forked from OSchip/llvm-project
172 lines
5.1 KiB
C++
172 lines
5.1 KiB
C++
//===-- xray_buffer_queue.cc -----------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instruementation system.
|
|
//
|
|
// Defines the interface for a buffer queue implementation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "xray_buffer_queue.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_libc.h"
|
|
#include "sanitizer_common/sanitizer_posix.h"
|
|
#include <memory>
|
|
#include <sys/mman.h>
|
|
|
|
#ifndef MAP_NORESERVE
|
|
// no-op on NetBSD (at least), unsupported flag on FreeBSD
|
|
#define MAP_NORESERVE 0
|
|
#endif
|
|
|
|
using namespace __xray;
|
|
using namespace __sanitizer;
|
|
|
|
template <class T> static T *allocRaw(size_t N) {
|
|
// TODO: Report errors?
|
|
// We use MAP_NORESERVE on platforms where it's supported to ensure that the
|
|
// pages we're allocating for XRay never end up in pages that can be swapped
|
|
// in/out. We're doing this because for FDR mode, we want to ensure that
|
|
// writes to the buffers stay resident in memory to prevent XRay itself from
|
|
// causing swapping/thrashing.
|
|
//
|
|
// In the case when XRay pages cannot be swapped in/out or there's not enough
|
|
// RAM to back these pages, we're willing to cause a segmentation fault
|
|
// instead of introducing latency in the measurement. We assume here that
|
|
// there are enough pages that are swappable in/out outside of the buffers
|
|
// being used by FDR mode (which are bounded and configurable anyway) to allow
|
|
// us to keep using always-resident memory.
|
|
//
|
|
// TODO: Make this configurable?
|
|
void *A = reinterpret_cast<void *>(
|
|
internal_mmap(NULL, N * sizeof(T), PROT_WRITE | PROT_READ,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0));
|
|
return (A == MAP_FAILED) ? nullptr : reinterpret_cast<T *>(A);
|
|
}
|
|
|
|
template <class T> static void deallocRaw(T *ptr, size_t N) {
|
|
// TODO: Report errors?
|
|
if (ptr != nullptr)
|
|
internal_munmap(ptr, N);
|
|
}
|
|
|
|
template <class T> static T *initArray(size_t N) {
|
|
auto A = allocRaw<T>(N);
|
|
if (A != nullptr)
|
|
while (N > 0)
|
|
new (A + (--N)) T();
|
|
return A;
|
|
}
|
|
|
|
BufferQueue::BufferQueue(size_t B, size_t N, bool &Success)
|
|
: BufferSize(B), Buffers(initArray<BufferQueue::BufferRep>(N)),
|
|
BufferCount(N), Finalizing{0}, OwnedBuffers(initArray<void *>(N)),
|
|
Next(Buffers), First(Buffers), LiveBuffers(0) {
|
|
if (Buffers == nullptr) {
|
|
Success = false;
|
|
return;
|
|
}
|
|
if (OwnedBuffers == nullptr) {
|
|
// Clean up the buffers we've already allocated.
|
|
for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
|
|
B->~BufferRep();
|
|
deallocRaw(Buffers, N);
|
|
Success = false;
|
|
return;
|
|
};
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
auto &T = Buffers[i];
|
|
void *Tmp = allocRaw<char>(BufferSize);
|
|
if (Tmp == nullptr) {
|
|
Success = false;
|
|
return;
|
|
}
|
|
auto *Extents = allocRaw<BufferExtents>(1);
|
|
if (Extents == nullptr) {
|
|
Success = false;
|
|
return;
|
|
}
|
|
auto &Buf = T.Buff;
|
|
Buf.Data = Tmp;
|
|
Buf.Size = B;
|
|
Buf.Extents = Extents;
|
|
OwnedBuffers[i] = Tmp;
|
|
}
|
|
Success = true;
|
|
}
|
|
|
|
BufferQueue::ErrorCode BufferQueue::getBuffer(Buffer &Buf) {
|
|
if (atomic_load(&Finalizing, memory_order_acquire))
|
|
return ErrorCode::QueueFinalizing;
|
|
SpinMutexLock Guard(&Mutex);
|
|
if (LiveBuffers == BufferCount)
|
|
return ErrorCode::NotEnoughMemory;
|
|
|
|
auto &T = *Next;
|
|
auto &B = T.Buff;
|
|
Buf = B;
|
|
T.Used = true;
|
|
++LiveBuffers;
|
|
|
|
if (++Next == (Buffers + BufferCount))
|
|
Next = Buffers;
|
|
|
|
return ErrorCode::Ok;
|
|
}
|
|
|
|
BufferQueue::ErrorCode BufferQueue::releaseBuffer(Buffer &Buf) {
|
|
// Blitz through the buffers array to find the buffer.
|
|
bool Found = false;
|
|
for (auto I = OwnedBuffers, E = OwnedBuffers + BufferCount; I != E; ++I) {
|
|
if (*I == Buf.Data) {
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found)
|
|
return ErrorCode::UnrecognizedBuffer;
|
|
|
|
SpinMutexLock Guard(&Mutex);
|
|
|
|
// This points to a semantic bug, we really ought to not be releasing more
|
|
// buffers than we actually get.
|
|
if (LiveBuffers == 0)
|
|
return ErrorCode::NotEnoughMemory;
|
|
|
|
// Now that the buffer has been released, we mark it as "used".
|
|
First->Buff = Buf;
|
|
First->Used = true;
|
|
Buf.Data = nullptr;
|
|
Buf.Size = 0;
|
|
--LiveBuffers;
|
|
if (++First == (Buffers + BufferCount))
|
|
First = Buffers;
|
|
|
|
return ErrorCode::Ok;
|
|
}
|
|
|
|
BufferQueue::ErrorCode BufferQueue::finalize() {
|
|
if (atomic_exchange(&Finalizing, 1, memory_order_acq_rel))
|
|
return ErrorCode::QueueFinalizing;
|
|
return ErrorCode::Ok;
|
|
}
|
|
|
|
BufferQueue::~BufferQueue() {
|
|
for (auto I = Buffers, E = Buffers + BufferCount; I != E; ++I) {
|
|
auto &T = *I;
|
|
auto &Buf = T.Buff;
|
|
deallocRaw(Buf.Data, Buf.Size);
|
|
deallocRaw(Buf.Extents, 1);
|
|
}
|
|
for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
|
|
B->~BufferRep();
|
|
deallocRaw(Buffers, BufferCount);
|
|
deallocRaw(OwnedBuffers, BufferCount);
|
|
}
|