val.empty() ? 3 : 4);
|
|
Record.append(Kind.begin(), Kind.end());
|
|
Record.push_back(0);
|
|
if (!Val.empty()) {
|
|
Record.append(Val.begin(), Val.end());
|
|
Record.push_back(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteAttributeTable(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const std::vector<AttributeSet> &Attrs = VE.getAttributes();
|
|
if (Attrs.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
|
|
const AttributeSet &A = Attrs[i];
|
|
for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
|
|
Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
|
|
|
|
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteTypeTable - Write out the type table for a module.
|
|
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
|
|
|
|
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
|
|
SmallVector<uint64_t, 64> TypeVals;
|
|
|
|
uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
|
|
|
|
// Abbrev for TYPE_CODE_POINTER.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
|
|
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_FUNCTION.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT_ANON.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT_NAME.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT_NAMED.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_ARRAY.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
|
|
|
|
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Emit an entry count so the reader can reserve space.
|
|
TypeVals.push_back(TypeList.size());
|
|
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
|
|
TypeVals.clear();
|
|
|
|
// Loop over all of the types, emitting each in turn.
|
|
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
|
|
Type *T = TypeList[i];
|
|
int AbbrevToUse = 0;
|
|
unsigned Code = 0;
|
|
|
|
switch (T->getTypeID()) {
|
|
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
|
|
case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
|
|
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
|
|
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
|
|
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
|
|
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
|
|
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
|
|
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
|
|
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
|
|
case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
|
|
case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
|
|
case Type::IntegerTyID:
|
|
// INTEGER: [width]
|
|
Code = bitc::TYPE_CODE_INTEGER;
|
|
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
|
|
break;
|
|
case Type::PointerTyID: {
|
|
PointerType *PTy = cast<PointerType>(T);
|
|
// POINTER: [pointee type, address space]
|
|
Code = bitc::TYPE_CODE_POINTER;
|
|
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
|
|
unsigned AddressSpace = PTy->getAddressSpace();
|
|
TypeVals.push_back(AddressSpace);
|
|
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
|
|
break;
|
|
}
|
|
case Type::FunctionTyID: {
|
|
FunctionType *FT = cast<FunctionType>(T);
|
|
// FUNCTION: [isvararg, retty, paramty x N]
|
|
Code = bitc::TYPE_CODE_FUNCTION;
|
|
TypeVals.push_back(FT->isVarArg());
|
|
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
|
|
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
|
|
AbbrevToUse = FunctionAbbrev;
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
StructType *ST = cast<StructType>(T);
|
|
// STRUCT: [ispacked, eltty x N]
|
|
TypeVals.push_back(ST->isPacked());
|
|
// Output all of the element types.
|
|
for (StructType::element_iterator I = ST->element_begin(),
|
|
E = ST->element_end(); I != E; ++I)
|
|
TypeVals.push_back(VE.getTypeID(*I));
|
|
|
|
if (ST->isLiteral()) {
|
|
Code = bitc::TYPE_CODE_STRUCT_ANON;
|
|
AbbrevToUse = StructAnonAbbrev;
|
|
} else {
|
|
if (ST->isOpaque()) {
|
|
Code = bitc::TYPE_CODE_OPAQUE;
|
|
} else {
|
|
Code = bitc::TYPE_CODE_STRUCT_NAMED;
|
|
AbbrevToUse = StructNamedAbbrev;
|
|
}
|
|
|
|
// Emit the name if it is present.
|
|
if (!ST->getName().empty())
|
|
WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
|
|
StructNameAbbrev, Stream);
|
|
}
|
|
break;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
ArrayType *AT = cast<ArrayType>(T);
|
|
// ARRAY: [numelts, eltty]
|
|
Code = bitc::TYPE_CODE_ARRAY;
|
|
TypeVals.push_back(AT->getNumElements());
|
|
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
|
|
AbbrevToUse = ArrayAbbrev;
|
|
break;
|
|
}
|
|
case Type::VectorTyID: {
|
|
VectorType *VT = cast<VectorType>(T);
|
|
// VECTOR [numelts, eltty]
|
|
Code = bitc::TYPE_CODE_VECTOR;
|
|
TypeVals.push_back(VT->getNumElements());
|
|
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
|
|
TypeVals.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
|
|
switch (Linkage) {
|
|
case GlobalValue::ExternalLinkage:
|
|
return 0;
|
|
case GlobalValue::WeakAnyLinkage:
|
|
return 16;
|
|
case GlobalValue::AppendingLinkage:
|
|
return 2;
|
|
case GlobalValue::InternalLinkage:
|
|
return 3;
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
return 18;
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
return 7;
|
|
case GlobalValue::CommonLinkage:
|
|
return 8;
|
|
case GlobalValue::PrivateLinkage:
|
|
return 9;
|
|
case GlobalValue::WeakODRLinkage:
|
|
return 17;
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
return 19;
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
return 12;
|
|
}
|
|
llvm_unreachable("Invalid linkage");
|
|
}
|
|
|
|
static unsigned getEncodedLinkage(const GlobalValue &GV) {
|
|
return getEncodedLinkage(GV.getLinkage());
|
|
}
|
|
|
|
static unsigned getEncodedVisibility(const GlobalValue &GV) {
|
|
switch (GV.getVisibility()) {
|
|
case GlobalValue::DefaultVisibility: return 0;
|
|
case GlobalValue::HiddenVisibility: return 1;
|
|
case GlobalValue::ProtectedVisibility: return 2;
|
|
}
|
|
llvm_unreachable("Invalid visibility");
|
|
}
|
|
|
|
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
|
|
switch (GV.getDLLStorageClass()) {
|
|
case GlobalValue::DefaultStorageClass: return 0;
|
|
case GlobalValue::DLLImportStorageClass: return 1;
|
|
case GlobalValue::DLLExportStorageClass: return 2;
|
|
}
|
|
llvm_unreachable("Invalid DLL storage class");
|
|
}
|
|
|
|
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
|
|
switch (GV.getThreadLocalMode()) {
|
|
case GlobalVariable::NotThreadLocal: return 0;
|
|
case GlobalVariable::GeneralDynamicTLSModel: return 1;
|
|
case GlobalVariable::LocalDynamicTLSModel: return 2;
|
|
case GlobalVariable::InitialExecTLSModel: return 3;
|
|
case GlobalVariable::LocalExecTLSModel: return 4;
|
|
}
|
|
llvm_unreachable("Invalid TLS model");
|
|
}
|
|
|
|
static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
|
|
switch (C.getSelectionKind()) {
|
|
case Comdat::Any:
|
|
return bitc::COMDAT_SELECTION_KIND_ANY;
|
|
case Comdat::ExactMatch:
|
|
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
|
|
case Comdat::Largest:
|
|
return bitc::COMDAT_SELECTION_KIND_LARGEST;
|
|
case Comdat::NoDuplicates:
|
|
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
|
|
case Comdat::SameSize:
|
|
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
|
|
}
|
|
llvm_unreachable("Invalid selection kind");
|
|
}
|
|
|
|
static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
SmallVector<unsigned, 64> Vals;
|
|
for (const Comdat *C : VE.getComdats()) {
|
|
// COMDAT: [selection_kind, name]
|
|
Vals.push_back(getEncodedComdatSelectionKind(*C));
|
|
size_t Size = C->getName().size();
|
|
assert(isUInt<32>(Size));
|
|
Vals.push_back(Size);
|
|
for (char Chr : C->getName())
|
|
Vals.push_back((unsigned char)Chr);
|
|
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
|
|
Vals.clear();
|
|
}
|
|
}
|
|
|
|
/// Write a record that will eventually hold the word offset of the
|
|
/// module-level VST. For now the offset is 0, which will be backpatched
|
|
/// after the real VST is written. Returns the bit offset to backpatch.
|
|
static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) {
|
|
// Write a placeholder value in for the offset of the real VST,
|
|
// which is written after the function blocks so that it can include
|
|
// the offset of each function. The placeholder offset will be
|
|
// updated when the real VST is written.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
|
|
// Blocks are 32-bit aligned, so we can use a 32-bit word offset to
|
|
// hold the real VST offset. Must use fixed instead of VBR as we don't
|
|
// know how many VBR chunks to reserve ahead of time.
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
|
|
unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Emit the placeholder
|
|
uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
|
|
Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
|
|
|
|
// Compute and return the bit offset to the placeholder, which will be
|
|
// patched when the real VST is written. We can simply subtract the 32-bit
|
|
// fixed size from the current bit number to get the location to backpatch.
|
|
return Stream.GetCurrentBitNo() - 32;
|
|
}
|
|
|
|
enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
|
|
|
|
/// Determine the encoding to use for the given string name and length.
|
|
static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
|
|
bool isChar6 = true;
|
|
for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
|
|
if (isChar6)
|
|
isChar6 = BitCodeAbbrevOp::isChar6(*C);
|
|
if ((unsigned char)*C & 128)
|
|
// don't bother scanning the rest.
|
|
return SE_Fixed8;
|
|
}
|
|
if (isChar6)
|
|
return SE_Char6;
|
|
else
|
|
return SE_Fixed7;
|
|
}
|
|
|
|
/// Emit top-level description of module, including target triple, inline asm,
|
|
/// descriptors for global variables, and function prototype info.
|
|
/// Returns the bit offset to backpatch with the location of the real VST.
|
|
static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
// Emit various pieces of data attached to a module.
|
|
if (!M->getTargetTriple().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
|
|
0/*TODO*/, Stream);
|
|
const std::string &DL = M->getDataLayoutStr();
|
|
if (!DL.empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
|
|
if (!M->getModuleInlineAsm().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
|
|
0/*TODO*/, Stream);
|
|
|
|
// Emit information about sections and GC, computing how many there are. Also
|
|
// compute the maximum alignment value.
|
|
std::map<std::string, unsigned> SectionMap;
|
|
std::map<std::string, unsigned> GCMap;
|
|
unsigned MaxAlignment = 0;
|
|
unsigned MaxGlobalType = 0;
|
|
for (const GlobalValue &GV : M->globals()) {
|
|
MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
|
|
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
|
|
if (GV.hasSection()) {
|
|
// Give section names unique ID's.
|
|
unsigned &Entry = SectionMap[GV.getSection()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
|
|
0/*TODO*/, Stream);
|
|
Entry = SectionMap.size();
|
|
}
|
|
}
|
|
}
|
|
for (const Function &F : *M) {
|
|
MaxAlignment = std::max(MaxAlignment, F.getAlignment());
|
|
if (F.hasSection()) {
|
|
// Give section names unique ID's.
|
|
unsigned &Entry = SectionMap[F.getSection()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
|
|
0/*TODO*/, Stream);
|
|
Entry = SectionMap.size();
|
|
}
|
|
}
|
|
if (F.hasGC()) {
|
|
// Same for GC names.
|
|
unsigned &Entry = GCMap[F.getGC()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
|
|
0/*TODO*/, Stream);
|
|
Entry = GCMap.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit abbrev for globals, now that we know # sections and max alignment.
|
|
unsigned SimpleGVarAbbrev = 0;
|
|
if (!M->global_empty()) {
|
|
// Add an abbrev for common globals with no visibility or thread localness.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(MaxGlobalType+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
|
|
//| explicitType << 1
|
|
//| constant
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
|
|
if (MaxAlignment == 0) // Alignment.
|
|
Abbv->Add(BitCodeAbbrevOp(0));
|
|
else {
|
|
unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(MaxEncAlignment+1)));
|
|
}
|
|
if (SectionMap.empty()) // Section.
|
|
Abbv->Add(BitCodeAbbrevOp(0));
|
|
else
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(SectionMap.size()+1)));
|
|
// Don't bother emitting vis + thread local.
|
|
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
// Emit the global variable information.
|
|
SmallVector<unsigned, 64> Vals;
|
|
for (const GlobalVariable &GV : M->globals()) {
|
|
unsigned AbbrevToUse = 0;
|
|
|
|
// GLOBALVAR: [type, isconst, initid,
|
|
// linkage, alignment, section, visibility, threadlocal,
|
|
// unnamed_addr, externally_initialized, dllstorageclass,
|
|
// comdat]
|
|
Vals.push_back(VE.getTypeID(GV.getValueType()));
|
|
Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
|
|
Vals.push_back(GV.isDeclaration() ? 0 :
|
|
(VE.getValueID(GV.getInitializer()) + 1));
|
|
Vals.push_back(getEncodedLinkage(GV));
|
|
Vals.push_back(Log2_32(GV.getAlignment())+1);
|
|
Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
|
|
if (GV.isThreadLocal() ||
|
|
GV.getVisibility() != GlobalValue::DefaultVisibility ||
|
|
GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
|
|
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
|
|
GV.hasComdat()) {
|
|
Vals.push_back(getEncodedVisibility(GV));
|
|
Vals.push_back(getEncodedThreadLocalMode(GV));
|
|
Vals.push_back(GV.hasUnnamedAddr());
|
|
Vals.push_back(GV.isExternallyInitialized());
|
|
Vals.push_back(getEncodedDLLStorageClass(GV));
|
|
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
|
|
} else {
|
|
AbbrevToUse = SimpleGVarAbbrev;
|
|
}
|
|
|
|
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit the function proto information.
|
|
for (const Function &F : *M) {
|
|
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
|
|
// section, visibility, gc, unnamed_addr, prologuedata,
|
|
// dllstorageclass, comdat, prefixdata, personalityfn]
|
|
Vals.push_back(VE.getTypeID(F.getFunctionType()));
|
|
Vals.push_back(F.getCallingConv());
|
|
Vals.push_back(F.isDeclaration());
|
|
Vals.push_back(getEncodedLinkage(F));
|
|
Vals.push_back(VE.getAttributeID(F.getAttributes()));
|
|
Vals.push_back(Log2_32(F.getAlignment())+1);
|
|
Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
|
|
Vals.push_back(getEncodedVisibility(F));
|
|
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
|
|
Vals.push_back(F.hasUnnamedAddr());
|
|
Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
|
|
: 0);
|
|
Vals.push_back(getEncodedDLLStorageClass(F));
|
|
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
|
|
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
|
|
: 0);
|
|
Vals.push_back(
|
|
F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
|
|
|
|
unsigned AbbrevToUse = 0;
|
|
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit the alias information.
|
|
for (const GlobalAlias &A : M->aliases()) {
|
|
// ALIAS: [alias type, aliasee val#, linkage, visibility]
|
|
Vals.push_back(VE.getTypeID(A.getValueType()));
|
|
Vals.push_back(A.getType()->getAddressSpace());
|
|
Vals.push_back(VE.getValueID(A.getAliasee()));
|
|
Vals.push_back(getEncodedLinkage(A));
|
|
Vals.push_back(getEncodedVisibility(A));
|
|
Vals.push_back(getEncodedDLLStorageClass(A));
|
|
Vals.push_back(getEncodedThreadLocalMode(A));
|
|
Vals.push_back(A.hasUnnamedAddr());
|
|
unsigned AbbrevToUse = 0;
|
|
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit the module's source file name.
|
|
{
|
|
StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(),
|
|
M->getSourceFileName().size());
|
|
BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
|
|
if (Bits == SE_Char6)
|
|
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
|
|
else if (Bits == SE_Fixed7)
|
|
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
|
|
|
|
// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(AbbrevOpToUse);
|
|
unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
for (const auto P : M->getSourceFileName())
|
|
Vals.push_back((unsigned char)P);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
|
|
Vals.clear();
|
|
}
|
|
|
|
// If we have a VST, write the VSTOFFSET record placeholder and return
|
|
// its offset.
|
|
if (M->getValueSymbolTable().empty())
|
|
return 0;
|
|
return WriteValueSymbolTableForwardDecl(Stream);
|
|
}
|
|
|
|
static uint64_t GetOptimizationFlags(const Value *V) {
|
|
uint64_t Flags = 0;
|
|
|
|
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
|
|
if (OBO->hasNoSignedWrap())
|
|
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
|
|
if (OBO->hasNoUnsignedWrap())
|
|
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
|
|
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
|
|
if (PEO->isExact())
|
|
Flags |= 1 << bitc::PEO_EXACT;
|
|
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
|
|
if (FPMO->hasUnsafeAlgebra())
|
|
Flags |= FastMathFlags::UnsafeAlgebra;
|
|
if (FPMO->hasNoNaNs())
|
|
Flags |= FastMathFlags::NoNaNs;
|
|
if (FPMO->hasNoInfs())
|
|
Flags |= FastMathFlags::NoInfs;
|
|
if (FPMO->hasNoSignedZeros())
|
|
Flags |= FastMathFlags::NoSignedZeros;
|
|
if (FPMO->hasAllowReciprocal())
|
|
Flags |= FastMathFlags::AllowReciprocal;
|
|
}
|
|
|
|
return Flags;
|
|
}
|
|
|
|
static void WriteValueAsMetadata(const ValueAsMetadata *MD,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record) {
|
|
// Mimic an MDNode with a value as one operand.
|
|
Value *V = MD->getValue();
|
|
Record.push_back(VE.getTypeID(V->getType()));
|
|
Record.push_back(VE.getValueID(V));
|
|
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
Metadata *MD = N->getOperand(i);
|
|
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
|
|
"Unexpected function-local metadata");
|
|
Record.push_back(VE.getMetadataOrNullID(MD));
|
|
}
|
|
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
|
|
: bitc::METADATA_NODE,
|
|
Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static unsigned createDILocationAbbrev(BitstreamWriter &Stream) {
|
|
// Assume the column is usually under 128, and always output the inlined-at
|
|
// location (it's never more expensive than building an array size 1).
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
return Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned &Abbrev) {
|
|
if (!Abbrev)
|
|
Abbrev = createDILocationAbbrev(Stream);
|
|
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(N->getColumn());
|
|
Record.push_back(VE.getMetadataID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) {
|
|
// Assume the column is usually under 128, and always output the inlined-at
|
|
// location (it's never more expensive than building an array size 1).
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
return Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
static void WriteGenericDINode(const GenericDINode *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned &Abbrev) {
|
|
if (!Abbrev)
|
|
Abbrev = createGenericDINodeAbbrev(Stream);
|
|
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(0); // Per-tag version field; unused for now.
|
|
|
|
for (auto &I : N->operands())
|
|
Record.push_back(VE.getMetadataOrNullID(I));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static uint64_t rotateSign(int64_t I) {
|
|
uint64_t U = I;
|
|
return I < 0 ? ~(U << 1) : U << 1;
|
|
}
|
|
|
|
static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getCount());
|
|
Record.push_back(rotateSign(N->getLowerBound()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(rotateSign(N->getValue()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(N->getSizeInBits());
|
|
Record.push_back(N->getAlignInBits());
|
|
Record.push_back(N->getEncoding());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIDerivedType(const DIDerivedType *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
|
|
Record.push_back(N->getSizeInBits());
|
|
Record.push_back(N->getAlignInBits());
|
|
Record.push_back(N->getOffsetInBits());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDICompositeType(const DICompositeType *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
|
|
Record.push_back(N->getSizeInBits());
|
|
Record.push_back(N->getAlignInBits());
|
|
Record.push_back(N->getOffsetInBits());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
|
|
Record.push_back(N->getRuntimeLang());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDISubroutineType(const DISubroutineType *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDICompileUnit(const DICompileUnit *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
assert(N->isDistinct() && "Expected distinct compile units");
|
|
Record.push_back(/* IsDistinct */ true);
|
|
Record.push_back(N->getSourceLanguage());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
|
|
Record.push_back(N->isOptimized());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
|
|
Record.push_back(N->getRuntimeVersion());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
|
|
Record.push_back(N->getEmissionKind());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
|
|
Record.push_back(N->getDWOId());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(N->isLocalToUnit());
|
|
Record.push_back(N->isDefinition());
|
|
Record.push_back(N->getScopeLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
|
|
Record.push_back(N->getVirtuality());
|
|
Record.push_back(N->getVirtualIndex());
|
|
Record.push_back(N->getFlags());
|
|
Record.push_back(N->isOptimized());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDILexicalBlock(const DILexicalBlock *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(N->getColumn());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getDiscriminator());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(N->getLine());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getMacinfoType());
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getMacinfoType());
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
for (auto &I : N->operands())
|
|
Record.push_back(VE.getMetadataOrNullID(I));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIGlobalVariable(const DIGlobalVariable *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(N->isLocalToUnit());
|
|
Record.push_back(N->isDefinition());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDILocalVariable(const DILocalVariable *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
Record.push_back(N->getArg());
|
|
Record.push_back(N->getFlags());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.reserve(N->getElements().size() + 1);
|
|
|
|
Record.push_back(N->isDistinct());
|
|
Record.append(N->elements_begin(), N->elements_end());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIObjCProperty(const DIObjCProperty *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
|
|
Record.push_back(N->getAttributes());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getType()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteDIImportedEntity(const DIImportedEntity *N,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record,
|
|
unsigned Abbrev) {
|
|
Record.push_back(N->isDistinct());
|
|
Record.push_back(N->getTag());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
|
|
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
|
|
Record.push_back(N->getLine());
|
|
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
|
|
|
|
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
|
|
Record.clear();
|
|
}
|
|
|
|
static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) {
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
return Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record) {
|
|
if (M.named_metadata_empty())
|
|
return;
|
|
|
|
unsigned Abbrev = createNamedMetadataAbbrev(Stream);
|
|
for (const NamedMDNode &NMD : M.named_metadata()) {
|
|
// Write name.
|
|
StringRef Str = NMD.getName();
|
|
Record.append(Str.bytes_begin(), Str.bytes_end());
|
|
Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
|
|
Record.clear();
|
|
|
|
// Write named metadata operands.
|
|
for (const MDNode *N : NMD.operands())
|
|
Record.push_back(VE.getMetadataID(N));
|
|
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) {
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
|
|
return Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
/// Write out a record for MDString.
|
|
///
|
|
/// All the metadata strings in a metadata block are emitted in a single
|
|
/// record. The sizes and strings themselves are shoved into a blob.
|
|
static void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
|
|
BitstreamWriter &Stream,
|
|
SmallVectorImpl<uint64_t> &Record) {
|
|
if (Strings.empty())
|
|
return;
|
|
|
|
// Start the record with the number of strings.
|
|
Record.push_back(bitc::METADATA_STRINGS);
|
|
Record.push_back(Strings.size());
|
|
|
|
// Emit the sizes of the strings in the blob.
|
|
SmallString<256> Blob;
|
|
{
|
|
BitstreamWriter W(Blob);
|
|
for (const Metadata *MD : Strings)
|
|
W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
|
|
W.FlushToWord();
|
|
}
|
|
|
|
// Add the offset to the strings to the record.
|
|
Record.push_back(Blob.size());
|
|
|
|
// Add the strings to the blob.
|
|
for (const Metadata *MD : Strings)
|
|
Blob.append(cast<MDString>(MD)->getString());
|
|
|
|
// Emit the final record.
|
|
Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob);
|
|
Record.clear();
|
|
}
|
|
|
|
static void WriteModuleMetadata(const Module &M,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
if (VE.getMDs().empty() && M.named_metadata_empty())
|
|
return;
|
|
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
|
|
// Initialize MDNode abbreviations.
|
|
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
writeMetadataStrings(VE.getMDStrings(), Stream, Record);
|
|
for (const Metadata *MD : VE.getNonMDStrings()) {
|
|
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
|
|
assert(N->isResolved() && "Expected forward references to be resolved");
|
|
|
|
switch (N->getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid MDNode subclass");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
|
|
continue;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
WriteValueAsMetadata(cast<ConstantAsMetadata>(MD), VE, Stream, Record);
|
|
}
|
|
|
|
writeNamedMetadata(M, VE, Stream, Record);
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteFunctionLocalMetadata(const Function &F,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
bool StartedMetadataBlock = false;
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (const Metadata *MD : VE.getFunctionMDs()) {
|
|
auto *Local = cast<LocalAsMetadata>(MD);
|
|
if (!StartedMetadataBlock) {
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
StartedMetadataBlock = true;
|
|
}
|
|
WriteValueAsMetadata(Local, VE, Stream, Record);
|
|
}
|
|
|
|
if (StartedMetadataBlock)
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteMetadataAttachment(const Function &F,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Write metadata attachments
|
|
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F.getAllMetadata(MDs);
|
|
if (!MDs.empty()) {
|
|
for (const auto &I : MDs) {
|
|
Record.push_back(I.first);
|
|
Record.push_back(VE.getMetadataID(I.second));
|
|
}
|
|
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB) {
|
|
MDs.clear();
|
|
I.getAllMetadataOtherThanDebugLoc(MDs);
|
|
|
|
// If no metadata, ignore instruction.
|
|
if (MDs.empty()) continue;
|
|
|
|
Record.push_back(VE.getInstructionID(&I));
|
|
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
|
|
Record.push_back(MDs[i].first);
|
|
Record.push_back(VE.getMetadataID(MDs[i].second));
|
|
}
|
|
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Write metadata kinds
|
|
// METADATA_KIND - [n x [id, name]]
|
|
SmallVector<StringRef, 8> Names;
|
|
M->getMDKindNames(Names);
|
|
|
|
if (Names.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
|
|
|
|
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
|
|
Record.push_back(MDKindID);
|
|
StringRef KName = Names[MDKindID];
|
|
Record.append(KName.begin(), KName.end());
|
|
|
|
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) {
|
|
// Write metadata kinds
|
|
//
|
|
// OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
|
|
//
|
|
// OPERAND_BUNDLE_TAG - [strchr x N]
|
|
|
|
SmallVector<StringRef, 8> Tags;
|
|
M->getOperandBundleTags(Tags);
|
|
|
|
if (Tags.empty())
|
|
return;
|
|
|
|
Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
for (auto Tag : Tags) {
|
|
Record.append(Tag.begin(), Tag.end());
|
|
|
|
Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
|
|
if ((int64_t)V >= 0)
|
|
Vals.push_back(V << 1);
|
|
else
|
|
Vals.push_back((-V << 1) | 1);
|
|
}
|
|
|
|
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream, bool isGlobal) {
|
|
if (FirstVal == LastVal) return;
|
|
|
|
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
|
|
|
|
unsigned AggregateAbbrev = 0;
|
|
unsigned String8Abbrev = 0;
|
|
unsigned CString7Abbrev = 0;
|
|
unsigned CString6Abbrev = 0;
|
|
// If this is a constant pool for the module, emit module-specific abbrevs.
|
|
if (isGlobal) {
|
|
// Abbrev for CST_CODE_AGGREGATE.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
|
|
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for CST_CODE_STRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
String8Abbrev = Stream.EmitAbbrev(Abbv);
|
|
// Abbrev for CST_CODE_CSTRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
CString7Abbrev = Stream.EmitAbbrev(Abbv);
|
|
// Abbrev for CST_CODE_CSTRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
CString6Abbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
Type *LastTy = nullptr;
|
|
for (unsigned i = FirstVal; i != LastVal; ++i) {
|
|
const Value *V = Vals[i].first;
|
|
// If we need to switch types, do so now.
|
|
if (V->getType() != LastTy) {
|
|
LastTy = V->getType();
|
|
Record.push_back(VE.getTypeID(LastTy));
|
|
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
|
|
CONSTANTS_SETTYPE_ABBREV);
|
|
Record.clear();
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Record.push_back(unsigned(IA->hasSideEffects()) |
|
|
unsigned(IA->isAlignStack()) << 1 |
|
|
unsigned(IA->getDialect()&1) << 2);
|
|
|
|
// Add the asm string.
|
|
const std::string &AsmStr = IA->getAsmString();
|
|
Record.push_back(AsmStr.size());
|
|
Record.append(AsmStr.begin(), AsmStr.end());
|
|
|
|
// Add the constraint string.
|
|
const std::string &ConstraintStr = IA->getConstraintString();
|
|
Record.push_back(ConstraintStr.size());
|
|
Record.append(ConstraintStr.begin(), ConstraintStr.end());
|
|
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
|
|
Record.clear();
|
|
continue;
|
|
}
|
|
const Constant *C = cast<Constant>(V);
|
|
unsigned Code = -1U;
|
|
unsigned AbbrevToUse = 0;
|
|
if (C->isNullValue()) {
|
|
Code = bitc::CST_CODE_NULL;
|
|
} else if (isa<UndefValue>(C)) {
|
|
Code = bitc::CST_CODE_UNDEF;
|
|
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
|
|
if (IV->getBitWidth() <= 64) {
|
|
uint64_t V = IV->getSExtValue();
|
|
emitSignedInt64(Record, V);
|
|
Code = bitc::CST_CODE_INTEGER;
|
|
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
|
|
} else { // Wide integers, > 64 bits in size.
|
|
// We have an arbitrary precision integer value to write whose
|
|
// bit width is > 64. However, in canonical unsigned integer
|
|
// format it is likely that the high bits are going to be zero.
|
|
// So, we only write the number of active words.
|
|
unsigned NWords = IV->getValue().getActiveWords();
|
|
const uint64_t *RawWords = IV->getValue().getRawData();
|
|
for (unsigned i = 0; i != NWords; ++i) {
|
|
emitSignedInt64(Record, RawWords[i]);
|
|
}
|
|
Code = bitc::CST_CODE_WIDE_INTEGER;
|
|
}
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
Code = bitc::CST_CODE_FLOAT;
|
|
Type *Ty = CFP->getType();
|
|
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
|
|
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
|
|
} else if (Ty->isX86_FP80Ty()) {
|
|
// api needed to prevent premature destruction
|
|
// bits are not in the same order as a normal i80 APInt, compensate.
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
Record.push_back((p[1] << 48) | (p[0] >> 16));
|
|
Record.push_back(p[0] & 0xffffLL);
|
|
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
Record.push_back(p[0]);
|
|
Record.push_back(p[1]);
|
|
} else {
|
|
assert (0 && "Unknown FP type!");
|
|
}
|
|
} else if (isa<ConstantDataSequential>(C) &&
|
|
cast<ConstantDataSequential>(C)->isString()) {
|
|
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
|
|
// Emit constant strings specially.
|
|
unsigned NumElts = Str->getNumElements();
|
|
// If this is a null-terminated string, use the denser CSTRING encoding.
|
|
if (Str->isCString()) {
|
|
Code = bitc::CST_CODE_CSTRING;
|
|
--NumElts; // Don't encode the null, which isn't allowed by char6.
|
|
} else {
|
|
Code = bitc::CST_CODE_STRING;
|
|
AbbrevToUse = String8Abbrev;
|
|
}
|
|
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
|
|
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
unsigned char V = Str->getElementAsInteger(i);
|
|
Record.push_back(V);
|
|
isCStr7 &= (V & 128) == 0;
|
|
if (isCStrChar6)
|
|
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
|
|
}
|
|
|
|
if (isCStrChar6)
|
|
AbbrevToUse = CString6Abbrev;
|
|
else if (isCStr7)
|
|
AbbrevToUse = CString7Abbrev;
|
|
} else if (const ConstantDataSequential *CDS =
|
|
dyn_cast<ConstantDataSequential>(C)) {
|
|
Code = bitc::CST_CODE_DATA;
|
|
Type *EltTy = CDS->getType()->getElementType();
|
|
if (isa<IntegerType>(EltTy)) {
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
|
|
Record.push_back(CDS->getElementAsInteger(i));
|
|
} else {
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
|
|
Record.push_back(
|
|
CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
|
|
}
|
|
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
|
|
isa<ConstantVector>(C)) {
|
|
Code = bitc::CST_CODE_AGGREGATE;
|
|
for (const Value *Op : C->operands())
|
|
Record.push_back(VE.getValueID(Op));
|
|
AbbrevToUse = AggregateAbbrev;
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
if (Instruction::isCast(CE->getOpcode())) {
|
|
Code = bitc::CST_CODE_CE_CAST;
|
|
Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
|
|
} else {
|
|
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
|
|
Code = bitc::CST_CODE_CE_BINOP;
|
|
Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
uint64_t Flags = GetOptimizationFlags(CE);
|
|
if (Flags != 0)
|
|
Record.push_back(Flags);
|
|
}
|
|
break;
|
|
case Instruction::GetElementPtr: {
|
|
Code = bitc::CST_CODE_CE_GEP;
|
|
const auto *GO = cast<GEPOperator>(C);
|
|
if (GO->isInBounds())
|
|
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
|
|
Record.push_back(VE.getTypeID(GO->getSourceElementType()));
|
|
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
|
|
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(i)));
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Select:
|
|
Code = bitc::CST_CODE_CE_SELECT;
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
Code = bitc::CST_CODE_CE_EXTRACTELT;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
break;
|
|
case Instruction::InsertElement:
|
|
Code = bitc::CST_CODE_CE_INSERTELT;
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
// If the return type and argument types are the same, this is a
|
|
// standard shufflevector instruction. If the types are different,
|
|
// then the shuffle is widening or truncating the input vectors, and
|
|
// the argument type must also be encoded.
|
|
if (C->getType() == C->getOperand(0)->getType()) {
|
|
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
|
|
} else {
|
|
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
}
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
Code = bitc::CST_CODE_CE_CMP;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(CE->getPredicate());
|
|
break;
|
|
}
|
|
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Code = bitc::CST_CODE_BLOCKADDRESS;
|
|
Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
|
|
Record.push_back(VE.getValueID(BA->getFunction()));
|
|
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
|
|
} else {
|
|
#ifndef NDEBUG
|
|
C->dump();
|
|
#endif
|
|
llvm_unreachable("Unknown constant!");
|
|
}
|
|
Stream.EmitRecord(Code, Record, AbbrevToUse);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteModuleConstants(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
|
|
// Find the first constant to emit, which is the first non-globalvalue value.
|
|
// We know globalvalues have been emitted by WriteModuleInfo.
|
|
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
|
|
if (!isa<GlobalValue>(Vals[i].first)) {
|
|
WriteConstants(i, Vals.size(), VE, Stream, true);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PushValueAndType - The file has to encode both the value and type id for
|
|
/// many values, because we need to know what type to create for forward
|
|
/// references. However, most operands are not forward references, so this type
|
|
/// field is not needed.
|
|
///
|
|
/// This function adds V's value ID to Vals. If the value ID is higher than the
|
|
/// instruction ID, then it is a forward reference, and it also includes the
|
|
/// type ID. The value ID that is written is encoded relative to the InstID.
|
|
static bool PushValueAndType(const Value *V, unsigned InstID,
|
|
SmallVectorImpl<unsigned> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
// Make encoding relative to the InstID.
|
|
Vals.push_back(InstID - ValID);
|
|
if (ValID >= InstID) {
|
|
Vals.push_back(VE.getTypeID(V->getType()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS,
|
|
unsigned InstID, ValueEnumerator &VE) {
|
|
SmallVector<unsigned, 64> Record;
|
|
LLVMContext &C = CS.getInstruction()->getContext();
|
|
|
|
for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
|
|
const auto &Bundle = CS.getOperandBundleAt(i);
|
|
Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
|
|
|
|
for (auto &Input : Bundle.Inputs)
|
|
PushValueAndType(Input, InstID, Record, VE);
|
|
|
|
Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
/// pushValue - Like PushValueAndType, but where the type of the value is
|
|
/// omitted (perhaps it was already encoded in an earlier operand).
|
|
static void pushValue(const Value *V, unsigned InstID,
|
|
SmallVectorImpl<unsigned> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
Vals.push_back(InstID - ValID);
|
|
}
|
|
|
|
static void pushValueSigned(const Value *V, unsigned InstID,
|
|
SmallVectorImpl<uint64_t> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
|
|
emitSignedInt64(Vals, diff);
|
|
}
|
|
|
|
/// WriteInstruction - Emit an instruction to the specified stream.
|
|
static void WriteInstruction(const Instruction &I, unsigned InstID,
|
|
ValueEnumerator &VE, BitstreamWriter &Stream,
|
|
SmallVectorImpl<unsigned> &Vals) {
|
|
unsigned Code = 0;
|
|
unsigned AbbrevToUse = 0;
|
|
VE.setInstructionID(&I);
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
if (Instruction::isCast(I.getOpcode())) {
|
|
Code = bitc::FUNC_CODE_INST_CAST;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
|
|
} else {
|
|
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
|
|
Code = bitc::FUNC_CODE_INST_BINOP;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
|
|
uint64_t Flags = GetOptimizationFlags(&I);
|
|
if (Flags != 0) {
|
|
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
|
|
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
|
|
Vals.push_back(Flags);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Instruction::GetElementPtr: {
|
|
Code = bitc::FUNC_CODE_INST_GEP;
|
|
AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
|
|
auto &GEPInst = cast<GetElementPtrInst>(I);
|
|
Vals.push_back(GEPInst.isInBounds());
|
|
Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
|
|
break;
|
|
}
|
|
case Instruction::ExtractValue: {
|
|
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
|
|
Vals.append(EVI->idx_begin(), EVI->idx_end());
|
|
break;
|
|
}
|
|
case Instruction::InsertValue: {
|
|
Code = bitc::FUNC_CODE_INST_INSERTVAL;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
|
|
Vals.append(IVI->idx_begin(), IVI->idx_end());
|
|
break;
|
|
}
|
|
case Instruction::Select:
|
|
Code = bitc::FUNC_CODE_INST_VSELECT;
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
pushValue(I.getOperand(2), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::InsertElement:
|
|
Code = bitc::FUNC_CODE_INST_INSERTELT;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(2), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
pushValue(I.getOperand(2), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp: {
|
|
// compare returning Int1Ty or vector of Int1Ty
|
|
Code = bitc::FUNC_CODE_INST_CMP2;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
pushValue(I.getOperand(1), InstID, Vals, VE);
|
|
Vals.push_back(cast<CmpInst>(I).getPredicate());
|
|
uint64_t Flags = GetOptimizationFlags(&I);
|
|
if (Flags != 0)
|
|
Vals.push_back(Flags);
|
|
break;
|
|
}
|
|
|
|
case Instruction::Ret:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_RET;
|
|
unsigned NumOperands = I.getNumOperands();
|
|
if (NumOperands == 0)
|
|
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
|
|
else if (NumOperands == 1) {
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
|
|
} else {
|
|
for (unsigned i = 0, e = NumOperands; i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Br:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_BR;
|
|
const BranchInst &II = cast<BranchInst>(I);
|
|
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
|
|
if (II.isConditional()) {
|
|
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
|
|
pushValue(II.getCondition(), InstID, Vals, VE);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Switch:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_SWITCH;
|
|
const SwitchInst &SI = cast<SwitchInst>(I);
|
|
Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
|
|
pushValue(SI.getCondition(), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
|
|
for (SwitchInst::ConstCaseIt Case : SI.cases()) {
|
|
Vals.push_back(VE.getValueID(Case.getCaseValue()));
|
|
Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::IndirectBr:
|
|
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
|
|
// Encode the address operand as relative, but not the basic blocks.
|
|
pushValue(I.getOperand(0), InstID, Vals, VE);
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
|
|
Vals.push_back(VE.getValueID(I.getOperand(i)));
|
|
break;
|
|
|
|
case Instruction::Invoke: {
|
|
const InvokeInst *II = cast<InvokeInst>(&I);
|
|
const Value *Callee = II->getCalledValue();
|
|
FunctionType *FTy = II->getFunctionType();
|
|
|
|
if (II->hasOperandBundles())
|
|
WriteOperandBundles(Stream, II, InstID, VE);
|
|
|
|
Code = bitc::FUNC_CODE_INST_INVOKE;
|
|
|
|
Vals.push_back(VE.getAttributeID(II->getAttributes()));
|
|
Vals.push_back(II->getCallingConv() | 1 << 13);
|
|
Vals.push_back(VE.getValueID(II->getNormalDest()));
|
|
Vals.push_back(VE.getValueID(II->getUnwindDest()));
|
|
Vals.push_back(VE.getTypeID(FTy));
|
|
PushValueAndType(Callee, InstID, Vals, VE);
|
|
|
|
// Emit value #'s for the fixed parameters.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
|
|
|
|
// Emit type/value pairs for varargs params.
|
|
if (FTy->isVarArg()) {
|
|
for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
|
|
i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Resume:
|
|
Code = bitc::FUNC_CODE_INST_RESUME;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::CleanupRet: {
|
|
Code = bitc::FUNC_CODE_INST_CLEANUPRET;
|
|
const auto &CRI = cast<CleanupReturnInst>(I);
|
|
pushValue(CRI.getCleanupPad(), InstID, Vals, VE);
|
|
if (CRI.hasUnwindDest())
|
|
Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
|
|
break;
|
|
}
|
|
case Instruction::CatchRet: {
|
|
Code = bitc::FUNC_CODE_INST_CATCHRET;
|
|
const auto &CRI = cast<CatchReturnInst>(I);
|
|
pushValue(CRI.getCatchPad(), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(CRI.getSuccessor()));
|
|
break;
|
|
}
|
|
case Instruction::CleanupPad:
|
|
case Instruction::CatchPad: {
|
|
const auto &FuncletPad = cast<FuncletPadInst>(I);
|
|
Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
|
|
: bitc::FUNC_CODE_INST_CLEANUPPAD;
|
|
pushValue(FuncletPad.getParentPad(), InstID, Vals, VE);
|
|
|
|
unsigned NumArgOperands = FuncletPad.getNumArgOperands();
|
|
Vals.push_back(NumArgOperands);
|
|
for (unsigned Op = 0; Op != NumArgOperands; ++Op)
|
|
PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE);
|
|
break;
|
|
}
|
|
case Instruction::CatchSwitch: {
|
|
Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
|
|
const auto &CatchSwitch = cast<CatchSwitchInst>(I);
|
|
|
|
pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE);
|
|
|
|
unsigned NumHandlers = CatchSwitch.getNumHandlers();
|
|
Vals.push_back(NumHandlers);
|
|
for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
|
|
Vals.push_back(VE.getValueID(CatchPadBB));
|
|
|
|
if (CatchSwitch.hasUnwindDest())
|
|
Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
|
|
break;
|
|
}
|
|
case Instruction::Unreachable:
|
|
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
|
|
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
|
|
break;
|
|
|
|
case Instruction::PHI: {
|
|
const PHINode &PN = cast<PHINode>(I);
|
|
Code = bitc::FUNC_CODE_INST_PHI;
|
|
// With the newer instruction encoding, forward references could give
|
|
// negative valued IDs. This is most common for PHIs, so we use
|
|
// signed VBRs.
|
|
SmallVector<uint64_t, 128> Vals64;
|
|
Vals64.push_back(VE.getTypeID(PN.getType()));
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
|
|
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
|
|
}
|
|
// Emit a Vals64 vector and exit.
|
|
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
|
|
Vals64.clear();
|
|
return;
|
|
}
|
|
|
|
case Instruction::LandingPad: {
|
|
const LandingPadInst &LP = cast<LandingPadInst>(I);
|
|
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
|
|
Vals.push_back(VE.getTypeID(LP.getType()));
|
|
Vals.push_back(LP.isCleanup());
|
|
Vals.push_back(LP.getNumClauses());
|
|
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
|
|
if (LP.isCatch(I))
|
|
Vals.push_back(LandingPadInst::Catch);
|
|
else
|
|
Vals.push_back(LandingPadInst::Filter);
|
|
PushValueAndType(LP.getClause(I), InstID, Vals, VE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Instruction::Alloca: {
|
|
Code = bitc::FUNC_CODE_INST_ALLOCA;
|
|
const AllocaInst &AI = cast<AllocaInst>(I);
|
|
Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
|
|
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
|
|
unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
|
|
assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
|
|
"not enough bits for maximum alignment");
|
|
assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
|
|
AlignRecord |= AI.isUsedWithInAlloca() << 5;
|
|
AlignRecord |= 1 << 6;
|
|
// Reserve bit 7 for SwiftError flag.
|
|
// AlignRecord |= AI.isSwiftError() << 7;
|
|
Vals.push_back(AlignRecord);
|
|
break;
|
|
}
|
|
|
|
case Instruction::Load:
|
|
if (cast<LoadInst>(I).isAtomic()) {
|
|
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
} else {
|
|
Code = bitc::FUNC_CODE_INST_LOAD;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
|
|
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
|
|
}
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
|
|
Vals.push_back(cast<LoadInst>(I).isVolatile());
|
|
if (cast<LoadInst>(I).isAtomic()) {
|
|
Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
|
|
}
|
|
break;
|
|
case Instruction::Store:
|
|
if (cast<StoreInst>(I).isAtomic())
|
|
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
|
|
else
|
|
Code = bitc::FUNC_CODE_INST_STORE;
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val
|
|
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
|
|
Vals.push_back(cast<StoreInst>(I).isVolatile());
|
|
if (cast<StoreInst>(I).isAtomic()) {
|
|
Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
|
|
}
|
|
break;
|
|
case Instruction::AtomicCmpXchg:
|
|
Code = bitc::FUNC_CODE_INST_CMPXCHG;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp.
|
|
pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
|
|
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
|
|
Vals.push_back(GetEncodedOrdering(
|
|
cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(
|
|
cast<AtomicCmpXchgInst>(I).getSynchScope()));
|
|
Vals.push_back(GetEncodedOrdering(
|
|
cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
|
|
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
|
|
break;
|
|
case Instruction::AtomicRMW:
|
|
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
|
|
pushValue(I.getOperand(1), InstID, Vals, VE); // val.
|
|
Vals.push_back(GetEncodedRMWOperation(
|
|
cast<AtomicRMWInst>(I).getOperation()));
|
|
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
|
|
Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(
|
|
cast<AtomicRMWInst>(I).getSynchScope()));
|
|
break;
|
|
case Instruction::Fence:
|
|
Code = bitc::FUNC_CODE_INST_FENCE;
|
|
Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
|
|
Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
|
|
break;
|
|
case Instruction::Call: {
|
|
const CallInst &CI = cast<CallInst>(I);
|
|
FunctionType *FTy = CI.getFunctionType();
|
|
|
|
if (CI.hasOperandBundles())
|
|
WriteOperandBundles(Stream, &CI, InstID, VE);
|
|
|
|
Code = bitc::FUNC_CODE_INST_CALL;
|
|
|
|
Vals.push_back(VE.getAttributeID(CI.getAttributes()));
|
|
|
|
unsigned Flags = GetOptimizationFlags(&I);
|
|
Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
|
|
unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
|
|
unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
|
|
1 << bitc::CALL_EXPLICIT_TYPE |
|
|
unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
|
|
unsigned(Flags != 0) << bitc::CALL_FMF);
|
|
if (Flags != 0)
|
|
Vals.push_back(Flags);
|
|
|
|
Vals.push_back(VE.getTypeID(FTy));
|
|
PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
|
|
|
|
// Emit value #'s for the fixed parameters.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
|
|
// Check for labels (can happen with asm labels).
|
|
if (FTy->getParamType(i)->isLabelTy())
|
|
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
|
|
else
|
|
pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
|
|
}
|
|
|
|
// Emit type/value pairs for varargs params.
|
|
if (FTy->isVarArg()) {
|
|
for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
|
|
i != e; ++i)
|
|
PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::VAArg:
|
|
Code = bitc::FUNC_CODE_INST_VAARG;
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
|
|
pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
|
|
Vals.push_back(VE.getTypeID(I.getType())); // restype.
|
|
break;
|
|
}
|
|
|
|
Stream.EmitRecord(Code, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
/// Emit names for globals/functions etc. The VSTOffsetPlaceholder,
|
|
/// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level
|
|
/// VST, where we are including a function bitcode index and need to
|
|
/// backpatch the VST forward declaration record.
|
|
static void WriteValueSymbolTable(
|
|
const ValueSymbolTable &VST, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0,
|
|
uint64_t BitcodeStartBit = 0,
|
|
DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>>
|
|
*FunctionIndex = nullptr) {
|
|
if (VST.empty()) {
|
|
// WriteValueSymbolTableForwardDecl should have returned early as
|
|
// well. Ensure this handling remains in sync by asserting that
|
|
// the placeholder offset is not set.
|
|
assert(VSTOffsetPlaceholder == 0);
|
|
return;
|
|
}
|
|
|
|
if (VSTOffsetPlaceholder > 0) {
|
|
// Get the offset of the VST we are writing, and backpatch it into
|
|
// the VST forward declaration record.
|
|
uint64_t VSTOffset = Stream.GetCurrentBitNo();
|
|
// The BitcodeStartBit was the stream offset of the actual bitcode
|
|
// (e.g. excluding any initial darwin header).
|
|
VSTOffset -= BitcodeStartBit;
|
|
assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
|
|
Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
|
|
}
|
|
|
|
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
|
|
|
|
// For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
|
|
// records, which are not used in the per-function VSTs.
|
|
unsigned FnEntry8BitAbbrev;
|
|
unsigned FnEntry7BitAbbrev;
|
|
unsigned FnEntry6BitAbbrev;
|
|
if (VSTOffsetPlaceholder > 0) {
|
|
// 8-bit fixed-width VST_CODE_FNENTRY function strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// 7-bit fixed width VST_CODE_FNENTRY function strings.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// 6-bit char6 VST_CODE_FNENTRY function strings.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
// FIXME: Set up the abbrev, we know how many values there are!
|
|
// FIXME: We know if the type names can use 7-bit ascii.
|
|
SmallVector<unsigned, 64> NameVals;
|
|
|
|
for (const ValueName &Name : VST) {
|
|
// Figure out the encoding to use for the name.
|
|
StringEncoding Bits =
|
|
getStringEncoding(Name.getKeyData(), Name.getKeyLength());
|
|
|
|
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
|
|
NameVals.push_back(VE.getValueID(Name.getValue()));
|
|
|
|
Function *F = dyn_cast<Function>(Name.getValue());
|
|
if (!F) {
|
|
// If value is an alias, need to get the aliased base object to
|
|
// see if it is a function.
|
|
auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
|
|
if (GA && GA->getBaseObject())
|
|
F = dyn_cast<Function>(GA->getBaseObject());
|
|
}
|
|
|
|
// VST_CODE_ENTRY: [valueid, namechar x N]
|
|
// VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
|
|
// VST_CODE_BBENTRY: [bbid, namechar x N]
|
|
unsigned Code;
|
|
if (isa<BasicBlock>(Name.getValue())) {
|
|
Code = bitc::VST_CODE_BBENTRY;
|
|
if (Bits == SE_Char6)
|
|
AbbrevToUse = VST_BBENTRY_6_ABBREV;
|
|
} else if (F && !F->isDeclaration()) {
|
|
// Must be the module-level VST, where we pass in the Index and
|
|
// have a VSTOffsetPlaceholder. The function-level VST should not
|
|
// contain any Function symbols.
|
|
assert(FunctionIndex);
|
|
assert(VSTOffsetPlaceholder > 0);
|
|
|
|
// Save the word offset of the function (from the start of the
|
|
// actual bitcode written to the stream).
|
|
uint64_t BitcodeIndex =
|
|
(*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit;
|
|
assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
|
|
NameVals.push_back(BitcodeIndex / 32);
|
|
|
|
Code = bitc::VST_CODE_FNENTRY;
|
|
AbbrevToUse = FnEntry8BitAbbrev;
|
|
if (Bits == SE_Char6)
|
|
AbbrevToUse = FnEntry6BitAbbrev;
|
|
else if (Bits == SE_Fixed7)
|
|
AbbrevToUse = FnEntry7BitAbbrev;
|
|
} else {
|
|
Code = bitc::VST_CODE_ENTRY;
|
|
if (Bits == SE_Char6)
|
|
AbbrevToUse = VST_ENTRY_6_ABBREV;
|
|
else if (Bits == SE_Fixed7)
|
|
AbbrevToUse = VST_ENTRY_7_ABBREV;
|
|
}
|
|
|
|
for (const auto P : Name.getKey())
|
|
NameVals.push_back((unsigned char)P);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
|
|
NameVals.clear();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// Emit function names and summary offsets for the combined index
|
|
/// used by ThinLTO.
|
|
static void
|
|
WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index,
|
|
BitstreamWriter &Stream,
|
|
std::map<uint64_t, unsigned> &GUIDToValueIdMap,
|
|
uint64_t VSTOffsetPlaceholder) {
|
|
assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder");
|
|
// Get the offset of the VST we are writing, and backpatch it into
|
|
// the VST forward declaration record.
|
|
uint64_t VSTOffset = Stream.GetCurrentBitNo();
|
|
assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
|
|
Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
|
|
|
|
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
|
|
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid
|
|
unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
|
|
unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
SmallVector<uint64_t, 64> NameVals;
|
|
|
|
for (const auto &FII : Index) {
|
|
uint64_t FuncGUID = FII.first;
|
|
const auto &VMI = GUIDToValueIdMap.find(FuncGUID);
|
|
assert(VMI != GUIDToValueIdMap.end());
|
|
|
|
for (const auto &FI : FII.second) {
|
|
// VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid]
|
|
NameVals.push_back(VMI->second);
|
|
NameVals.push_back(FI->bitcodeIndex());
|
|
NameVals.push_back(FuncGUID);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals,
|
|
DefEntryAbbrev);
|
|
NameVals.clear();
|
|
}
|
|
GUIDToValueIdMap.erase(VMI);
|
|
}
|
|
for (const auto &GVI : GUIDToValueIdMap) {
|
|
// VST_CODE_COMBINED_ENTRY: [valueid, refguid]
|
|
NameVals.push_back(GVI.second);
|
|
NameVals.push_back(GVI.first);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
|
|
NameVals.clear();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
|
|
BitstreamWriter &Stream) {
|
|
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
|
|
unsigned Code;
|
|
if (isa<BasicBlock>(Order.V))
|
|
Code = bitc::USELIST_CODE_BB;
|
|
else
|
|
Code = bitc::USELIST_CODE_DEFAULT;
|
|
|
|
SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
|
|
Record.push_back(VE.getValueID(Order.V));
|
|
Stream.EmitRecord(Code, Record);
|
|
}
|
|
|
|
static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
assert(VE.shouldPreserveUseListOrder() &&
|
|
"Expected to be preserving use-list order");
|
|
|
|
auto hasMore = [&]() {
|
|
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
|
|
};
|
|
if (!hasMore())
|
|
// Nothing to do.
|
|
return;
|
|
|
|
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
|
|
while (hasMore()) {
|
|
WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
|
|
VE.UseListOrders.pop_back();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
// Walk through the operands of a given User via worklist iteration and populate
|
|
// the set of GlobalValue references encountered. Invoked either on an
|
|
// Instruction or a GlobalVariable (which walks its initializer).
|
|
static void findRefEdges(const User *CurUser, const ValueEnumerator &VE,
|
|
DenseSet<unsigned> &RefEdges,
|
|
SmallPtrSet<const User *, 8> &Visited) {
|
|
SmallVector<const User *, 32> Worklist;
|
|
Worklist.push_back(CurUser);
|
|
|
|
while (!Worklist.empty()) {
|
|
const User *U = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(U).second)
|
|
continue;
|
|
|
|
ImmutableCallSite CS(U);
|
|
|
|
for (const auto &OI : U->operands()) {
|
|
const User *Operand = dyn_cast<User>(OI);
|
|
if (!Operand)
|
|
continue;
|
|
if (isa<BlockAddress>(Operand))
|
|
continue;
|
|
if (isa<GlobalValue>(Operand)) {
|
|
// We have a reference to a global value. This should be added to
|
|
// the reference set unless it is a callee. Callees are handled
|
|
// specially by WriteFunction and are added to a separate list.
|
|
if (!(CS && CS.isCallee(&OI)))
|
|
RefEdges.insert(VE.getValueID(Operand));
|
|
continue;
|
|
}
|
|
Worklist.push_back(Operand);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit a function body to the module stream.
|
|
static void WriteFunction(
|
|
const Function &F, const Module *M, ValueEnumerator &VE,
|
|
BitstreamWriter &Stream,
|
|
DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex,
|
|
bool EmitSummaryIndex) {
|
|
// Save the bitcode index of the start of this function block for recording
|
|
// in the VST.
|
|
uint64_t BitcodeIndex = Stream.GetCurrentBitNo();
|
|
|
|
bool HasProfileData = F.getEntryCount().hasValue();
|
|
std::unique_ptr<BlockFrequencyInfo> BFI;
|
|
if (EmitSummaryIndex && HasProfileData) {
|
|
Function &Func = const_cast<Function &>(F);
|
|
LoopInfo LI{DominatorTree(Func)};
|
|
BranchProbabilityInfo BPI{Func, LI};
|
|
BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI);
|
|
}
|
|
|
|
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
|
|
VE.incorporateFunction(F);
|
|
|
|
SmallVector<unsigned, 64> Vals;
|
|
|
|
// Emit the number of basic blocks, so the reader can create them ahead of
|
|
// time.
|
|
Vals.push_back(VE.getBasicBlocks().size());
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
|
|
Vals.clear();
|
|
|
|
// If there are function-local constants, emit them now.
|
|
unsigned CstStart, CstEnd;
|
|
VE.getFunctionConstantRange(CstStart, CstEnd);
|
|
WriteConstants(CstStart, CstEnd, VE, Stream, false);
|
|
|
|
// If there is function-local metadata, emit it now.
|
|
WriteFunctionLocalMetadata(F, VE, Stream);
|
|
|
|
// Keep a running idea of what the instruction ID is.
|
|
unsigned InstID = CstEnd;
|
|
|
|
bool NeedsMetadataAttachment = F.hasMetadata();
|
|
|
|
DILocation *LastDL = nullptr;
|
|
unsigned NumInsts = 0;
|
|
// Map from callee ValueId to profile count. Used to accumulate profile
|
|
// counts for all static calls to a given callee.
|
|
DenseMap<unsigned, CalleeInfo> CallGraphEdges;
|
|
DenseSet<unsigned> RefEdges;
|
|
|
|
SmallPtrSet<const User *, 8> Visited;
|
|
// Finally, emit all the instructions, in order.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
WriteInstruction(*I, InstID, VE, Stream, Vals);
|
|
|
|
if (!isa<DbgInfoIntrinsic>(I))
|
|
++NumInsts;
|
|
|
|
if (!I->getType()->isVoidTy())
|
|
++InstID;
|
|
|
|
if (EmitSummaryIndex) {
|
|
if (auto CS = ImmutableCallSite(&*I)) {
|
|
auto *CalledFunction = CS.getCalledFunction();
|
|
if (CalledFunction && CalledFunction->hasName() &&
|
|
!CalledFunction->isIntrinsic()) {
|
|
auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None;
|
|
unsigned CalleeId = VE.getValueID(
|
|
M->getValueSymbolTable().lookup(CalledFunction->getName()));
|
|
CallGraphEdges[CalleeId] +=
|
|
(ScaledCount ? ScaledCount.getValue() : 0);
|
|
}
|
|
}
|
|
findRefEdges(&*I, VE, RefEdges, Visited);
|
|
}
|
|
|
|
// If the instruction has metadata, write a metadata attachment later.
|
|
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
|
|
|
|
// If the instruction has a debug location, emit it.
|
|
DILocation *DL = I->getDebugLoc();
|
|
if (!DL)
|
|
continue;
|
|
|
|
if (DL == LastDL) {
|
|
// Just repeat the same debug loc as last time.
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
|
|
continue;
|
|
}
|
|
|
|
Vals.push_back(DL->getLine());
|
|
Vals.push_back(DL->getColumn());
|
|
Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
|
|
Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
|
|
Vals.clear();
|
|
|
|
LastDL = DL;
|
|
}
|
|
|
|
std::unique_ptr<FunctionSummary> FuncSummary;
|
|
if (EmitSummaryIndex) {
|
|
FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts);
|
|
FuncSummary->addCallGraphEdges(CallGraphEdges);
|
|
FuncSummary->addRefEdges(RefEdges);
|
|
}
|
|
FunctionIndex[&F] =
|
|
llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary));
|
|
|
|
// Emit names for all the instructions etc.
|
|
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
|
|
|
|
if (NeedsMetadataAttachment)
|
|
WriteMetadataAttachment(F, VE, Stream);
|
|
if (VE.shouldPreserveUseListOrder())
|
|
WriteUseListBlock(&F, VE, Stream);
|
|
VE.purgeFunction();
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
// Emit blockinfo, which defines the standard abbreviations etc.
|
|
static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
// We only want to emit block info records for blocks that have multiple
|
|
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
|
|
// Other blocks can define their abbrevs inline.
|
|
Stream.EnterBlockInfoBlock(2);
|
|
|
|
{ // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_8_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // 7-bit fixed width VST_CODE_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_7_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // 6-bit char6 VST_CODE_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_6_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // 6-bit char6 VST_CODE_BBENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_BBENTRY_6_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
|
|
|
|
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_SETTYPE_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // INTEGER abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_INTEGER_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
|
|
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_CE_CAST_Abbrev)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // NULL abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_NULL_Abbrev)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
// FIXME: This should only use space for first class types!
|
|
|
|
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_LOAD_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_BINOP_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_CAST abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
VE.computeBitsRequiredForTypeIndicies()));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_CAST_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // INST_RET abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_RET abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
Log2_32_Ceil(VE.getTypes().size() + 1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
|
|
FUNCTION_INST_GEP_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// Write the module path strings, currently only used when generating
|
|
/// a combined index file.
|
|
static void WriteModStrings(const ModuleSummaryIndex &I,
|
|
BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
|
|
|
|
// TODO: See which abbrev sizes we actually need to emit
|
|
|
|
// 8-bit fixed-width MST_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
|
|
|
|
// 7-bit fixed width MST_ENTRY strings.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
|
|
|
|
// 6-bit char6 MST_ENTRY strings.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
|
|
|
|
SmallVector<unsigned, 64> NameVals;
|
|
for (const StringMapEntry<uint64_t> &MPSE : I.modulePaths()) {
|
|
StringEncoding Bits =
|
|
getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
|
|
unsigned AbbrevToUse = Abbrev8Bit;
|
|
if (Bits == SE_Char6)
|
|
AbbrevToUse = Abbrev6Bit;
|
|
else if (Bits == SE_Fixed7)
|
|
AbbrevToUse = Abbrev7Bit;
|
|
|
|
NameVals.push_back(MPSE.getValue());
|
|
|
|
for (const auto P : MPSE.getKey())
|
|
NameVals.push_back((unsigned char)P);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse);
|
|
NameVals.clear();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
// Helper to emit a single function summary record.
|
|
static void WritePerModuleFunctionSummaryRecord(
|
|
SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID,
|
|
unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
|
|
BitstreamWriter &Stream, const Function &F) {
|
|
assert(FS);
|
|
NameVals.push_back(ValueID);
|
|
NameVals.push_back(getEncodedLinkage(FS->linkage()));
|
|
NameVals.push_back(FS->instCount());
|
|
NameVals.push_back(FS->refs().size());
|
|
|
|
for (auto &RI : FS->refs())
|
|
NameVals.push_back(RI);
|
|
|
|
bool HasProfileData = F.getEntryCount().hasValue();
|
|
for (auto &ECI : FS->calls()) {
|
|
NameVals.push_back(ECI.first);
|
|
assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
|
|
NameVals.push_back(ECI.second.CallsiteCount);
|
|
if (HasProfileData)
|
|
NameVals.push_back(ECI.second.ProfileCount);
|
|
}
|
|
|
|
unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
|
|
unsigned Code =
|
|
(HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, NameVals, FSAbbrev);
|
|
NameVals.clear();
|
|
}
|
|
|
|
// Collect the global value references in the given variable's initializer,
|
|
// and emit them in a summary record.
|
|
static void WriteModuleLevelReferences(const GlobalVariable &V,
|
|
const ValueEnumerator &VE,
|
|
SmallVector<uint64_t, 64> &NameVals,
|
|
unsigned FSModRefsAbbrev,
|
|
BitstreamWriter &Stream) {
|
|
// Only interested in recording variable defs in the summary.
|
|
if (V.isDeclaration())
|
|
return;
|
|
DenseSet<unsigned> RefEdges;
|
|
SmallPtrSet<const User *, 8> Visited;
|
|
findRefEdges(&V, VE, RefEdges, Visited);
|
|
NameVals.push_back(VE.getValueID(&V));
|
|
NameVals.push_back(getEncodedLinkage(V.getLinkage()));
|
|
for (auto RefId : RefEdges) {
|
|
NameVals.push_back(RefId);
|
|
}
|
|
Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
|
|
FSModRefsAbbrev);
|
|
NameVals.clear();
|
|
}
|
|
|
|
/// Emit the per-module summary section alongside the rest of
|
|
/// the module's bitcode.
|
|
static void WritePerModuleGlobalValueSummary(
|
|
DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex,
|
|
const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
if (M->empty())
|
|
return;
|
|
|
|
Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
|
|
|
|
// Abbrev for FS_PERMODULE.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
|
|
// numrefs x valueid, n x (valueid, callsitecount)
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for FS_PERMODULE_PROFILE.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
|
|
// numrefs x valueid, n x (valueid, callsitecount, profilecount)
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
SmallVector<uint64_t, 64> NameVals;
|
|
// Iterate over the list of functions instead of the FunctionIndex map to
|
|
// ensure the ordering is stable.
|
|
for (const Function &F : *M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
// Skip anonymous functions. We will emit a function summary for
|
|
// any aliases below.
|
|
if (!F.hasName())
|
|
continue;
|
|
|
|
assert(FunctionIndex.count(&F) == 1);
|
|
|
|
WritePerModuleFunctionSummaryRecord(
|
|
NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()),
|
|
VE.getValueID(M->getValueSymbolTable().lookup(F.getName())),
|
|
FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F);
|
|
}
|
|
|
|
for (const GlobalAlias &A : M->aliases()) {
|
|
if (!A.getBaseObject())
|
|
continue;
|
|
const Function *F = dyn_cast<Function>(A.getBaseObject());
|
|
if (!F || F->isDeclaration())
|
|
continue;
|
|
|
|
assert(FunctionIndex.count(F) == 1);
|
|
FunctionSummary *FS =
|
|
cast<FunctionSummary>(FunctionIndex[F]->summary());
|
|
// Add the alias to the reference list of aliasee function.
|
|
FS->addRefEdge(
|
|
VE.getValueID(M->getValueSymbolTable().lookup(A.getName())));
|
|
WritePerModuleFunctionSummaryRecord(
|
|
NameVals, FS,
|
|
VE.getValueID(M->getValueSymbolTable().lookup(A.getName())),
|
|
FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F);
|
|
}
|
|
|
|
// Capture references from GlobalVariable initializers, which are outside
|
|
// of a function scope.
|
|
for (const GlobalVariable &G : M->globals())
|
|
WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream);
|
|
for (const GlobalAlias &A : M->aliases())
|
|
if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject()))
|
|
WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream);
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// Emit the combined summary section into the combined index file.
|
|
static void WriteCombinedGlobalValueSummary(
|
|
const ModuleSummaryIndex &I, BitstreamWriter &Stream,
|
|
std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) {
|
|
Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
|
|
|
|
// Abbrev for FS_COMBINED.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
|
|
// numrefs x valueid, n x (valueid, callsitecount)
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for FS_COMBINED_PROFILE.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
|
|
// numrefs x valueid, n x (valueid, callsitecount, profilecount)
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
SmallVector<uint64_t, 64> NameVals;
|
|
for (const auto &FII : I) {
|
|
for (auto &FI : FII.second) {
|
|
GlobalValueSummary *S = FI->summary();
|
|
assert(S);
|
|
|
|
if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
|
|
NameVals.push_back(I.getModuleId(VS->modulePath()));
|
|
NameVals.push_back(getEncodedLinkage(VS->linkage()));
|
|
for (auto &RI : VS->refs()) {
|
|
const auto &VMI = GUIDToValueIdMap.find(RI);
|
|
unsigned RefId;
|
|
// If this GUID doesn't have an entry, assign one.
|
|
if (VMI == GUIDToValueIdMap.end()) {
|
|
GUIDToValueIdMap[RI] = ++GlobalValueId;
|
|
RefId = GlobalValueId;
|
|
} else {
|
|
RefId = VMI->second;
|
|
}
|
|
NameVals.push_back(RefId);
|
|
}
|
|
|
|
// Record the starting offset of this summary entry for use
|
|
// in the VST entry. Add the current code size since the
|
|
// reader will invoke readRecord after the abbrev id read.
|
|
FI->setBitcodeIndex(Stream.GetCurrentBitNo() +
|
|
Stream.GetAbbrevIDWidth());
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
|
|
FSModRefsAbbrev);
|
|
NameVals.clear();
|
|
continue;
|
|
}
|
|
|
|
auto *FS = cast<FunctionSummary>(S);
|
|
NameVals.push_back(I.getModuleId(FS->modulePath()));
|
|
NameVals.push_back(getEncodedLinkage(FS->linkage()));
|
|
NameVals.push_back(FS->instCount());
|
|
NameVals.push_back(FS->refs().size());
|
|
|
|
for (auto &RI : FS->refs()) {
|
|
const auto &VMI = GUIDToValueIdMap.find(RI);
|
|
unsigned RefId;
|
|
// If this GUID doesn't have an entry, assign one.
|
|
if (VMI == GUIDToValueIdMap.end()) {
|
|
GUIDToValueIdMap[RI] = ++GlobalValueId;
|
|
RefId = GlobalValueId;
|
|
} else {
|
|
RefId = VMI->second;
|
|
}
|
|
NameVals.push_back(RefId);
|
|
}
|
|
|
|
bool HasProfileData = false;
|
|
for (auto &EI : FS->calls()) {
|
|
HasProfileData |= EI.second.ProfileCount != 0;
|
|
if (HasProfileData)
|
|
break;
|
|
}
|
|
|
|
for (auto &EI : FS->calls()) {
|
|
const auto &VMI = GUIDToValueIdMap.find(EI.first);
|
|
// If this GUID doesn't have an entry, it doesn't have a function
|
|
// summary and we don't need to record any calls to it.
|
|
if (VMI == GUIDToValueIdMap.end())
|
|
continue;
|
|
NameVals.push_back(VMI->second);
|
|
assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
|
|
NameVals.push_back(EI.second.CallsiteCount);
|
|
if (HasProfileData)
|
|
NameVals.push_back(EI.second.ProfileCount);
|
|
}
|
|
|
|
// Record the starting offset of this summary entry for use
|
|
// in the VST entry. Add the current code size since the
|
|
// reader will invoke readRecord after the abbrev id read.
|
|
FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth());
|
|
|
|
unsigned FSAbbrev =
|
|
(HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
|
|
unsigned Code =
|
|
(HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, NameVals, FSAbbrev);
|
|
NameVals.clear();
|
|
}
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
|
|
// current llvm version, and a record for the epoch number.
|
|
static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
|
|
|
|
// Write the "user readable" string identifying the bitcode producer
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
auto StringAbbrev = Stream.EmitAbbrev(Abbv);
|
|
WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING,
|
|
"LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream);
|
|
|
|
// Write the epoch version
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
|
|
auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
|
|
SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
|
|
Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteModule - Emit the specified module to the bitstream.
|
|
static void WriteModule(const Module *M, BitstreamWriter &Stream,
|
|
bool ShouldPreserveUseListOrder,
|
|
uint64_t BitcodeStartBit, bool EmitSummaryIndex) {
|
|
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
|
|
|
|
SmallVector<unsigned, 1> Vals;
|
|
unsigned CurVersion = 1;
|
|
Vals.push_back(CurVersion);
|
|
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
|
|
|
|
// Analyze the module, enumerating globals, functions, etc.
|
|
ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
|
|
|
|
// Emit blockinfo, which defines the standard abbreviations etc.
|
|
WriteBlockInfo(VE, Stream);
|
|
|
|
// Emit information about attribute groups.
|
|
WriteAttributeGroupTable(VE, Stream);
|
|
|
|
// Emit information about parameter attributes.
|
|
WriteAttributeTable(VE, Stream);
|
|
|
|
// Emit information describing all of the types in the module.
|
|
WriteTypeTable(VE, Stream);
|
|
|
|
writeComdats(VE, Stream);
|
|
|
|
// Emit top-level description of module, including target triple, inline asm,
|
|
// descriptors for global variables, and function prototype info.
|
|
uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream);
|
|
|
|
// Emit constants.
|
|
WriteModuleConstants(VE, Stream);
|
|
|
|
// Emit metadata.
|
|
WriteModuleMetadata(*M, VE, Stream);
|
|
|
|
// Emit metadata.
|
|
WriteModuleMetadataStore(M, Stream);
|
|
|
|
// Emit module-level use-lists.
|
|
if (VE.shouldPreserveUseListOrder())
|
|
WriteUseListBlock(nullptr, VE, Stream);
|
|
|
|
WriteOperandBundleTags(M, Stream);
|
|
|
|
// Emit function bodies.
|
|
DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex;
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
|
|
if (!F->isDeclaration())
|
|
WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex);
|
|
|
|
// Need to write after the above call to WriteFunction which populates
|
|
// the summary information in the index.
|
|
if (EmitSummaryIndex)
|
|
WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream);
|
|
|
|
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream,
|
|
VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex);
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
|
|
/// header and trailer to make it compatible with the system archiver. To do
|
|
/// this we emit the following header, and then emit a trailer that pads the
|
|
/// file out to be a multiple of 16 bytes.
|
|
///
|
|
/// struct bc_header {
|
|
/// uint32_t Magic; // 0x0B17C0DE
|
|
/// uint32_t Version; // Version, currently always 0.
|
|
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
|
|
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
|
|
/// uint32_t CPUType; // CPU specifier.
|
|
/// ... potentially more later ...
|
|
/// };
|
|
|
|
static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
|
|
uint32_t &Position) {
|
|
support::endian::write32le(&Buffer[Position], Value);
|
|
Position += 4;
|
|
}
|
|
|
|
static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
|
|
const Triple &TT) {
|
|
unsigned CPUType = ~0U;
|
|
|
|
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
|
|
// armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
|
|
// number from /usr/include/mach/machine.h. It is ok to reproduce the
|
|
// specific constants here because they are implicitly part of the Darwin ABI.
|
|
enum {
|
|
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
|
|
DARWIN_CPU_TYPE_X86 = 7,
|
|
DARWIN_CPU_TYPE_ARM = 12,
|
|
DARWIN_CPU_TYPE_POWERPC = 18
|
|
};
|
|
|
|
Triple::ArchType Arch = TT.getArch();
|
|
if (Arch == Triple::x86_64)
|
|
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
|
|
else if (Arch == Triple::x86)
|
|
CPUType = DARWIN_CPU_TYPE_X86;
|
|
else if (Arch == Triple::ppc)
|
|
CPUType = DARWIN_CPU_TYPE_POWERPC;
|
|
else if (Arch == Triple::ppc64)
|
|
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
|
|
else if (Arch == Triple::arm || Arch == Triple::thumb)
|
|
CPUType = DARWIN_CPU_TYPE_ARM;
|
|
|
|
// Traditional Bitcode starts after header.
|
|
assert(Buffer.size() >= BWH_HeaderSize &&
|
|
"Expected header size to be reserved");
|
|
unsigned BCOffset = BWH_HeaderSize;
|
|
unsigned BCSize = Buffer.size() - BWH_HeaderSize;
|
|
|
|
// Write the magic and version.
|
|
unsigned Position = 0;
|
|
WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
|
|
WriteInt32ToBuffer(0 , Buffer, Position); // Version.
|
|
WriteInt32ToBuffer(BCOffset , Buffer, Position);
|
|
WriteInt32ToBuffer(BCSize , Buffer, Position);
|
|
WriteInt32ToBuffer(CPUType , Buffer, Position);
|
|
|
|
// If the file is not a multiple of 16 bytes, insert dummy padding.
|
|
while (Buffer.size() & 15)
|
|
Buffer.push_back(0);
|
|
}
|
|
|
|
/// Helper to write the header common to all bitcode files.
|
|
static void WriteBitcodeHeader(BitstreamWriter &Stream) {
|
|
// Emit the file header.
|
|
Stream.Emit((unsigned)'B', 8);
|
|
Stream.Emit((unsigned)'C', 8);
|
|
Stream.Emit(0x0, 4);
|
|
Stream.Emit(0xC, 4);
|
|
Stream.Emit(0xE, 4);
|
|
Stream.Emit(0xD, 4);
|
|
}
|
|
|
|
/// WriteBitcodeToFile - Write the specified module to the specified output
|
|
/// stream.
|
|
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
|
|
bool ShouldPreserveUseListOrder,
|
|
bool EmitSummaryIndex) {
|
|
SmallVector<char, 0> Buffer;
|
|
Buffer.reserve(256*1024);
|
|
|
|
// If this is darwin or another generic macho target, reserve space for the
|
|
// header.
|
|
Triple TT(M->getTargetTriple());
|
|
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
|
|
Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
|
|
|
|
// Emit the module into the buffer.
|
|
{
|
|
BitstreamWriter Stream(Buffer);
|
|
// Save the start bit of the actual bitcode, in case there is space
|
|
// saved at the start for the darwin header above. The reader stream
|
|
// will start at the bitcode, and we need the offset of the VST
|
|
// to line up.
|
|
uint64_t BitcodeStartBit = Stream.GetCurrentBitNo();
|
|
|
|
// Emit the file header.
|
|
WriteBitcodeHeader(Stream);
|
|
|
|
WriteIdentificationBlock(M, Stream);
|
|
|
|
// Emit the module.
|
|
WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit,
|
|
EmitSummaryIndex);
|
|
}
|
|
|
|
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
|
|
EmitDarwinBCHeaderAndTrailer(Buffer, TT);
|
|
|
|
// Write the generated bitstream to "Out".
|
|
Out.write((char*)&Buffer.front(), Buffer.size());
|
|
}
|
|
|
|
// Write the specified module summary index to the given raw output stream,
|
|
// where it will be written in a new bitcode block. This is used when
|
|
// writing the combined index file for ThinLTO.
|
|
void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) {
|
|
SmallVector<char, 0> Buffer;
|
|
Buffer.reserve(256 * 1024);
|
|
|
|
BitstreamWriter Stream(Buffer);
|
|
|
|
// Emit the bitcode header.
|
|
WriteBitcodeHeader(Stream);
|
|
|
|
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
|
|
|
|
SmallVector<unsigned, 1> Vals;
|
|
unsigned CurVersion = 1;
|
|
Vals.push_back(CurVersion);
|
|
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
|
|
|
|
// If we have a VST, write the VSTOFFSET record placeholder and record
|
|
// its offset.
|
|
uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream);
|
|
|
|
// Write the module paths in the combined index.
|
|
WriteModStrings(Index, Stream);
|
|
|
|
// Assign unique value ids to all functions in the index for use
|
|
// in writing out the call graph edges. Save the mapping from GUID
|
|
// to the new global value id to use when writing those edges, which
|
|
// are currently saved in the index in terms of GUID.
|
|
std::map<uint64_t, unsigned> GUIDToValueIdMap;
|
|
unsigned GlobalValueId = 0;
|
|
for (auto &II : Index)
|
|
GUIDToValueIdMap[II.first] = ++GlobalValueId;
|
|
|
|
// Write the summary combined index records.
|
|
WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap,
|
|
GlobalValueId);
|
|
|
|
// Need a special VST writer for the combined index (we don't have a
|
|
// real VST and real values when this is invoked).
|
|
WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap,
|
|
VSTOffsetPlaceholder);
|
|
|
|
Stream.ExitBlock();
|
|
|
|
Out.write((char *)&Buffer.front(), Buffer.size());
|
|
}
|