llvm-project/flang/lib/Optimizer/Dialect/FIROps.cpp

3441 lines
133 KiB
C++

//===-- FIROps.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/Utils.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TypeSwitch.h"
namespace {
#include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc"
} // namespace
using namespace fir;
using namespace mlir;
/// Return true if a sequence type is of some incomplete size or a record type
/// is malformed or contains an incomplete sequence type. An incomplete sequence
/// type is one with more unknown extents in the type than have been provided
/// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
/// definition.
static bool verifyInType(mlir::Type inType,
llvm::SmallVectorImpl<llvm::StringRef> &visited,
unsigned dynamicExtents = 0) {
if (auto st = inType.dyn_cast<fir::SequenceType>()) {
auto shape = st.getShape();
if (shape.size() == 0)
return true;
for (std::size_t i = 0, end{shape.size()}; i < end; ++i) {
if (shape[i] != fir::SequenceType::getUnknownExtent())
continue;
if (dynamicExtents-- == 0)
return true;
}
} else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
// don't recurse if we're already visiting this one
if (llvm::is_contained(visited, rt.getName()))
return false;
// keep track of record types currently being visited
visited.push_back(rt.getName());
for (auto &field : rt.getTypeList())
if (verifyInType(field.second, visited))
return true;
visited.pop_back();
}
return false;
}
static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) {
auto ty = fir::unwrapSequenceType(inType);
if (numParams > 0) {
if (auto recTy = ty.dyn_cast<fir::RecordType>())
return numParams != recTy.getNumLenParams();
if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
return !(numParams == 1 && chrTy.hasDynamicLen());
return true;
}
if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
return !chrTy.hasConstantLen();
return false;
}
/// Parser shared by Alloca and Allocmem
///
/// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type
/// ( `(` $typeparams `)` )? ( `,` $shape )?
/// attr-dict-without-keyword
template <typename FN>
static mlir::ParseResult parseAllocatableOp(FN wrapResultType,
mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type intype;
if (parser.parseType(intype))
return mlir::failure();
auto &builder = parser.getBuilder();
result.addAttribute("in_type", mlir::TypeAttr::get(intype));
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
llvm::SmallVector<mlir::Type> typeVec;
bool hasOperands = false;
std::int32_t typeparamsSize = 0;
if (!parser.parseOptionalLParen()) {
// parse the LEN params of the derived type. (<params> : <types>)
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
parser.parseColonTypeList(typeVec) || parser.parseRParen())
return mlir::failure();
typeparamsSize = operands.size();
hasOperands = true;
}
std::int32_t shapeSize = 0;
if (!parser.parseOptionalComma()) {
// parse size to scale by, vector of n dimensions of type index
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None))
return mlir::failure();
shapeSize = operands.size() - typeparamsSize;
auto idxTy = builder.getIndexType();
for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i)
typeVec.push_back(idxTy);
hasOperands = true;
}
if (hasOperands &&
parser.resolveOperands(operands, typeVec, parser.getNameLoc(),
result.operands))
return mlir::failure();
mlir::Type restype = wrapResultType(intype);
if (!restype) {
parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype;
return mlir::failure();
}
result.addAttribute("operand_segment_sizes",
builder.getI32VectorAttr({typeparamsSize, shapeSize}));
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.addTypeToList(restype, result.types))
return mlir::failure();
return mlir::success();
}
template <typename OP>
static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) {
p << ' ' << op.getInType();
if (!op.getTypeparams().empty()) {
p << '(' << op.getTypeparams() << " : " << op.getTypeparams().getTypes()
<< ')';
}
// print the shape of the allocation (if any); all must be index type
for (auto sh : op.getShape()) {
p << ", ";
p.printOperand(sh);
}
p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"});
}
//===----------------------------------------------------------------------===//
// AllocaOp
//===----------------------------------------------------------------------===//
/// Create a legal memory reference as return type
static mlir::Type wrapAllocaResultType(mlir::Type intype) {
// FIR semantics: memory references to memory references are disallowed
if (intype.isa<ReferenceType>())
return {};
return ReferenceType::get(intype);
}
mlir::Type fir::AllocaOp::getAllocatedType() {
return getType().cast<ReferenceType>().getEleTy();
}
mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
return ReferenceType::get(ty);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, mlir::ValueRange typeparams,
mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
/*pinned=*/false, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, bool pinned,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
pinned, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, llvm::StringRef bindcName,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr =
uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
auto bindcAttr =
bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
bindcAttr, /*pinned=*/false, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, llvm::StringRef bindcName,
bool pinned, mlir::ValueRange typeparams,
mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr =
uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
auto bindcAttr =
bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
bindcAttr, pinned, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
build(builder, result, wrapAllocaResultType(inType), inType, {}, {},
/*pinned=*/false, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
bool pinned, mlir::ValueRange typeparams,
mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned,
typeparams, shape);
result.addAttributes(attributes);
}
mlir::ParseResult fir::AllocaOp::parse(OpAsmParser &parser,
OperationState &result) {
return parseAllocatableOp(wrapAllocaResultType, parser, result);
}
void fir::AllocaOp::print(OpAsmPrinter &p) { printAllocatableOp(p, *this); }
mlir::LogicalResult fir::AllocaOp::verify() {
llvm::SmallVector<llvm::StringRef> visited;
if (verifyInType(getInType(), visited, numShapeOperands()))
return emitOpError("invalid type for allocation");
if (verifyTypeParamCount(getInType(), numLenParams()))
return emitOpError("LEN params do not correspond to type");
mlir::Type outType = getType();
if (!outType.isa<fir::ReferenceType>())
return emitOpError("must be a !fir.ref type");
if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
return emitOpError("cannot allocate !fir.box of unknown rank or type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AllocMemOp
//===----------------------------------------------------------------------===//
/// Create a legal heap reference as return type
static mlir::Type wrapAllocMemResultType(mlir::Type intype) {
// Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
// 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
// FIR semantics: one may not allocate a memory reference value
if (intype.isa<ReferenceType>() || intype.isa<HeapType>() ||
intype.isa<PointerType>() || intype.isa<FunctionType>())
return {};
return HeapType::get(intype);
}
mlir::Type fir::AllocMemOp::getAllocatedType() {
return getType().cast<HeapType>().getEleTy();
}
mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
return HeapType::get(ty);
}
void fir::AllocMemOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {},
typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocMemOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, llvm::StringRef bindcName,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
auto bindcAttr = builder.getStringAttr(bindcName);
build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr,
bindcAttr, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocMemOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
build(builder, result, wrapAllocMemResultType(inType), inType, {}, {},
typeparams, shape);
result.addAttributes(attributes);
}
mlir::ParseResult AllocMemOp::parse(OpAsmParser &parser,
OperationState &result) {
return parseAllocatableOp(wrapAllocMemResultType, parser, result);
}
void AllocMemOp::print(OpAsmPrinter &p) { printAllocatableOp(p, *this); }
mlir::LogicalResult AllocMemOp::verify() {
llvm::SmallVector<llvm::StringRef> visited;
if (verifyInType(getInType(), visited, numShapeOperands()))
return emitOpError("invalid type for allocation");
if (verifyTypeParamCount(getInType(), numLenParams()))
return emitOpError("LEN params do not correspond to type");
mlir::Type outType = getType();
if (!outType.dyn_cast<fir::HeapType>())
return emitOpError("must be a !fir.heap type");
if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
return emitOpError("cannot allocate !fir.box of unknown rank or type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayCoorOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ArrayCoorOp::verify() {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
if (!arrTy)
return emitOpError("must be a reference to an array");
auto arrDim = arrTy.getDimension();
if (auto shapeOp = getShape()) {
auto shapeTy = shapeOp.getType();
unsigned shapeTyRank = 0;
if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
shapeTyRank = s.getRank();
} else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
shapeTyRank = ss.getRank();
} else {
auto s = shapeTy.cast<fir::ShiftType>();
shapeTyRank = s.getRank();
if (!getMemref().getType().isa<fir::BoxType>())
return emitOpError("shift can only be provided with fir.box memref");
}
if (arrDim && arrDim != shapeTyRank)
return emitOpError("rank of dimension mismatched");
if (shapeTyRank != getIndices().size())
return emitOpError("number of indices do not match dim rank");
}
if (auto sliceOp = getSlice()) {
if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
if (!sl.getSubstr().empty())
return emitOpError("array_coor cannot take a slice with substring");
if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
if (sliceTy.getRank() != arrDim)
return emitOpError("rank of dimension in slice mismatched");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayLoadOp
//===----------------------------------------------------------------------===//
static mlir::Type adjustedElementType(mlir::Type t) {
if (auto ty = t.dyn_cast<fir::ReferenceType>()) {
auto eleTy = ty.getEleTy();
if (fir::isa_char(eleTy))
return eleTy;
if (fir::isa_derived(eleTy))
return eleTy;
if (eleTy.isa<fir::SequenceType>())
return eleTy;
}
return t;
}
std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
if (auto sh = getShape())
if (auto *op = sh.getDefiningOp()) {
if (auto shOp = dyn_cast<fir::ShapeOp>(op)) {
auto extents = shOp.getExtents();
return {extents.begin(), extents.end()};
}
return cast<fir::ShapeShiftOp>(op).getExtents();
}
return {};
}
mlir::LogicalResult ArrayLoadOp::verify() {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
if (!arrTy)
return emitOpError("must be a reference to an array");
auto arrDim = arrTy.getDimension();
if (auto shapeOp = getShape()) {
auto shapeTy = shapeOp.getType();
unsigned shapeTyRank = 0;
if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
shapeTyRank = s.getRank();
} else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
shapeTyRank = ss.getRank();
} else {
auto s = shapeTy.cast<fir::ShiftType>();
shapeTyRank = s.getRank();
if (!getMemref().getType().isa<fir::BoxType>())
return emitOpError("shift can only be provided with fir.box memref");
}
if (arrDim && arrDim != shapeTyRank)
return emitOpError("rank of dimension mismatched");
}
if (auto sliceOp = getSlice()) {
if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
if (!sl.getSubstr().empty())
return emitOpError("array_load cannot take a slice with substring");
if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
if (sliceTy.getRank() != arrDim)
return emitOpError("rank of dimension in slice mismatched");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayMergeStoreOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ArrayMergeStoreOp::verify() {
if (!isa<ArrayLoadOp>(getOriginal().getDefiningOp()))
return emitOpError("operand #0 must be result of a fir.array_load op");
if (auto sl = getSlice()) {
if (auto sliceOp =
mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) {
if (!sliceOp.getSubstr().empty())
return emitOpError(
"array_merge_store cannot take a slice with substring");
if (!sliceOp.getFields().empty()) {
// This is an intra-object merge, where the slice is projecting the
// subfields that are to be overwritten by the merge operation.
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
auto projTy =
fir::applyPathToType(seqTy.getEleTy(), sliceOp.getFields());
if (fir::unwrapSequenceType(getOriginal().getType()) != projTy)
return emitOpError(
"type of origin does not match sliced memref type");
if (fir::unwrapSequenceType(getSequence().getType()) != projTy)
return emitOpError(
"type of sequence does not match sliced memref type");
return mlir::success();
}
return emitOpError("referenced type is not an array");
}
}
return mlir::success();
}
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
if (getOriginal().getType() != eleTy)
return emitOpError("type of origin does not match memref element type");
if (getSequence().getType() != eleTy)
return emitOpError("type of sequence does not match memref element type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayFetchOp
//===----------------------------------------------------------------------===//
// Template function used for both array_fetch and array_update verification.
template <typename A>
mlir::Type validArraySubobject(A op) {
auto ty = op.getSequence().getType();
return fir::applyPathToType(ty, op.getIndices());
}
mlir::LogicalResult ArrayFetchOp::verify() {
auto arrTy = getSequence().getType().cast<fir::SequenceType>();
auto indSize = getIndices().size();
if (indSize < arrTy.getDimension())
return emitOpError("number of indices != dimension of array");
if (indSize == arrTy.getDimension() &&
::adjustedElementType(getElement().getType()) != arrTy.getEleTy())
return emitOpError("return type does not match array");
auto ty = validArraySubobject(*this);
if (!ty || ty != ::adjustedElementType(getType()))
return emitOpError("return type and/or indices do not type check");
if (!isa<fir::ArrayLoadOp>(getSequence().getDefiningOp()))
return emitOpError("argument #0 must be result of fir.array_load");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayAccessOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ArrayAccessOp::verify() {
auto arrTy = getSequence().getType().cast<fir::SequenceType>();
std::size_t indSize = getIndices().size();
if (indSize < arrTy.getDimension())
return emitOpError("number of indices != dimension of array");
if (indSize == arrTy.getDimension() &&
getElement().getType() != fir::ReferenceType::get(arrTy.getEleTy()))
return emitOpError("return type does not match array");
mlir::Type ty = validArraySubobject(*this);
if (!ty || fir::ReferenceType::get(ty) != getType())
return emitOpError("return type and/or indices do not type check");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayUpdateOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ArrayUpdateOp::verify() {
if (fir::isa_ref_type(getMerge().getType()))
return emitOpError("does not support reference type for merge");
auto arrTy = getSequence().getType().cast<fir::SequenceType>();
auto indSize = getIndices().size();
if (indSize < arrTy.getDimension())
return emitOpError("number of indices != dimension of array");
if (indSize == arrTy.getDimension() &&
::adjustedElementType(getMerge().getType()) != arrTy.getEleTy())
return emitOpError("merged value does not have element type");
auto ty = validArraySubobject(*this);
if (!ty || ty != ::adjustedElementType(getMerge().getType()))
return emitOpError("merged value and/or indices do not type check");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayModifyOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ArrayModifyOp::verify() {
auto arrTy = getSequence().getType().cast<fir::SequenceType>();
auto indSize = getIndices().size();
if (indSize < arrTy.getDimension())
return emitOpError("number of indices must match array dimension");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// BoxAddrOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (auto *v = getVal().getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxOp>(v)) {
if (!box.getSlice()) // Fold only if not sliced
return box.getMemref();
}
if (auto box = dyn_cast<fir::EmboxCharOp>(v))
return box.getMemref();
}
return {};
}
//===----------------------------------------------------------------------===//
// BoxCharLenOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult
fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (auto v = getVal().getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxCharOp>(v))
return box.getLen();
}
return {};
}
//===----------------------------------------------------------------------===//
// BoxDimsOp
//===----------------------------------------------------------------------===//
/// Get the result types packed in a tuple tuple
mlir::Type fir::BoxDimsOp::getTupleType() {
// note: triple, but 4 is nearest power of 2
llvm::SmallVector<mlir::Type> triple{
getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
return mlir::TupleType::get(getContext(), triple);
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
mlir::FunctionType fir::CallOp::getFunctionType() {
return mlir::FunctionType::get(getContext(), getOperandTypes(),
getResultTypes());
}
void fir::CallOp::print(mlir::OpAsmPrinter &p) {
bool isDirect = getCallee().hasValue();
p << ' ';
if (isDirect)
p << getCallee().getValue();
else
p << getOperand(0);
p << '(' << (*this)->getOperands().drop_front(isDirect ? 0 : 1) << ')';
p.printOptionalAttrDict((*this)->getAttrs(),
{fir::CallOp::getCalleeAttrNameStr()});
auto resultTypes{getResultTypes()};
llvm::SmallVector<Type> argTypes(
llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1));
p << " : " << FunctionType::get(getContext(), argTypes, resultTypes);
}
mlir::ParseResult fir::CallOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
if (parser.parseOperandList(operands))
return mlir::failure();
mlir::NamedAttrList attrs;
mlir::SymbolRefAttr funcAttr;
bool isDirect = operands.empty();
if (isDirect)
if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(),
attrs))
return mlir::failure();
Type type;
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
parser.parseType(type))
return mlir::failure();
auto funcType = type.dyn_cast<mlir::FunctionType>();
if (!funcType)
return parser.emitError(parser.getNameLoc(), "expected function type");
if (isDirect) {
if (parser.resolveOperands(operands, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return mlir::failure();
} else {
auto funcArgs =
llvm::ArrayRef<mlir::OpAsmParser::UnresolvedOperand>(operands)
.drop_front();
if (parser.resolveOperand(operands[0], funcType, result.operands) ||
parser.resolveOperands(funcArgs, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return mlir::failure();
}
result.addTypes(funcType.getResults());
result.attributes = attrs;
return mlir::success();
}
void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::func::FuncOp callee, mlir::ValueRange operands) {
result.addOperands(operands);
result.addAttribute(getCalleeAttrNameStr(), SymbolRefAttr::get(callee));
result.addTypes(callee.getFunctionType().getResults());
}
void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::SymbolRefAttr callee,
llvm::ArrayRef<mlir::Type> results,
mlir::ValueRange operands) {
result.addOperands(operands);
if (callee)
result.addAttribute(getCalleeAttrNameStr(), callee);
result.addTypes(results);
}
//===----------------------------------------------------------------------===//
// CmpOp
//===----------------------------------------------------------------------===//
template <typename OPTY>
static void printCmpOp(OpAsmPrinter &p, OPTY op) {
p << ' ';
auto predSym = mlir::arith::symbolizeCmpFPredicate(
op->template getAttrOfType<mlir::IntegerAttr>(
OPTY::getPredicateAttrName())
.getInt());
assert(predSym.hasValue() && "invalid symbol value for predicate");
p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"'
<< ", ";
p.printOperand(op.getLhs());
p << ", ";
p.printOperand(op.getRhs());
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{OPTY::getPredicateAttrName()});
p << " : " << op.getLhs().getType();
}
template <typename OPTY>
static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> ops;
mlir::NamedAttrList attrs;
mlir::Attribute predicateNameAttr;
mlir::Type type;
if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
attrs) ||
parser.parseComma() || parser.parseOperandList(ops, 2) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands))
return failure();
if (!predicateNameAttr.isa<mlir::StringAttr>())
return parser.emitError(parser.getNameLoc(),
"expected string comparison predicate attribute");
// Rewrite string attribute to an enum value.
llvm::StringRef predicateName =
predicateNameAttr.cast<mlir::StringAttr>().getValue();
auto predicate = fir::CmpcOp::getPredicateByName(predicateName);
auto builder = parser.getBuilder();
mlir::Type i1Type = builder.getI1Type();
attrs.set(OPTY::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
result.attributes = attrs;
result.addTypes({i1Type});
return success();
}
//===----------------------------------------------------------------------===//
// CharConvertOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult CharConvertOp::verify() {
auto unwrap = [&](mlir::Type t) {
t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t));
return t.dyn_cast<fir::CharacterType>();
};
auto inTy = unwrap(getFrom().getType());
auto outTy = unwrap(getTo().getType());
if (!(inTy && outTy))
return emitOpError("not a reference to a character");
if (inTy.getFKind() == outTy.getFKind())
return emitOpError("buffers must have different KIND values");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// CmpcOp
//===----------------------------------------------------------------------===//
void fir::buildCmpCOp(OpBuilder &builder, OperationState &result,
arith::CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(builder.getI1Type());
result.addAttribute(
fir::CmpcOp::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
mlir::arith::CmpFPredicate
fir::CmpcOp::getPredicateByName(llvm::StringRef name) {
auto pred = mlir::arith::symbolizeCmpFPredicate(name);
assert(pred.hasValue() && "invalid predicate name");
return pred.getValue();
}
void CmpcOp::print(OpAsmPrinter &p) { printCmpOp(p, *this); }
mlir::ParseResult CmpcOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
return parseCmpOp<fir::CmpcOp>(parser, result);
}
//===----------------------------------------------------------------------===//
// ConstcOp
//===----------------------------------------------------------------------===//
mlir::ParseResult ConstcOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
fir::RealAttr realp;
fir::RealAttr imagp;
mlir::Type type;
if (parser.parseLParen() ||
parser.parseAttribute(realp, fir::ConstcOp::realAttrName(),
result.attributes) ||
parser.parseComma() ||
parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(),
result.attributes) ||
parser.parseRParen() || parser.parseColonType(type) ||
parser.addTypesToList(type, result.types))
return mlir::failure();
return mlir::success();
}
void ConstcOp::print(mlir::OpAsmPrinter &p) {
p << '(';
p << getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", ";
p << getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : ";
p.printType(getType());
}
mlir::LogicalResult ConstcOp::verify() {
if (!getType().isa<fir::ComplexType>())
return emitOpError("must be a !fir.complex type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ConvertOp
//===----------------------------------------------------------------------===//
void fir::ConvertOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.insert<ConvertConvertOptPattern, ConvertAscendingIndexOptPattern,
ConvertDescendingIndexOptPattern, RedundantConvertOptPattern,
CombineConvertOptPattern, CombineConvertTruncOptPattern,
ForwardConstantConvertPattern>(context);
}
mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (getValue().getType() == getType())
return getValue();
if (matchPattern(getValue(), m_Op<fir::ConvertOp>())) {
auto inner = cast<fir::ConvertOp>(getValue().getDefiningOp());
// (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
if (auto toTy = getType().dyn_cast<fir::LogicalType>())
if (auto fromTy = inner.getValue().getType().dyn_cast<fir::LogicalType>())
if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
return inner.getValue();
// (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
if (auto fromTy =
inner.getValue().getType().dyn_cast<mlir::IntegerType>())
if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
(fromTy.getWidth() == 1))
return inner.getValue();
}
return {};
}
bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() ||
ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>();
}
bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>();
}
bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() ||
ty.isa<fir::HeapType>() || ty.isa<fir::LLVMPointerType>() ||
ty.isa<mlir::MemRefType>() || ty.isa<mlir::FunctionType>() ||
ty.isa<fir::TypeDescType>();
}
mlir::LogicalResult ConvertOp::verify() {
auto inType = getValue().getType();
auto outType = getType();
if (inType == outType)
return mlir::success();
if ((isPointerCompatible(inType) && isPointerCompatible(outType)) ||
(isIntegerCompatible(inType) && isIntegerCompatible(outType)) ||
(isIntegerCompatible(inType) && isFloatCompatible(outType)) ||
(isFloatCompatible(inType) && isIntegerCompatible(outType)) ||
(isFloatCompatible(inType) && isFloatCompatible(outType)) ||
(isIntegerCompatible(inType) && isPointerCompatible(outType)) ||
(isPointerCompatible(inType) && isIntegerCompatible(outType)) ||
(inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) ||
(inType.isa<fir::BoxProcType>() && outType.isa<fir::BoxProcType>()) ||
(fir::isa_complex(inType) && fir::isa_complex(outType)))
return mlir::success();
return emitOpError("invalid type conversion");
}
//===----------------------------------------------------------------------===//
// CoordinateOp
//===----------------------------------------------------------------------===//
void CoordinateOp::print(mlir::OpAsmPrinter &p) {
p << ' ' << getRef() << ", " << getCoor();
p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{"baseType"});
p << " : ";
p.printFunctionalType(getOperandTypes(), (*this)->getResultTypes());
}
mlir::ParseResult CoordinateOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::OpAsmParser::UnresolvedOperand memref;
if (parser.parseOperand(memref) || parser.parseComma())
return mlir::failure();
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> coorOperands;
if (parser.parseOperandList(coorOperands))
return mlir::failure();
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> allOperands;
allOperands.push_back(memref);
allOperands.append(coorOperands.begin(), coorOperands.end());
mlir::FunctionType funcTy;
auto loc = parser.getCurrentLocation();
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(funcTy) ||
parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
result.operands))
return failure();
parser.addTypesToList(funcTy.getResults(), result.types);
result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
return mlir::success();
}
mlir::LogicalResult CoordinateOp::verify() {
auto refTy = getRef().getType();
if (fir::isa_ref_type(refTy)) {
auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
if (arrTy.hasUnknownShape())
return emitOpError("cannot find coordinate in unknown shape");
if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
return emitOpError("cannot find coordinate with unknown extents");
}
if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
fir::isa_char_string(eleTy)))
return emitOpError("cannot apply coordinate_of to this type");
}
// Recovering a LEN type parameter only makes sense from a boxed value. For a
// bare reference, the LEN type parameters must be passed as additional
// arguments to `op`.
for (auto co : getCoor())
if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) {
if (getNumOperands() != 2)
return emitOpError("len_param_index must be last argument");
if (!getRef().getType().isa<BoxType>())
return emitOpError("len_param_index must be used on box type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// DispatchOp
//===----------------------------------------------------------------------===//
mlir::FunctionType fir::DispatchOp::getFunctionType() {
return mlir::FunctionType::get(getContext(), getOperandTypes(),
getResultTypes());
}
mlir::ParseResult DispatchOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::FunctionType calleeType;
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
auto calleeLoc = parser.getNameLoc();
llvm::StringRef calleeName;
if (failed(parser.parseOptionalKeyword(&calleeName))) {
mlir::StringAttr calleeAttr;
if (parser.parseAttribute(calleeAttr,
fir::DispatchOp::getMethodAttrNameStr(),
result.attributes))
return mlir::failure();
} else {
result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(),
parser.getBuilder().getStringAttr(calleeName));
}
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(calleeType) ||
parser.addTypesToList(calleeType.getResults(), result.types) ||
parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc,
result.operands))
return mlir::failure();
return mlir::success();
}
void DispatchOp::print(mlir::OpAsmPrinter &p) {
p << ' ' << getMethodAttr() << '(';
p.printOperand(getObject());
if (!getArgs().empty()) {
p << ", ";
p.printOperands(getArgs());
}
p << ") : ";
p.printFunctionalType(getOperation()->getOperandTypes(),
getOperation()->getResultTypes());
}
//===----------------------------------------------------------------------===//
// DispatchTableOp
//===----------------------------------------------------------------------===//
void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
auto &block = getBlock();
block.getOperations().insert(block.end(), op);
}
mlir::ParseResult DispatchTableOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
// Parse the name as a symbol reference attribute.
SymbolRefAttr nameAttr;
if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
// Convert the parsed name attr into a string attr.
result.attributes.set(mlir::SymbolTable::getSymbolAttrName(),
nameAttr.getRootReference());
// Parse the optional table body.
mlir::Region *body = result.addRegion();
OptionalParseResult parseResult = parser.parseOptionalRegion(*body);
if (parseResult.hasValue() && failed(*parseResult))
return mlir::failure();
fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(),
result.location);
return mlir::success();
}
void DispatchTableOp::print(mlir::OpAsmPrinter &p) {
auto tableName =
getOperation()
->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())
.getValue();
p << " @" << tableName;
Region &body = getOperation()->getRegion(0);
if (!body.empty()) {
p << ' ';
p.printRegion(body, /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
}
mlir::LogicalResult DispatchTableOp::verify() {
for (auto &op : getBlock())
if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op)))
return op.emitOpError("dispatch table must contain dt_entry");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// EmboxOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult EmboxOp::verify() {
auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
bool isArray = false;
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
eleTy = seqTy.getEleTy();
isArray = true;
}
if (hasLenParams()) {
auto lenPs = numLenParams();
if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
if (lenPs != rt.getNumLenParams())
return emitOpError("number of LEN params does not correspond"
" to the !fir.type type");
} else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
if (strTy.getLen() != fir::CharacterType::unknownLen())
return emitOpError("CHARACTER already has static LEN");
} else {
return emitOpError("LEN parameters require CHARACTER or derived type");
}
for (auto lp : getTypeparams())
if (!fir::isa_integer(lp.getType()))
return emitOpError("LEN parameters must be integral type");
}
if (getShape() && !isArray)
return emitOpError("shape must not be provided for a scalar");
if (getSlice() && !isArray)
return emitOpError("slice must not be provided for a scalar");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// EmboxCharOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult EmboxCharOp::verify() {
auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
if (!eleTy.dyn_cast_or_null<CharacterType>())
return mlir::failure();
return mlir::success();
}
//===----------------------------------------------------------------------===//
// EmboxProcOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult EmboxProcOp::verify() {
// host bindings (optional) must be a reference to a tuple
if (auto h = getHost()) {
if (auto r = h.getType().dyn_cast<ReferenceType>())
if (r.getEleTy().dyn_cast<mlir::TupleType>())
return mlir::success();
return mlir::failure();
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// GenTypeDescOp
//===----------------------------------------------------------------------===//
void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result,
mlir::TypeAttr inty) {
result.addAttribute("in_type", inty);
result.addTypes(TypeDescType::get(inty.getValue()));
}
mlir::ParseResult GenTypeDescOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type intype;
if (parser.parseType(intype))
return mlir::failure();
result.addAttribute("in_type", mlir::TypeAttr::get(intype));
mlir::Type restype = TypeDescType::get(intype);
if (parser.addTypeToList(restype, result.types))
return mlir::failure();
return mlir::success();
}
void GenTypeDescOp::print(mlir::OpAsmPrinter &p) {
p << ' ' << getOperation()->getAttr("in_type");
p.printOptionalAttrDict(getOperation()->getAttrs(), {"in_type"});
}
mlir::LogicalResult GenTypeDescOp::verify() {
mlir::Type resultTy = getType();
if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) {
if (tdesc.getOfTy() != getInType())
return emitOpError("wrapped type mismatched");
} else {
return emitOpError("must be !fir.tdesc type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// GlobalOp
//===----------------------------------------------------------------------===//
mlir::Type fir::GlobalOp::resultType() {
return wrapAllocaResultType(getType());
}
ParseResult GlobalOp::parse(OpAsmParser &parser, OperationState &result) {
// Parse the optional linkage
llvm::StringRef linkage;
auto &builder = parser.getBuilder();
if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
if (fir::GlobalOp::verifyValidLinkage(linkage))
return mlir::failure();
mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr);
}
// Parse the name as a symbol reference attribute.
mlir::SymbolRefAttr nameAttr;
if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrNameStr(),
result.attributes))
return mlir::failure();
result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
nameAttr.getRootReference());
bool simpleInitializer = false;
if (mlir::succeeded(parser.parseOptionalLParen())) {
Attribute attr;
if (parser.parseAttribute(attr, "initVal", result.attributes) ||
parser.parseRParen())
return mlir::failure();
simpleInitializer = true;
}
if (succeeded(parser.parseOptionalKeyword("constant"))) {
// if "constant" keyword then mark this as a constant, not a variable
result.addAttribute("constant", builder.getUnitAttr());
}
mlir::Type globalType;
if (parser.parseColonType(globalType))
return mlir::failure();
result.addAttribute(fir::GlobalOp::getTypeAttrName(result.name),
mlir::TypeAttr::get(globalType));
if (simpleInitializer) {
result.addRegion();
} else {
// Parse the optional initializer body.
auto parseResult = parser.parseOptionalRegion(
*result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None);
if (parseResult.hasValue() && mlir::failed(*parseResult))
return mlir::failure();
}
return mlir::success();
}
void GlobalOp::print(mlir::OpAsmPrinter &p) {
if (getLinkName().hasValue())
p << ' ' << getLinkName().getValue();
p << ' ';
p.printAttributeWithoutType(getSymrefAttr());
if (auto val = getValueOrNull())
p << '(' << val << ')';
if (getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr()))
p << " constant";
p << " : ";
p.printType(getType());
if (hasInitializationBody()) {
p << ' ';
p.printRegion(getOperation()->getRegion(0),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
}
void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
getBlock().getOperations().push_back(op);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
Attribute initialVal, StringAttr linkage,
ArrayRef<NamedAttribute> attrs) {
result.addRegion();
result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type));
result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(symbolAttrNameStr(),
SymbolRefAttr::get(builder.getContext(), name));
if (isConstant)
result.addAttribute(getConstantAttrName(result.name),
builder.getUnitAttr());
if (initialVal)
result.addAttribute(getInitValAttrName(result.name), initialVal);
if (linkage)
result.addAttribute(linkageAttrName(), linkage);
result.attributes.append(attrs.begin(), attrs.end());
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type, Attribute initialVal,
StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, isConstant, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type, StringAttr linkage,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, isConstant, type, StringAttr{}, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, attrs);
}
mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) {
// Supporting only a subset of the LLVM linkage types for now
static const char *validNames[] = {"common", "internal", "linkonce",
"linkonce_odr", "weak"};
return mlir::success(llvm::is_contained(validNames, linkage));
}
//===----------------------------------------------------------------------===//
// GlobalLenOp
//===----------------------------------------------------------------------===//
mlir::ParseResult GlobalLenOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef fieldName;
if (failed(parser.parseOptionalKeyword(&fieldName))) {
mlir::StringAttr fieldAttr;
if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(),
result.attributes))
return mlir::failure();
} else {
result.addAttribute(fir::GlobalLenOp::lenParamAttrName(),
parser.getBuilder().getStringAttr(fieldName));
}
mlir::IntegerAttr constant;
if (parser.parseComma() ||
parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(),
result.attributes))
return mlir::failure();
return mlir::success();
}
void GlobalLenOp::print(mlir::OpAsmPrinter &p) {
p << ' ' << getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName())
<< ", " << getOperation()->getAttr(fir::GlobalLenOp::intAttrName());
}
//===----------------------------------------------------------------------===//
// FieldIndexOp
//===----------------------------------------------------------------------===//
mlir::ParseResult FieldIndexOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef fieldName;
auto &builder = parser.getBuilder();
mlir::Type recty;
if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
parser.parseType(recty))
return mlir::failure();
result.addAttribute(fir::FieldIndexOp::fieldAttrName(),
builder.getStringAttr(fieldName));
if (!recty.dyn_cast<RecordType>())
return mlir::failure();
result.addAttribute(fir::FieldIndexOp::typeAttrName(),
mlir::TypeAttr::get(recty));
if (!parser.parseOptionalLParen()) {
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
llvm::SmallVector<mlir::Type> types;
auto loc = parser.getNameLoc();
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
parser.parseColonTypeList(types) || parser.parseRParen() ||
parser.resolveOperands(operands, types, loc, result.operands))
return mlir::failure();
}
mlir::Type fieldType = fir::FieldType::get(builder.getContext());
if (parser.addTypeToList(fieldType, result.types))
return mlir::failure();
return mlir::success();
}
void FieldIndexOp::print(mlir::OpAsmPrinter &p) {
p << ' '
<< getOperation()
->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName())
.getValue()
<< ", " << getOperation()->getAttr(fir::FieldIndexOp::typeAttrName());
if (getNumOperands()) {
p << '(';
p.printOperands(getTypeparams());
const auto *sep = ") : ";
for (auto op : getTypeparams()) {
p << sep;
if (op)
p.printType(op.getType());
else
p << "()";
sep = ", ";
}
}
}
void fir::FieldIndexOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
llvm::StringRef fieldName, mlir::Type recTy,
mlir::ValueRange operands) {
result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName));
result.addAttribute(typeAttrName(), TypeAttr::get(recTy));
result.addOperands(operands);
}
llvm::SmallVector<mlir::Attribute> fir::FieldIndexOp::getAttributes() {
llvm::SmallVector<mlir::Attribute> attrs;
attrs.push_back(getFieldIdAttr());
attrs.push_back(getOnTypeAttr());
return attrs;
}
//===----------------------------------------------------------------------===//
// InsertOnRangeOp
//===----------------------------------------------------------------------===//
static ParseResult
parseCustomRangeSubscript(mlir::OpAsmParser &parser,
mlir::DenseIntElementsAttr &coord) {
llvm::SmallVector<int64_t> lbounds;
llvm::SmallVector<int64_t> ubounds;
if (parser.parseKeyword("from") ||
parser.parseCommaSeparatedList(
AsmParser::Delimiter::Paren,
[&] { return parser.parseInteger(lbounds.emplace_back(0)); }) ||
parser.parseKeyword("to") ||
parser.parseCommaSeparatedList(AsmParser::Delimiter::Paren, [&] {
return parser.parseInteger(ubounds.emplace_back(0));
}))
return failure();
llvm::SmallVector<int64_t> zippedBounds;
for (auto zip : llvm::zip(lbounds, ubounds)) {
zippedBounds.push_back(std::get<0>(zip));
zippedBounds.push_back(std::get<1>(zip));
}
coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds);
return success();
}
void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, InsertOnRangeOp op,
mlir::DenseIntElementsAttr coord) {
printer << "from (";
auto enumerate = llvm::enumerate(coord.getValues<int64_t>());
// Even entries are the lower bounds.
llvm::interleaveComma(
make_filter_range(
enumerate,
[](auto indexed_value) { return indexed_value.index() % 2 == 0; }),
printer, [&](auto indexed_value) { printer << indexed_value.value(); });
printer << ") to (";
// Odd entries are the upper bounds.
llvm::interleaveComma(
make_filter_range(
enumerate,
[](auto indexed_value) { return indexed_value.index() % 2 != 0; }),
printer, [&](auto indexed_value) { printer << indexed_value.value(); });
printer << ")";
}
/// Range bounds must be nonnegative, and the range must not be empty.
mlir::LogicalResult InsertOnRangeOp::verify() {
if (fir::hasDynamicSize(getSeq().getType()))
return emitOpError("must have constant shape and size");
mlir::DenseIntElementsAttr coorAttr = getCoor();
if (coorAttr.size() < 2 || coorAttr.size() % 2 != 0)
return emitOpError("has uneven number of values in ranges");
bool rangeIsKnownToBeNonempty = false;
for (auto i = coorAttr.getValues<int64_t>().end(),
b = coorAttr.getValues<int64_t>().begin();
i != b;) {
int64_t ub = (*--i);
int64_t lb = (*--i);
if (lb < 0 || ub < 0)
return emitOpError("negative range bound");
if (rangeIsKnownToBeNonempty)
continue;
if (lb > ub)
return emitOpError("empty range");
rangeIsKnownToBeNonempty = lb < ub;
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// InsertValueOp
//===----------------------------------------------------------------------===//
static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) {
if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
return iattr.getInt() == conVal;
return false;
}
static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); }
static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); }
// Undo some complex patterns created in the front-end and turn them back into
// complex ops.
template <typename FltOp, typename CpxOp>
struct UndoComplexPattern : public mlir::RewritePattern {
UndoComplexPattern(mlir::MLIRContext *ctx)
: mlir::RewritePattern("fir.insert_value", 2, ctx) {}
mlir::LogicalResult
matchAndRewrite(mlir::Operation *op,
mlir::PatternRewriter &rewriter) const override {
auto insval = dyn_cast_or_null<fir::InsertValueOp>(op);
if (!insval || !insval.getType().isa<fir::ComplexType>())
return mlir::failure();
auto insval2 =
dyn_cast_or_null<fir::InsertValueOp>(insval.getAdt().getDefiningOp());
if (!insval2 || !isa<fir::UndefOp>(insval2.getAdt().getDefiningOp()))
return mlir::failure();
auto binf = dyn_cast_or_null<FltOp>(insval.getVal().getDefiningOp());
auto binf2 = dyn_cast_or_null<FltOp>(insval2.getVal().getDefiningOp());
if (!binf || !binf2 || insval.getCoor().size() != 1 ||
!isOne(insval.getCoor()[0]) || insval2.getCoor().size() != 1 ||
!isZero(insval2.getCoor()[0]))
return mlir::failure();
auto eai =
dyn_cast_or_null<fir::ExtractValueOp>(binf.getLhs().getDefiningOp());
auto ebi =
dyn_cast_or_null<fir::ExtractValueOp>(binf.getRhs().getDefiningOp());
auto ear =
dyn_cast_or_null<fir::ExtractValueOp>(binf2.getLhs().getDefiningOp());
auto ebr =
dyn_cast_or_null<fir::ExtractValueOp>(binf2.getRhs().getDefiningOp());
if (!eai || !ebi || !ear || !ebr || ear.getAdt() != eai.getAdt() ||
ebr.getAdt() != ebi.getAdt() || eai.getCoor().size() != 1 ||
!isOne(eai.getCoor()[0]) || ebi.getCoor().size() != 1 ||
!isOne(ebi.getCoor()[0]) || ear.getCoor().size() != 1 ||
!isZero(ear.getCoor()[0]) || ebr.getCoor().size() != 1 ||
!isZero(ebr.getCoor()[0]))
return mlir::failure();
rewriter.replaceOpWithNewOp<CpxOp>(op, ear.getAdt(), ebr.getAdt());
return mlir::success();
}
};
void fir::InsertValueOp::getCanonicalizationPatterns(
mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>,
UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context);
}
//===----------------------------------------------------------------------===//
// IterWhileOp
//===----------------------------------------------------------------------===//
void fir::IterWhileOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value lb,
mlir::Value ub, mlir::Value step,
mlir::Value iterate, bool finalCountValue,
mlir::ValueRange iterArgs,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands({lb, ub, step, iterate});
if (finalCountValue) {
result.addTypes(builder.getIndexType());
result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr());
}
result.addTypes(iterate.getType());
result.addOperands(iterArgs);
for (auto v : iterArgs)
result.addTypes(v.getType());
mlir::Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block{});
bodyRegion->front().addArgument(builder.getIndexType(), result.location);
bodyRegion->front().addArgument(iterate.getType(), result.location);
bodyRegion->front().addArguments(
iterArgs.getTypes(),
SmallVector<Location>(iterArgs.size(), result.location));
result.addAttributes(attributes);
}
mlir::ParseResult IterWhileOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::OpAsmParser::UnresolvedOperand inductionVariable, lb, ub, step;
if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) ||
parser.parseEqual())
return mlir::failure();
// Parse loop bounds.
auto indexType = builder.getIndexType();
auto i1Type = builder.getIntegerType(1);
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.parseRParen() ||
parser.resolveOperand(step, indexType, result.operands))
return mlir::failure();
mlir::OpAsmParser::UnresolvedOperand iterateVar, iterateInput;
if (parser.parseKeyword("and") || parser.parseLParen() ||
parser.parseRegionArgument(iterateVar) || parser.parseEqual() ||
parser.parseOperand(iterateInput) || parser.parseRParen() ||
parser.resolveOperand(iterateInput, i1Type, result.operands))
return mlir::failure();
// Parse the initial iteration arguments.
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> regionArgs;
auto prependCount = false;
// Induction variable.
regionArgs.push_back(inductionVariable);
regionArgs.push_back(iterateVar);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
llvm::SmallVector<mlir::Type> regionTypes;
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(regionTypes))
return failure();
if (regionTypes.size() == operands.size() + 2)
prependCount = true;
llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
// Resolve input operands.
for (auto operandType : llvm::zip(operands, resTypes))
if (parser.resolveOperand(std::get<0>(operandType),
std::get<1>(operandType), result.operands))
return failure();
if (prependCount) {
result.addTypes(regionTypes);
} else {
result.addTypes(i1Type);
result.addTypes(resTypes);
}
} else if (succeeded(parser.parseOptionalArrow())) {
llvm::SmallVector<mlir::Type> typeList;
if (parser.parseLParen() || parser.parseTypeList(typeList) ||
parser.parseRParen())
return failure();
// Type list must be "(index, i1)".
if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
!typeList[1].isSignlessInteger(1))
return failure();
result.addTypes(typeList);
prependCount = true;
} else {
result.addTypes(i1Type);
}
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return mlir::failure();
llvm::SmallVector<mlir::Type> argTypes;
// Induction variable (hidden)
if (prependCount)
result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(),
builder.getUnitAttr());
else
argTypes.push_back(indexType);
// Loop carried variables (including iterate)
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
auto *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
return mlir::success();
}
mlir::LogicalResult IterWhileOp::verify() {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = getBody();
if (!body->getArgument(1).getType().isInteger(1))
return emitOpError(
"expected body second argument to be an index argument for "
"the induction variable");
if (!body->getArgument(0).getType().isIndex())
return emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = getNumResults();
if (getFinalValue()) {
// Result type must be "(index, i1, ...)".
if (!getResult(0).getType().isa<mlir::IndexType>())
return emitOpError("result #0 expected to be index");
if (!getResult(1).getType().isSignlessInteger(1))
return emitOpError("result #1 expected to be i1");
opNumResults--;
} else {
// iterate_while always returns the early exit induction value.
// Result type must be "(i1, ...)"
if (!getResult(0).getType().isSignlessInteger(1))
return emitOpError("result #0 expected to be i1");
}
if (opNumResults == 0)
return mlir::failure();
if (getNumIterOperands() != opNumResults)
return emitOpError(
"mismatch in number of loop-carried values and defined values");
if (getNumRegionIterArgs() != opNumResults)
return emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = getIterOperands();
auto iterArgs = getRegionIterArgs();
auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return mlir::success();
}
void IterWhileOp::print(mlir::OpAsmPrinter &p) {
p << " (" << getInductionVar() << " = " << getLowerBound() << " to "
<< getUpperBound() << " step " << getStep() << ") and (";
assert(hasIterOperands());
auto regionArgs = getRegionIterArgs();
auto operands = getIterOperands();
p << regionArgs.front() << " = " << *operands.begin() << ")";
if (regionArgs.size() > 1) {
p << " iter_args(";
llvm::interleaveComma(
llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
[&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
p << ") -> (";
llvm::interleaveComma(
llvm::drop_begin(getResultTypes(), getFinalValue() ? 0 : 1), p);
p << ")";
} else if (getFinalValue()) {
p << " -> (" << getResultTypes() << ')';
}
p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
{getFinalValueAttrNameStr()});
p << ' ';
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
mlir::Region &fir::IterWhileOp::getLoopBody() { return getRegion(); }
mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
for (auto i : llvm::enumerate(getInitArgs()))
if (iterArg == i.value())
return getRegion().front().getArgument(i.index() + 1);
return {};
}
void fir::IterWhileOp::resultToSourceOps(
llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
auto oper = getFinalValue() ? resultNum + 1 : resultNum;
auto *term = getRegion().front().getTerminator();
if (oper < term->getNumOperands())
results.push_back(term->getOperand(oper));
}
mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
return getInitArgs()[blockArgNum - 1];
return {};
}
//===----------------------------------------------------------------------===//
// LenParamIndexOp
//===----------------------------------------------------------------------===//
mlir::ParseResult LenParamIndexOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef fieldName;
auto &builder = parser.getBuilder();
mlir::Type recty;
if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
parser.parseType(recty))
return mlir::failure();
result.addAttribute(fir::LenParamIndexOp::fieldAttrName(),
builder.getStringAttr(fieldName));
if (!recty.dyn_cast<RecordType>())
return mlir::failure();
result.addAttribute(fir::LenParamIndexOp::typeAttrName(),
mlir::TypeAttr::get(recty));
mlir::Type lenType = fir::LenType::get(builder.getContext());
if (parser.addTypeToList(lenType, result.types))
return mlir::failure();
return mlir::success();
}
void LenParamIndexOp::print(mlir::OpAsmPrinter &p) {
p << ' '
<< getOperation()
->getAttrOfType<mlir::StringAttr>(
fir::LenParamIndexOp::fieldAttrName())
.getValue()
<< ", " << getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName());
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::Value refVal) {
if (!refVal) {
mlir::emitError(result.location, "LoadOp has null argument");
return;
}
auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType());
if (!eleTy) {
mlir::emitError(result.location, "not a memory reference type");
return;
}
result.addOperands(refVal);
result.addTypes(eleTy);
}
mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
if ((ele = fir::dyn_cast_ptrEleTy(ref)))
return mlir::success();
return mlir::failure();
}
mlir::ParseResult LoadOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type type;
mlir::OpAsmParser::UnresolvedOperand oper;
if (parser.parseOperand(oper) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(oper, type, result.operands))
return mlir::failure();
mlir::Type eleTy;
if (fir::LoadOp::getElementOf(eleTy, type) ||
parser.addTypeToList(eleTy, result.types))
return mlir::failure();
return mlir::success();
}
void LoadOp::print(mlir::OpAsmPrinter &p) {
p << ' ';
p.printOperand(getMemref());
p.printOptionalAttrDict(getOperation()->getAttrs(), {});
p << " : " << getMemref().getType();
}
//===----------------------------------------------------------------------===//
// DoLoopOp
//===----------------------------------------------------------------------===//
void fir::DoLoopOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value lb,
mlir::Value ub, mlir::Value step, bool unordered,
bool finalCountValue, mlir::ValueRange iterArgs,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
if (finalCountValue) {
result.addTypes(builder.getIndexType());
result.addAttribute(getFinalValueAttrName(result.name),
builder.getUnitAttr());
}
for (auto v : iterArgs)
result.addTypes(v.getType());
mlir::Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block{});
if (iterArgs.empty() && !finalCountValue)
DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
bodyRegion->front().addArgument(builder.getIndexType(), result.location);
bodyRegion->front().addArguments(
iterArgs.getTypes(),
SmallVector<Location>(iterArgs.size(), result.location));
if (unordered)
result.addAttribute(getUnorderedAttrName(result.name),
builder.getUnitAttr());
result.addAttributes(attributes);
}
mlir::ParseResult DoLoopOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::OpAsmParser::UnresolvedOperand inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return mlir::failure();
// Parse loop bounds.
auto indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
result.addAttribute("unordered", builder.getUnitAttr());
// Parse the optional initial iteration arguments.
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> regionArgs, operands;
llvm::SmallVector<mlir::Type> argTypes;
auto prependCount = false;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
if (result.types.size() == operands.size() + 1)
prependCount = true;
// Resolve input operands.
llvm::ArrayRef<mlir::Type> resTypes = result.types;
for (auto operand_type :
llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
} else if (succeeded(parser.parseOptionalArrow())) {
if (parser.parseKeyword("index"))
return failure();
result.types.push_back(indexType);
prependCount = true;
}
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return mlir::failure();
// Induction variable.
if (prependCount)
result.addAttribute(DoLoopOp::getFinalValueAttrName(result.name),
builder.getUnitAttr());
else
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
auto *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
DoLoopOp::ensureTerminator(*body, builder, result.location);
return mlir::success();
}
fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
auto ivArg = val.dyn_cast<mlir::BlockArgument>();
if (!ivArg)
return {};
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingInst = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<fir::DoLoopOp>(containingInst);
}
// Lifted from loop.loop
mlir::LogicalResult DoLoopOp::verify() {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = getBody();
if (!body->getArgument(0).getType().isIndex())
return emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = getNumResults();
if (opNumResults == 0)
return success();
if (getFinalValue()) {
if (getUnordered())
return emitOpError("unordered loop has no final value");
opNumResults--;
}
if (getNumIterOperands() != opNumResults)
return emitOpError(
"mismatch in number of loop-carried values and defined values");
if (getNumRegionIterArgs() != opNumResults)
return emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = getIterOperands();
auto iterArgs = getRegionIterArgs();
auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return success();
}
void DoLoopOp::print(mlir::OpAsmPrinter &p) {
bool printBlockTerminators = false;
p << ' ' << getInductionVar() << " = " << getLowerBound() << " to "
<< getUpperBound() << " step " << getStep();
if (getUnordered())
p << " unordered";
if (hasIterOperands()) {
p << " iter_args(";
auto regionArgs = getRegionIterArgs();
auto operands = getIterOperands();
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ") -> (" << getResultTypes() << ')';
printBlockTerminators = true;
} else if (getFinalValue()) {
p << " -> " << getResultTypes();
printBlockTerminators = true;
}
p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
{"unordered", "finalValue"});
p << ' ';
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
printBlockTerminators);
}
mlir::Region &fir::DoLoopOp::getLoopBody() { return getRegion(); }
/// Translate a value passed as an iter_arg to the corresponding block
/// argument in the body of the loop.
mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
for (auto i : llvm::enumerate(getInitArgs()))
if (iterArg == i.value())
return getRegion().front().getArgument(i.index() + 1);
return {};
}
/// Translate the result vector (by index number) to the corresponding value
/// to the `fir.result` Op.
void fir::DoLoopOp::resultToSourceOps(
llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
auto oper = getFinalValue() ? resultNum + 1 : resultNum;
auto *term = getRegion().front().getTerminator();
if (oper < term->getNumOperands())
results.push_back(term->getOperand(oper));
}
/// Translate the block argument (by index number) to the corresponding value
/// passed as an iter_arg to the parent DoLoopOp.
mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
return getInitArgs()[blockArgNum - 1];
return {};
}
//===----------------------------------------------------------------------===//
// DTEntryOp
//===----------------------------------------------------------------------===//
mlir::ParseResult DTEntryOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef methodName;
// allow `methodName` or `"methodName"`
if (failed(parser.parseOptionalKeyword(&methodName))) {
mlir::StringAttr methodAttr;
if (parser.parseAttribute(methodAttr,
fir::DTEntryOp::getMethodAttrNameStr(),
result.attributes))
return mlir::failure();
} else {
result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(),
parser.getBuilder().getStringAttr(methodName));
}
mlir::SymbolRefAttr calleeAttr;
if (parser.parseComma() ||
parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(),
result.attributes))
return mlir::failure();
return mlir::success();
}
void DTEntryOp::print(mlir::OpAsmPrinter &p) {
p << ' ' << getMethodAttr() << ", " << getProcAttr();
}
//===----------------------------------------------------------------------===//
// ReboxOp
//===----------------------------------------------------------------------===//
/// Get the scalar type related to a fir.box type.
/// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
return seqTy.getEleTy();
return eleTy;
}
/// Get the rank from a !fir.box type
static unsigned getBoxRank(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
return seqTy.getDimension();
return 0;
}
/// Test if \p t1 and \p t2 are compatible character types (if they can
/// represent the same type at runtime).
static bool areCompatibleCharacterTypes(mlir::Type t1, mlir::Type t2) {
auto c1 = t1.dyn_cast<fir::CharacterType>();
auto c2 = t2.dyn_cast<fir::CharacterType>();
if (!c1 || !c2)
return false;
if (c1.hasDynamicLen() || c2.hasDynamicLen())
return true;
return c1.getLen() == c2.getLen();
}
mlir::LogicalResult ReboxOp::verify() {
auto inputBoxTy = getBox().getType();
if (fir::isa_unknown_size_box(inputBoxTy))
return emitOpError("box operand must not have unknown rank or type");
auto outBoxTy = getType();
if (fir::isa_unknown_size_box(outBoxTy))
return emitOpError("result type must not have unknown rank or type");
auto inputRank = getBoxRank(inputBoxTy);
auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
auto outRank = getBoxRank(outBoxTy);
auto outEleTy = getBoxScalarEleTy(outBoxTy);
if (auto sliceVal = getSlice()) {
// Slicing case
if (sliceVal.getType().cast<fir::SliceType>().getRank() != inputRank)
return emitOpError("slice operand rank must match box operand rank");
if (auto shapeVal = getShape()) {
if (auto shiftTy = shapeVal.getType().dyn_cast<fir::ShiftType>()) {
if (shiftTy.getRank() != inputRank)
return emitOpError("shape operand and input box ranks must match "
"when there is a slice");
} else {
return emitOpError("shape operand must absent or be a fir.shift "
"when there is a slice");
}
}
if (auto sliceOp = sliceVal.getDefiningOp()) {
auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
if (slicedRank != outRank)
return emitOpError("result type rank and rank after applying slice "
"operand must match");
}
} else {
// Reshaping case
unsigned shapeRank = inputRank;
if (auto shapeVal = getShape()) {
auto ty = shapeVal.getType();
if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
shapeRank = shapeTy.getRank();
} else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
shapeRank = shapeShiftTy.getRank();
} else {
auto shiftTy = ty.cast<fir::ShiftType>();
shapeRank = shiftTy.getRank();
if (shapeRank != inputRank)
return emitOpError("shape operand and input box ranks must match "
"when the shape is a fir.shift");
}
}
if (shapeRank != outRank)
return emitOpError("result type and shape operand ranks must match");
}
if (inputEleTy != outEleTy) {
// TODO: check that outBoxTy is a parent type of inputBoxTy for derived
// types.
// Character input and output types with constant length may be different if
// there is a substring in the slice, otherwise, they must match. If any of
// the types is a character with dynamic length, the other type can be any
// character type.
const bool typeCanMismatch =
inputEleTy.isa<fir::RecordType>() ||
(getSlice() && inputEleTy.isa<fir::CharacterType>()) ||
areCompatibleCharacterTypes(inputEleTy, outEleTy);
if (!typeCanMismatch)
return emitOpError(
"op input and output element types must match for intrinsic types");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ResultOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ResultOp::verify() {
auto *parentOp = (*this)->getParentOp();
auto results = parentOp->getResults();
auto operands = (*this)->getOperands();
if (parentOp->getNumResults() != getNumOperands())
return emitOpError() << "parent of result must have same arity";
for (auto e : llvm::zip(results, operands))
if (std::get<0>(e).getType() != std::get<1>(e).getType())
return emitOpError() << "types mismatch between result op and its parent";
return success();
}
//===----------------------------------------------------------------------===//
// SaveResultOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult SaveResultOp::verify() {
auto resultType = getValue().getType();
if (resultType != fir::dyn_cast_ptrEleTy(getMemref().getType()))
return emitOpError("value type must match memory reference type");
if (fir::isa_unknown_size_box(resultType))
return emitOpError("cannot save !fir.box of unknown rank or type");
if (resultType.isa<fir::BoxType>()) {
if (getShape() || !getTypeparams().empty())
return emitOpError(
"must not have shape or length operands if the value is a fir.box");
return mlir::success();
}
// fir.record or fir.array case.
unsigned shapeTyRank = 0;
if (auto shapeVal = getShape()) {
auto shapeTy = shapeVal.getType();
if (auto s = shapeTy.dyn_cast<fir::ShapeType>())
shapeTyRank = s.getRank();
else
shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank();
}
auto eleTy = resultType;
if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) {
if (seqTy.getDimension() != shapeTyRank)
emitOpError("shape operand must be provided and have the value rank "
"when the value is a fir.array");
eleTy = seqTy.getEleTy();
} else {
if (shapeTyRank != 0)
emitOpError(
"shape operand should only be provided if the value is a fir.array");
}
if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
if (recTy.getNumLenParams() != getTypeparams().size())
emitOpError("length parameters number must match with the value type "
"length parameters");
} else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
if (getTypeparams().size() > 1)
emitOpError("no more than one length parameter must be provided for "
"character value");
} else {
if (!getTypeparams().empty())
emitOpError("length parameters must not be provided for this value type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// IntegralSwitchTerminator
//===----------------------------------------------------------------------===//
static constexpr llvm::StringRef getCompareOffsetAttr() {
return "compare_operand_offsets";
}
static constexpr llvm::StringRef getTargetOffsetAttr() {
return "target_operand_offsets";
}
template <typename OpT>
static LogicalResult verifyIntegralSwitchTerminator(OpT op) {
if (!(op.getSelector().getType().template isa<mlir::IntegerType>() ||
op.getSelector().getType().template isa<mlir::IndexType>() ||
op.getSelector().getType().template isa<fir::IntegerType>()))
return op.emitOpError("must be an integer");
auto cases =
op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
auto count = op.getNumDest();
if (count == 0)
return op.emitOpError("must have at least one successor");
if (op.getNumConditions() != count)
return op.emitOpError("number of cases and targets don't match");
if (op.targetOffsetSize() != count)
return op.emitOpError("incorrect number of successor operand groups");
for (decltype(count) i = 0; i != count; ++i) {
if (!(cases[i].template isa<mlir::IntegerAttr, mlir::UnitAttr>()))
return op.emitOpError("invalid case alternative");
}
return mlir::success();
}
static mlir::ParseResult parseIntegralSwitchTerminator(
mlir::OpAsmParser &parser, mlir::OperationState &result,
llvm::StringRef casesAttr, llvm::StringRef operandSegmentAttr) {
mlir::OpAsmParser::UnresolvedOperand selector;
mlir::Type type;
if (parseSelector(parser, result, selector, type))
return mlir::failure();
llvm::SmallVector<mlir::Attribute> ivalues;
llvm::SmallVector<mlir::Block *> dests;
llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
while (true) {
mlir::Attribute ivalue; // Integer or Unit
mlir::Block *dest;
llvm::SmallVector<mlir::Value> destArg;
mlir::NamedAttrList temp;
if (parser.parseAttribute(ivalue, "i", temp) || parser.parseComma() ||
parser.parseSuccessorAndUseList(dest, destArg))
return mlir::failure();
ivalues.push_back(ivalue);
dests.push_back(dest);
destArgs.push_back(destArg);
if (!parser.parseOptionalRSquare())
break;
if (parser.parseComma())
return mlir::failure();
}
auto &bld = parser.getBuilder();
result.addAttribute(casesAttr, bld.getArrayAttr(ivalues));
llvm::SmallVector<int32_t> argOffs;
int32_t sumArgs = 0;
const auto count = dests.size();
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
result.addSuccessors(dests[i]);
result.addOperands(destArgs[i]);
auto argSize = destArgs[i].size();
argOffs.push_back(argSize);
sumArgs += argSize;
}
result.addAttribute(operandSegmentAttr,
bld.getI32VectorAttr({1, 0, sumArgs}));
result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
return mlir::success();
}
template <typename OpT>
static void printIntegralSwitchTerminator(OpT op, mlir::OpAsmPrinter &p) {
p << ' ';
p.printOperand(op.getSelector());
p << " : " << op.getSelector().getType() << " [";
auto cases =
op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
auto count = op.getNumConditions();
for (decltype(count) i = 0; i != count; ++i) {
if (i)
p << ", ";
auto &attr = cases[i];
if (auto intAttr = attr.template dyn_cast_or_null<mlir::IntegerAttr>())
p << intAttr.getValue();
else
p.printAttribute(attr);
p << ", ";
op.printSuccessorAtIndex(p, i);
}
p << ']';
p.printOptionalAttrDict(
op->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(),
getTargetOffsetAttr(), op.getOperandSegmentSizeAttr()});
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult fir::SelectOp::verify() {
return verifyIntegralSwitchTerminator(*this);
}
mlir::ParseResult fir::SelectOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
getOperandSegmentSizeAttr());
}
void fir::SelectOp::print(mlir::OpAsmPrinter &p) {
printIntegralSwitchTerminator(*this, p);
}
template <typename A, typename... AdditionalArgs>
static A getSubOperands(unsigned pos, A allArgs,
mlir::DenseIntElementsAttr ranges,
AdditionalArgs &&...additionalArgs) {
unsigned start = 0;
for (unsigned i = 0; i < pos; ++i)
start += (*(ranges.begin() + i)).getZExtValue();
return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
std::forward<AdditionalArgs>(additionalArgs)...);
}
static mlir::MutableOperandRange
getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
StringRef offsetAttr) {
Operation *owner = operands.getOwner();
NamedAttribute targetOffsetAttr =
*owner->getAttrDictionary().getNamed(offsetAttr);
return getSubOperands(
pos, operands, targetOffsetAttr.getValue().cast<DenseIntElementsAttr>(),
mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
}
static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
return attr.getNumElements();
}
llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
mlir::SuccessorOperands fir::SelectOp::getSuccessorOperands(unsigned oper) {
return mlir::SuccessorOperands(::getMutableSuccessorOperands(
oper, getTargetArgsMutable(), getTargetOffsetAttr()));
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
llvm::Optional<mlir::ValueRange>
fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
unsigned fir::SelectOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
//===----------------------------------------------------------------------===//
// SelectCaseOp
//===----------------------------------------------------------------------===//
llvm::Optional<mlir::OperandRange>
fir::SelectCaseOp::getCompareOperands(unsigned cond) {
auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr());
return {getSubOperands(cond, getCompareArgs(), a)};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned cond) {
auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
}
llvm::Optional<mlir::ValueRange>
fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands,
unsigned cond) {
auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
}
mlir::SuccessorOperands fir::SelectCaseOp::getSuccessorOperands(unsigned oper) {
return mlir::SuccessorOperands(::getMutableSuccessorOperands(
oper, getTargetArgsMutable(), getTargetOffsetAttr()));
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
llvm::Optional<mlir::ValueRange>
fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
// parser for fir.select_case Op
mlir::ParseResult SelectCaseOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::OpAsmParser::UnresolvedOperand selector;
mlir::Type type;
if (parseSelector(parser, result, selector, type))
return mlir::failure();
llvm::SmallVector<mlir::Attribute> attrs;
llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> opers;
llvm::SmallVector<mlir::Block *> dests;
llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
llvm::SmallVector<int32_t> argOffs;
int32_t offSize = 0;
while (true) {
mlir::Attribute attr;
mlir::Block *dest;
llvm::SmallVector<mlir::Value> destArg;
mlir::NamedAttrList temp;
if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) ||
parser.parseComma())
return mlir::failure();
attrs.push_back(attr);
if (attr.dyn_cast_or_null<mlir::UnitAttr>()) {
argOffs.push_back(0);
} else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) {
mlir::OpAsmParser::UnresolvedOperand oper1;
mlir::OpAsmParser::UnresolvedOperand oper2;
if (parser.parseOperand(oper1) || parser.parseComma() ||
parser.parseOperand(oper2) || parser.parseComma())
return mlir::failure();
opers.push_back(oper1);
opers.push_back(oper2);
argOffs.push_back(2);
offSize += 2;
} else {
mlir::OpAsmParser::UnresolvedOperand oper;
if (parser.parseOperand(oper) || parser.parseComma())
return mlir::failure();
opers.push_back(oper);
argOffs.push_back(1);
++offSize;
}
if (parser.parseSuccessorAndUseList(dest, destArg))
return mlir::failure();
dests.push_back(dest);
destArgs.push_back(destArg);
if (mlir::succeeded(parser.parseOptionalRSquare()))
break;
if (parser.parseComma())
return mlir::failure();
}
result.addAttribute(fir::SelectCaseOp::getCasesAttr(),
parser.getBuilder().getArrayAttr(attrs));
if (parser.resolveOperands(opers, type, result.operands))
return mlir::failure();
llvm::SmallVector<int32_t> targOffs;
int32_t toffSize = 0;
const auto count = dests.size();
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
result.addSuccessors(dests[i]);
result.addOperands(destArgs[i]);
auto argSize = destArgs[i].size();
targOffs.push_back(argSize);
toffSize += argSize;
}
auto &bld = parser.getBuilder();
result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(),
bld.getI32VectorAttr({1, offSize, toffSize}));
result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs));
result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs));
return mlir::success();
}
void SelectCaseOp::print(mlir::OpAsmPrinter &p) {
p << ' ';
p.printOperand(getSelector());
p << " : " << getSelector().getType() << " [";
auto cases =
getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
auto count = getNumConditions();
for (decltype(count) i = 0; i != count; ++i) {
if (i)
p << ", ";
p << cases[i] << ", ";
if (!cases[i].isa<mlir::UnitAttr>()) {
auto caseArgs = *getCompareOperands(i);
p.printOperand(*caseArgs.begin());
p << ", ";
if (cases[i].isa<fir::ClosedIntervalAttr>()) {
p.printOperand(*(++caseArgs.begin()));
p << ", ";
}
}
printSuccessorAtIndex(p, i);
}
p << ']';
p.printOptionalAttrDict(getOperation()->getAttrs(),
{getCasesAttr(), getCompareOffsetAttr(),
getTargetOffsetAttr(), getOperandSegmentSizeAttr()});
}
unsigned fir::SelectCaseOp::compareOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr()));
}
unsigned fir::SelectCaseOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::Value selector,
llvm::ArrayRef<mlir::Attribute> compareAttrs,
llvm::ArrayRef<mlir::ValueRange> cmpOperands,
llvm::ArrayRef<mlir::Block *> destinations,
llvm::ArrayRef<mlir::ValueRange> destOperands,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands(selector);
result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs));
llvm::SmallVector<int32_t> operOffs;
int32_t operSize = 0;
for (auto attr : compareAttrs) {
if (attr.isa<fir::ClosedIntervalAttr>()) {
operOffs.push_back(2);
operSize += 2;
} else if (attr.isa<mlir::UnitAttr>()) {
operOffs.push_back(0);
} else {
operOffs.push_back(1);
++operSize;
}
}
for (auto ops : cmpOperands)
result.addOperands(ops);
result.addAttribute(getCompareOffsetAttr(),
builder.getI32VectorAttr(operOffs));
const auto count = destinations.size();
for (auto d : destinations)
result.addSuccessors(d);
const auto opCount = destOperands.size();
llvm::SmallVector<int32_t> argOffs;
int32_t sumArgs = 0;
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
if (i < opCount) {
result.addOperands(destOperands[i]);
const auto argSz = destOperands[i].size();
argOffs.push_back(argSz);
sumArgs += argSz;
} else {
argOffs.push_back(0);
}
}
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({1, operSize, sumArgs}));
result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
result.addAttributes(attributes);
}
/// This builder has a slightly simplified interface in that the list of
/// operands need not be partitioned by the builder. Instead the operands are
/// partitioned here, before being passed to the default builder. This
/// partitioning is unchecked, so can go awry on bad input.
void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::Value selector,
llvm::ArrayRef<mlir::Attribute> compareAttrs,
llvm::ArrayRef<mlir::Value> cmpOpList,
llvm::ArrayRef<mlir::Block *> destinations,
llvm::ArrayRef<mlir::ValueRange> destOperands,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
llvm::SmallVector<mlir::ValueRange> cmpOpers;
auto iter = cmpOpList.begin();
for (auto &attr : compareAttrs) {
if (attr.isa<fir::ClosedIntervalAttr>()) {
cmpOpers.push_back(mlir::ValueRange({iter, iter + 2}));
iter += 2;
} else if (attr.isa<UnitAttr>()) {
cmpOpers.push_back(mlir::ValueRange{});
} else {
cmpOpers.push_back(mlir::ValueRange({iter, iter + 1}));
++iter;
}
}
build(builder, result, selector, compareAttrs, cmpOpers, destinations,
destOperands, attributes);
}
mlir::LogicalResult SelectCaseOp::verify() {
if (!(getSelector().getType().isa<mlir::IntegerType>() ||
getSelector().getType().isa<mlir::IndexType>() ||
getSelector().getType().isa<fir::IntegerType>() ||
getSelector().getType().isa<fir::LogicalType>() ||
getSelector().getType().isa<fir::CharacterType>()))
return emitOpError("must be an integer, character, or logical");
auto cases =
getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
auto count = getNumDest();
if (count == 0)
return emitOpError("must have at least one successor");
if (getNumConditions() != count)
return emitOpError("number of conditions and successors don't match");
if (compareOffsetSize() != count)
return emitOpError("incorrect number of compare operand groups");
if (targetOffsetSize() != count)
return emitOpError("incorrect number of successor operand groups");
for (decltype(count) i = 0; i != count; ++i) {
auto &attr = cases[i];
if (!(attr.isa<fir::PointIntervalAttr>() ||
attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() ||
attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>()))
return emitOpError("incorrect select case attribute type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// SelectRankOp
//===----------------------------------------------------------------------===//
LogicalResult fir::SelectRankOp::verify() {
return verifyIntegralSwitchTerminator(*this);
}
mlir::ParseResult fir::SelectRankOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
getOperandSegmentSizeAttr());
}
void fir::SelectRankOp::print(mlir::OpAsmPrinter &p) {
printIntegralSwitchTerminator(*this, p);
}
llvm::Optional<mlir::OperandRange>
fir::SelectRankOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
mlir::SuccessorOperands fir::SelectRankOp::getSuccessorOperands(unsigned oper) {
return mlir::SuccessorOperands(::getMutableSuccessorOperands(
oper, getTargetArgsMutable(), getTargetOffsetAttr()));
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
llvm::Optional<mlir::ValueRange>
fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
unsigned fir::SelectRankOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
//===----------------------------------------------------------------------===//
// SelectTypeOp
//===----------------------------------------------------------------------===//
llvm::Optional<mlir::OperandRange>
fir::SelectTypeOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
mlir::SuccessorOperands fir::SelectTypeOp::getSuccessorOperands(unsigned oper) {
return mlir::SuccessorOperands(::getMutableSuccessorOperands(
oper, getTargetArgsMutable(), getTargetOffsetAttr()));
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
ParseResult SelectTypeOp::parse(OpAsmParser &parser, OperationState &result) {
mlir::OpAsmParser::UnresolvedOperand selector;
mlir::Type type;
if (parseSelector(parser, result, selector, type))
return mlir::failure();
llvm::SmallVector<mlir::Attribute> attrs;
llvm::SmallVector<mlir::Block *> dests;
llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
while (true) {
mlir::Attribute attr;
mlir::Block *dest;
llvm::SmallVector<mlir::Value> destArg;
mlir::NamedAttrList temp;
if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() ||
parser.parseSuccessorAndUseList(dest, destArg))
return mlir::failure();
attrs.push_back(attr);
dests.push_back(dest);
destArgs.push_back(destArg);
if (mlir::succeeded(parser.parseOptionalRSquare()))
break;
if (parser.parseComma())
return mlir::failure();
}
auto &bld = parser.getBuilder();
result.addAttribute(fir::SelectTypeOp::getCasesAttr(),
bld.getArrayAttr(attrs));
llvm::SmallVector<int32_t> argOffs;
int32_t offSize = 0;
const auto count = dests.size();
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
result.addSuccessors(dests[i]);
result.addOperands(destArgs[i]);
auto argSize = destArgs[i].size();
argOffs.push_back(argSize);
offSize += argSize;
}
result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(),
bld.getI32VectorAttr({1, 0, offSize}));
result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
return mlir::success();
}
unsigned fir::SelectTypeOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
void SelectTypeOp::print(mlir::OpAsmPrinter &p) {
p << ' ';
p.printOperand(getSelector());
p << " : " << getSelector().getType() << " [";
auto cases =
getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
auto count = getNumConditions();
for (decltype(count) i = 0; i != count; ++i) {
if (i)
p << ", ";
p << cases[i] << ", ";
printSuccessorAtIndex(p, i);
}
p << ']';
p.printOptionalAttrDict(getOperation()->getAttrs(),
{getCasesAttr(), getCompareOffsetAttr(),
getTargetOffsetAttr(),
fir::SelectTypeOp::getOperandSegmentSizeAttr()});
}
mlir::LogicalResult SelectTypeOp::verify() {
if (!(getSelector().getType().isa<fir::BoxType>()))
return emitOpError("must be a boxed type");
auto cases =
getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
auto count = getNumDest();
if (count == 0)
return emitOpError("must have at least one successor");
if (getNumConditions() != count)
return emitOpError("number of conditions and successors don't match");
if (targetOffsetSize() != count)
return emitOpError("incorrect number of successor operand groups");
for (decltype(count) i = 0; i != count; ++i) {
auto &attr = cases[i];
if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() ||
attr.isa<mlir::UnitAttr>()))
return emitOpError("invalid type-case alternative");
}
return mlir::success();
}
void fir::SelectTypeOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::Value selector,
llvm::ArrayRef<mlir::Attribute> typeOperands,
llvm::ArrayRef<mlir::Block *> destinations,
llvm::ArrayRef<mlir::ValueRange> destOperands,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands(selector);
result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands));
const auto count = destinations.size();
for (mlir::Block *dest : destinations)
result.addSuccessors(dest);
const auto opCount = destOperands.size();
llvm::SmallVector<int32_t> argOffs;
int32_t sumArgs = 0;
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
if (i < opCount) {
result.addOperands(destOperands[i]);
const auto argSz = destOperands[i].size();
argOffs.push_back(argSz);
sumArgs += argSz;
} else {
argOffs.push_back(0);
}
}
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({1, 0, sumArgs}));
result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
result.addAttributes(attributes);
}
//===----------------------------------------------------------------------===//
// ShapeOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ShapeOp::verify() {
auto size = getExtents().size();
auto shapeTy = getType().dyn_cast<fir::ShapeType>();
assert(shapeTy && "must be a shape type");
if (shapeTy.getRank() != size)
return emitOpError("shape type rank mismatch");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ShapeShiftOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ShapeShiftOp::verify() {
auto size = getPairs().size();
if (size < 2 || size > 16 * 2)
return emitOpError("incorrect number of args");
if (size % 2 != 0)
return emitOpError("requires a multiple of 2 args");
auto shapeTy = getType().dyn_cast<fir::ShapeShiftType>();
assert(shapeTy && "must be a shape shift type");
if (shapeTy.getRank() * 2 != size)
return emitOpError("shape type rank mismatch");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ShiftOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ShiftOp::verify() {
auto size = getOrigins().size();
auto shiftTy = getType().dyn_cast<fir::ShiftType>();
assert(shiftTy && "must be a shift type");
if (shiftTy.getRank() != size)
return emitOpError("shift type rank mismatch");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// SliceOp
//===----------------------------------------------------------------------===//
void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::ValueRange trips, mlir::ValueRange path,
mlir::ValueRange substr) {
const auto rank = trips.size() / 3;
auto sliceTy = fir::SliceType::get(builder.getContext(), rank);
build(builder, result, sliceTy, trips, path, substr);
}
/// Return the output rank of a slice op. The output rank must be between 1 and
/// the rank of the array being sliced (inclusive).
unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) {
unsigned rank = 0;
if (!triples.empty()) {
for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
auto *op = triples[i].getDefiningOp();
if (!mlir::isa_and_nonnull<fir::UndefOp>(op))
++rank;
}
assert(rank > 0);
}
return rank;
}
mlir::LogicalResult SliceOp::verify() {
auto size = getTriples().size();
if (size < 3 || size > 16 * 3)
return emitOpError("incorrect number of args for triple");
if (size % 3 != 0)
return emitOpError("requires a multiple of 3 args");
auto sliceTy = getType().dyn_cast<fir::SliceType>();
assert(sliceTy && "must be a slice type");
if (sliceTy.getRank() * 3 != size)
return emitOpError("slice type rank mismatch");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
mlir::Type fir::StoreOp::elementType(mlir::Type refType) {
return fir::dyn_cast_ptrEleTy(refType);
}
mlir::ParseResult StoreOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type type;
mlir::OpAsmParser::UnresolvedOperand oper;
mlir::OpAsmParser::UnresolvedOperand store;
if (parser.parseOperand(oper) || parser.parseKeyword("to") ||
parser.parseOperand(store) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(oper, fir::StoreOp::elementType(type),
result.operands) ||
parser.resolveOperand(store, type, result.operands))
return mlir::failure();
return mlir::success();
}
void StoreOp::print(mlir::OpAsmPrinter &p) {
p << ' ';
p.printOperand(getValue());
p << " to ";
p.printOperand(getMemref());
p.printOptionalAttrDict(getOperation()->getAttrs(), {});
p << " : " << getMemref().getType();
}
mlir::LogicalResult StoreOp::verify() {
if (getValue().getType() != fir::dyn_cast_ptrEleTy(getMemref().getType()))
return emitOpError("store value type must match memory reference type");
if (fir::isa_unknown_size_box(getValue().getType()))
return emitOpError("cannot store !fir.box of unknown rank or type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// StringLitOp
//===----------------------------------------------------------------------===//
bool fir::StringLitOp::isWideValue() {
auto eleTy = getType().cast<fir::SequenceType>().getEleTy();
return eleTy.cast<fir::CharacterType>().getFKind() != 1;
}
static mlir::NamedAttribute
mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) {
assert(v > 0);
return builder.getNamedAttr(
name, builder.getIntegerAttr(builder.getIntegerType(64), v));
}
void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
fir::CharacterType inType, llvm::StringRef val,
llvm::Optional<int64_t> len) {
auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val));
int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
result.addAttributes({valAttr, lenAttr});
result.addTypes(inType);
}
template <typename C>
static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder,
llvm::ArrayRef<C> xlist) {
llvm::SmallVector<mlir::Attribute> attrs;
auto ty = builder.getIntegerType(8 * sizeof(C));
for (auto ch : xlist)
attrs.push_back(builder.getIntegerAttr(ty, ch));
return builder.getArrayAttr(attrs);
}
void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
fir::CharacterType inType,
llvm::ArrayRef<char> vlist,
llvm::Optional<int64_t> len) {
auto valAttr =
builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
result.addAttributes({valAttr, lenAttr});
result.addTypes(inType);
}
void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
fir::CharacterType inType,
llvm::ArrayRef<char16_t> vlist,
llvm::Optional<int64_t> len) {
auto valAttr =
builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
result.addAttributes({valAttr, lenAttr});
result.addTypes(inType);
}
void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result,
fir::CharacterType inType,
llvm::ArrayRef<char32_t> vlist,
llvm::Optional<int64_t> len) {
auto valAttr =
builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen();
auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
result.addAttributes({valAttr, lenAttr});
result.addTypes(inType);
}
mlir::ParseResult StringLitOp::parse(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::Attribute val;
mlir::NamedAttrList attrs;
llvm::SMLoc trailingTypeLoc;
if (parser.parseAttribute(val, "fake", attrs))
return mlir::failure();
if (auto v = val.dyn_cast<mlir::StringAttr>())
result.attributes.push_back(
builder.getNamedAttr(fir::StringLitOp::value(), v));
else if (auto v = val.dyn_cast<mlir::ArrayAttr>())
result.attributes.push_back(
builder.getNamedAttr(fir::StringLitOp::xlist(), v));
else
return parser.emitError(parser.getCurrentLocation(),
"found an invalid constant");
mlir::IntegerAttr sz;
mlir::Type type;
if (parser.parseLParen() ||
parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) ||
parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) ||
parser.parseColonType(type))
return mlir::failure();
auto charTy = type.dyn_cast<fir::CharacterType>();
if (!charTy)
return parser.emitError(trailingTypeLoc, "must have character type");
type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(),
sz.getInt());
if (!type || parser.addTypesToList(type, result.types))
return mlir::failure();
return mlir::success();
}
void StringLitOp::print(mlir::OpAsmPrinter &p) {
p << ' ' << getValue() << '(';
p << getSize().cast<mlir::IntegerAttr>().getValue() << ") : ";
p.printType(getType());
}
mlir::LogicalResult StringLitOp::verify() {
if (getSize().cast<mlir::IntegerAttr>().getValue().isNegative())
return emitOpError("size must be non-negative");
if (auto xl = getOperation()->getAttr(fir::StringLitOp::xlist())) {
auto xList = xl.cast<mlir::ArrayAttr>();
for (auto a : xList)
if (!a.isa<mlir::IntegerAttr>())
return emitOpError("values in list must be integers");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// UnboxProcOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult UnboxProcOp::verify() {
if (auto eleTy = fir::dyn_cast_ptrEleTy(getRefTuple().getType()))
if (eleTy.isa<mlir::TupleType>())
return mlir::success();
return emitOpError("second output argument has bad type");
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result,
mlir::Value cond, bool withElseRegion) {
build(builder, result, llvm::None, cond, withElseRegion);
}
void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result,
mlir::TypeRange resultTypes, mlir::Value cond,
bool withElseRegion) {
result.addOperands(cond);
result.addTypes(resultTypes);
mlir::Region *thenRegion = result.addRegion();
thenRegion->push_back(new mlir::Block());
if (resultTypes.empty())
IfOp::ensureTerminator(*thenRegion, builder, result.location);
mlir::Region *elseRegion = result.addRegion();
if (withElseRegion) {
elseRegion->push_back(new mlir::Block());
if (resultTypes.empty())
IfOp::ensureTerminator(*elseRegion, builder, result.location);
}
}
mlir::ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) {
result.regions.reserve(2);
mlir::Region *thenRegion = result.addRegion();
mlir::Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::UnresolvedOperand cond;
mlir::Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return mlir::failure();
if (parser.parseOptionalArrowTypeList(result.types))
return mlir::failure();
if (parser.parseRegion(*thenRegion, {}, {}))
return mlir::failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
if (mlir::succeeded(parser.parseOptionalKeyword("else"))) {
if (parser.parseRegion(*elseRegion, {}, {}))
return mlir::failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return mlir::failure();
return mlir::success();
}
LogicalResult IfOp::verify() {
if (getNumResults() != 0 && getElseRegion().empty())
return emitOpError("must have an else block if defining values");
return mlir::success();
}
void IfOp::print(mlir::OpAsmPrinter &p) {
bool printBlockTerminators = false;
p << ' ' << getCondition();
if (!getResults().empty()) {
p << " -> (" << getResultTypes() << ')';
printBlockTerminators = true;
}
p << ' ';
p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false,
printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &otherReg = getElseRegion();
if (!otherReg.empty()) {
p << " else ";
p.printRegion(otherReg, /*printEntryBlockArgs=*/false,
printBlockTerminators);
}
p.printOptionalAttrDict((*this)->getAttrs());
}
void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results,
unsigned resultNum) {
auto *term = getThenRegion().front().getTerminator();
if (resultNum < term->getNumOperands())
results.push_back(term->getOperand(resultNum));
term = getElseRegion().front().getTerminator();
if (resultNum < term->getNumOperands())
results.push_back(term->getOperand(resultNum));
}
//===----------------------------------------------------------------------===//
mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) {
if (attr.dyn_cast_or_null<mlir::UnitAttr>() ||
attr.dyn_cast_or_null<ClosedIntervalAttr>() ||
attr.dyn_cast_or_null<PointIntervalAttr>() ||
attr.dyn_cast_or_null<LowerBoundAttr>() ||
attr.dyn_cast_or_null<UpperBoundAttr>())
return mlir::success();
return mlir::failure();
}
unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,
unsigned dest) {
unsigned o = 0;
for (unsigned i = 0; i < dest; ++i) {
auto &attr = cases[i];
if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) {
++o;
if (attr.dyn_cast_or_null<ClosedIntervalAttr>())
++o;
}
}
return o;
}
mlir::ParseResult
fir::parseSelector(mlir::OpAsmParser &parser, mlir::OperationState &result,
mlir::OpAsmParser::UnresolvedOperand &selector,
mlir::Type &type) {
if (parser.parseOperand(selector) || parser.parseColonType(type) ||
parser.resolveOperand(selector, type, result.operands) ||
parser.parseLSquare())
return mlir::failure();
return mlir::success();
}
bool fir::isReferenceLike(mlir::Type type) {
return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() ||
type.isa<fir::PointerType>();
}
mlir::func::FuncOp
fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, StringRef name,
mlir::FunctionType type,
llvm::ArrayRef<mlir::NamedAttribute> attrs) {
if (auto f = module.lookupSymbol<mlir::func::FuncOp>(name))
return f;
mlir::OpBuilder modBuilder(module.getBodyRegion());
modBuilder.setInsertionPointToEnd(module.getBody());
auto result = modBuilder.create<mlir::func::FuncOp>(loc, name, type, attrs);
result.setVisibility(mlir::SymbolTable::Visibility::Private);
return result;
}
fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module,
StringRef name, mlir::Type type,
llvm::ArrayRef<mlir::NamedAttribute> attrs) {
if (auto g = module.lookupSymbol<fir::GlobalOp>(name))
return g;
mlir::OpBuilder modBuilder(module.getBodyRegion());
auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs);
result.setVisibility(mlir::SymbolTable::Visibility::Private);
return result;
}
bool fir::hasHostAssociationArgument(mlir::func::FuncOp func) {
if (auto allArgAttrs = func.getAllArgAttrs())
for (auto attr : allArgAttrs)
if (auto dict = attr.template dyn_cast_or_null<mlir::DictionaryAttr>())
if (dict.get(fir::getHostAssocAttrName()))
return true;
return false;
}
bool fir::valueHasFirAttribute(mlir::Value value,
llvm::StringRef attributeName) {
// If this is a fir.box that was loaded, the fir attributes will be on the
// related fir.ref<fir.box> creation.
if (value.getType().isa<fir::BoxType>())
if (auto definingOp = value.getDefiningOp())
if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp))
value = loadOp.getMemref();
// If this is a function argument, look in the argument attributes.
if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock())
if (auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(
blockArg.getOwner()->getParentOp()))
if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName))
return true;
return false;
}
if (auto definingOp = value.getDefiningOp()) {
// If this is an allocated value, look at the allocation attributes.
if (mlir::isa<fir::AllocMemOp>(definingOp) ||
mlir::isa<AllocaOp>(definingOp))
return definingOp->hasAttr(attributeName);
// If this is an imported global, look at AddrOfOp and GlobalOp attributes.
// Both operations are looked at because use/host associated variable (the
// AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate
// entity (the globalOp) does not have them.
if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) {
if (addressOfOp->hasAttr(attributeName))
return true;
if (auto module = definingOp->getParentOfType<mlir::ModuleOp>())
if (auto globalOp =
module.lookupSymbol<fir::GlobalOp>(addressOfOp.getSymbol()))
return globalOp->hasAttr(attributeName);
}
}
// TODO: Construct associated entities attributes. Decide where the fir
// attributes must be placed/looked for in this case.
return false;
}
bool fir::anyFuncArgsHaveAttr(mlir::func::FuncOp func, llvm::StringRef attr) {
for (unsigned i = 0, end = func.getNumArguments(); i < end; ++i)
if (func.getArgAttr(i, attr))
return true;
return false;
}
mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) {
for (auto i = path.begin(), end = path.end(); eleTy && i < end;) {
eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy)
.Case<fir::RecordType>([&](fir::RecordType ty) {
if (auto *op = (*i++).getDefiningOp()) {
if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op))
return ty.getType(off.getFieldName());
if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
return ty.getType(fir::toInt(off));
}
return mlir::Type{};
})
.Case<fir::SequenceType>([&](fir::SequenceType ty) {
bool valid = true;
const auto rank = ty.getDimension();
for (std::remove_const_t<decltype(rank)> ii = 0;
valid && ii < rank; ++ii)
valid = i < end && fir::isa_integer((*i++).getType());
return valid ? ty.getEleTy() : mlir::Type{};
})
.Case<mlir::TupleType>([&](mlir::TupleType ty) {
if (auto *op = (*i++).getDefiningOp())
if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
return ty.getType(fir::toInt(off));
return mlir::Type{};
})
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
if (fir::isa_integer((*i++).getType()))
return ty.getElementType();
return mlir::Type{};
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
if (fir::isa_integer((*i++).getType()))
return ty.getElementType();
return mlir::Type{};
})
.Default([&](const auto &) { return mlir::Type{}; });
}
return eleTy;
}
// Tablegen operators
#define GET_OP_CLASSES
#include "flang/Optimizer/Dialect/FIROps.cpp.inc"