llvm-project/llvm/lib/Target/X86/X86Subtarget.h

443 lines
15 KiB
C++

//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef X86SUBTARGET_H
#define X86SUBTARGET_H
#include "llvm/ADT/Triple.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <string>
#define GET_SUBTARGETINFO_HEADER
#include "X86GenSubtargetInfo.inc"
namespace llvm {
class GlobalValue;
class StringRef;
class TargetMachine;
/// PICStyles - The X86 backend supports a number of different styles of PIC.
///
namespace PICStyles {
enum Style {
StubPIC, // Used on i386-darwin in -fPIC mode.
StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
GOT, // Used on many 32-bit unices in -fPIC mode.
RIPRel, // Used on X86-64 when not in -static mode.
None // Set when in -static mode (not PIC or DynamicNoPIC mode).
};
}
class X86Subtarget final : public X86GenSubtargetInfo {
protected:
enum X86SSEEnum {
NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
};
enum X863DNowEnum {
NoThreeDNow, ThreeDNow, ThreeDNowA
};
enum X86ProcFamilyEnum {
Others, IntelAtom, IntelSLM
};
/// X86ProcFamily - X86 processor family: Intel Atom, and others
X86ProcFamilyEnum X86ProcFamily;
/// PICStyle - Which PIC style to use
///
PICStyles::Style PICStyle;
/// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or
/// none supported.
X86SSEEnum X86SSELevel;
/// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported.
///
X863DNowEnum X863DNowLevel;
/// HasCMov - True if this processor has conditional move instructions
/// (generally pentium pro+).
bool HasCMov;
/// HasX86_64 - True if the processor supports X86-64 instructions.
///
bool HasX86_64;
/// HasPOPCNT - True if the processor supports POPCNT.
bool HasPOPCNT;
/// HasSSE4A - True if the processor supports SSE4A instructions.
bool HasSSE4A;
/// HasAES - Target has AES instructions
bool HasAES;
/// HasPCLMUL - Target has carry-less multiplication
bool HasPCLMUL;
/// HasFMA - Target has 3-operand fused multiply-add
bool HasFMA;
/// HasFMA4 - Target has 4-operand fused multiply-add
bool HasFMA4;
/// HasXOP - Target has XOP instructions
bool HasXOP;
/// HasTBM - Target has TBM instructions.
bool HasTBM;
/// HasMOVBE - True if the processor has the MOVBE instruction.
bool HasMOVBE;
/// HasRDRAND - True if the processor has the RDRAND instruction.
bool HasRDRAND;
/// HasF16C - Processor has 16-bit floating point conversion instructions.
bool HasF16C;
/// HasFSGSBase - Processor has FS/GS base insturctions.
bool HasFSGSBase;
/// HasLZCNT - Processor has LZCNT instruction.
bool HasLZCNT;
/// HasBMI - Processor has BMI1 instructions.
bool HasBMI;
/// HasBMI2 - Processor has BMI2 instructions.
bool HasBMI2;
/// HasRTM - Processor has RTM instructions.
bool HasRTM;
/// HasHLE - Processor has HLE.
bool HasHLE;
/// HasADX - Processor has ADX instructions.
bool HasADX;
/// HasSHA - Processor has SHA instructions.
bool HasSHA;
/// HasPRFCHW - Processor has PRFCHW instructions.
bool HasPRFCHW;
/// HasRDSEED - Processor has RDSEED instructions.
bool HasRDSEED;
/// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
bool IsBTMemSlow;
/// IsSHLDSlow - True if SHLD instructions are slow.
bool IsSHLDSlow;
/// IsUAMemFast - True if unaligned memory access is fast.
bool IsUAMemFast;
/// HasVectorUAMem - True if SIMD operations can have unaligned memory
/// operands. This may require setting a feature bit in the processor.
bool HasVectorUAMem;
/// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction;
/// this is true for most x86-64 chips, but not the first AMD chips.
bool HasCmpxchg16b;
/// UseLeaForSP - True if the LEA instruction should be used for adjusting
/// the stack pointer. This is an optimization for Intel Atom processors.
bool UseLeaForSP;
/// HasSlowDivide - True if smaller divides are significantly faster than
/// full divides and should be used when possible.
bool HasSlowDivide;
/// PostRAScheduler - True if using post-register-allocation scheduler.
bool PostRAScheduler;
/// PadShortFunctions - True if the short functions should be padded to prevent
/// a stall when returning too early.
bool PadShortFunctions;
/// CallRegIndirect - True if the Calls with memory reference should be converted
/// to a register-based indirect call.
bool CallRegIndirect;
/// LEAUsesAG - True if the LEA instruction inputs have to be ready at
/// address generation (AG) time.
bool LEAUsesAG;
/// SlowLEA - True if the LEA instruction with certain arguments is slow
bool SlowLEA;
/// Processor has AVX-512 PreFetch Instructions
bool HasPFI;
/// Processor has AVX-512 Exponential and Reciprocal Instructions
bool HasERI;
/// Processor has AVX-512 Conflict Detection Instructions
bool HasCDI;
/// stackAlignment - The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
unsigned stackAlignment;
/// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
///
unsigned MaxInlineSizeThreshold;
/// TargetTriple - What processor and OS we're targeting.
Triple TargetTriple;
/// Instruction itineraries for scheduling
InstrItineraryData InstrItins;
private:
/// StackAlignOverride - Override the stack alignment.
unsigned StackAlignOverride;
/// In64BitMode - True if compiling for 64-bit, false for 16-bit or 32-bit.
bool In64BitMode;
/// In32BitMode - True if compiling for 32-bit, false for 16-bit or 64-bit.
bool In32BitMode;
/// In16BitMode - True if compiling for 16-bit, false for 32-bit or 64-bit.
bool In16BitMode;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
X86Subtarget(const std::string &TT, const std::string &CPU,
const std::string &FS,
unsigned StackAlignOverride);
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
unsigned getStackAlignment() const { return stackAlignment; }
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
/// \brief Reset the features for the X86 target.
void resetSubtargetFeatures(const MachineFunction *MF) override;
private:
void initializeEnvironment();
void resetSubtargetFeatures(StringRef CPU, StringRef FS);
public:
/// Is this x86_64? (disregarding specific ABI / programming model)
bool is64Bit() const {
return In64BitMode;
}
bool is32Bit() const {
return In32BitMode;
}
bool is16Bit() const {
return In16BitMode;
}
/// Is this x86_64 with the ILP32 programming model (x32 ABI)?
bool isTarget64BitILP32() const {
return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
TargetTriple.getOS() == Triple::NaCl);
}
/// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
bool isTarget64BitLP64() const {
return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32);
}
PICStyles::Style getPICStyle() const { return PICStyle; }
void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
bool hasCMov() const { return HasCMov; }
bool hasMMX() const { return X86SSELevel >= MMX; }
bool hasSSE1() const { return X86SSELevel >= SSE1; }
bool hasSSE2() const { return X86SSELevel >= SSE2; }
bool hasSSE3() const { return X86SSELevel >= SSE3; }
bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
bool hasSSE41() const { return X86SSELevel >= SSE41; }
bool hasSSE42() const { return X86SSELevel >= SSE42; }
bool hasAVX() const { return X86SSELevel >= AVX; }
bool hasAVX2() const { return X86SSELevel >= AVX2; }
bool hasAVX512() const { return X86SSELevel >= AVX512F; }
bool hasFp256() const { return hasAVX(); }
bool hasInt256() const { return hasAVX2(); }
bool hasSSE4A() const { return HasSSE4A; }
bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
bool hasPOPCNT() const { return HasPOPCNT; }
bool hasAES() const { return HasAES; }
bool hasPCLMUL() const { return HasPCLMUL; }
bool hasFMA() const { return HasFMA; }
// FIXME: Favor FMA when both are enabled. Is this the right thing to do?
bool hasFMA4() const { return HasFMA4 && !HasFMA; }
bool hasXOP() const { return HasXOP; }
bool hasTBM() const { return HasTBM; }
bool hasMOVBE() const { return HasMOVBE; }
bool hasRDRAND() const { return HasRDRAND; }
bool hasF16C() const { return HasF16C; }
bool hasFSGSBase() const { return HasFSGSBase; }
bool hasLZCNT() const { return HasLZCNT; }
bool hasBMI() const { return HasBMI; }
bool hasBMI2() const { return HasBMI2; }
bool hasRTM() const { return HasRTM; }
bool hasHLE() const { return HasHLE; }
bool hasADX() const { return HasADX; }
bool hasSHA() const { return HasSHA; }
bool hasPRFCHW() const { return HasPRFCHW; }
bool hasRDSEED() const { return HasRDSEED; }
bool isBTMemSlow() const { return IsBTMemSlow; }
bool isSHLDSlow() const { return IsSHLDSlow; }
bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
bool hasVectorUAMem() const { return HasVectorUAMem; }
bool hasCmpxchg16b() const { return HasCmpxchg16b; }
bool useLeaForSP() const { return UseLeaForSP; }
bool hasSlowDivide() const { return HasSlowDivide; }
bool padShortFunctions() const { return PadShortFunctions; }
bool callRegIndirect() const { return CallRegIndirect; }
bool LEAusesAG() const { return LEAUsesAG; }
bool slowLEA() const { return SlowLEA; }
bool hasCDI() const { return HasCDI; }
bool hasPFI() const { return HasPFI; }
bool hasERI() const { return HasERI; }
bool isAtom() const { return X86ProcFamily == IntelAtom; }
bool isSLM() const { return X86ProcFamily == IntelSLM; }
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
bool isTargetFreeBSD() const {
return TargetTriple.getOS() == Triple::FreeBSD;
}
bool isTargetSolaris() const {
return TargetTriple.getOS() == Triple::Solaris;
}
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
bool isTargetMacho() const { return TargetTriple.isOSBinFormatMachO(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
bool isTargetWindowsMSVC() const {
return TargetTriple.isWindowsMSVCEnvironment();
}
bool isTargetKnownWindowsMSVC() const {
return TargetTriple.isKnownWindowsMSVCEnvironment();
}
bool isTargetWindowsCygwin() const {
return TargetTriple.isWindowsCygwinEnvironment();
}
bool isTargetWindowsGNU() const {
return TargetTriple.isWindowsGNUEnvironment();
}
bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
bool isOSWindows() const { return TargetTriple.isOSWindows(); }
bool isTargetWin64() const {
return In64BitMode && TargetTriple.isOSWindows();
}
bool isTargetWin32() const {
return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
}
bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
bool isPICStyleStubPIC() const {
return PICStyle == PICStyles::StubPIC;
}
bool isPICStyleStubNoDynamic() const {
return PICStyle == PICStyles::StubDynamicNoPIC;
}
bool isPICStyleStubAny() const {
return PICStyle == PICStyles::StubDynamicNoPIC ||
PICStyle == PICStyles::StubPIC;
}
bool isCallingConvWin64(CallingConv::ID CC) const {
return (isTargetWin64() && CC != CallingConv::X86_64_SysV) ||
CC == CallingConv::X86_64_Win64;
}
/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM)const;
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char ClassifyBlockAddressReference() const;
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const;
/// This function returns the name of a function which has an interface
/// like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over
/// memset with zero passed as the second argument. Otherwise it
/// returns null.
const char *getBZeroEntry() const;
/// This function returns true if the target has sincos() routine in its
/// compiler runtime or math libraries.
bool hasSinCos() const;
/// Enable the MachineScheduler pass for all X86 subtargets.
bool enableMachineScheduler() const override { return true; }
/// enablePostRAScheduler - run for Atom optimization.
bool enablePostRAScheduler(CodeGenOpt::Level OptLevel,
TargetSubtargetInfo::AntiDepBreakMode& Mode,
RegClassVector& CriticalPathRCs) const override;
bool postRAScheduler() const { return PostRAScheduler; }
bool enableEarlyIfConversion() const override;
/// getInstrItins = Return the instruction itineraries based on the
/// subtarget selection.
const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
};
} // End llvm namespace
#endif