forked from OSchip/llvm-project
2065 lines
89 KiB
C++
2065 lines
89 KiB
C++
//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This checker improves modeling of a few simple library functions.
|
|
//
|
|
// This checker provides a specification format - `Summary' - and
|
|
// contains descriptions of some library functions in this format. Each
|
|
// specification contains a list of branches for splitting the program state
|
|
// upon call, and range constraints on argument and return-value symbols that
|
|
// are satisfied on each branch. This spec can be expanded to include more
|
|
// items, like external effects of the function.
|
|
//
|
|
// The main difference between this approach and the body farms technique is
|
|
// in more explicit control over how many branches are produced. For example,
|
|
// consider standard C function `ispunct(int x)', which returns a non-zero value
|
|
// iff `x' is a punctuation character, that is, when `x' is in range
|
|
// ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~'].
|
|
// `Summary' provides only two branches for this function. However,
|
|
// any attempt to describe this range with if-statements in the body farm
|
|
// would result in many more branches. Because each branch needs to be analyzed
|
|
// independently, this significantly reduces performance. Additionally,
|
|
// once we consider a branch on which `x' is in range, say, ['!', '/'],
|
|
// we assume that such branch is an important separate path through the program,
|
|
// which may lead to false positives because considering this particular path
|
|
// was not consciously intended, and therefore it might have been unreachable.
|
|
//
|
|
// This checker uses eval::Call for modeling pure functions (functions without
|
|
// side effets), for which their `Summary' is a precise model. This avoids
|
|
// unnecessary invalidation passes. Conflicts with other checkers are unlikely
|
|
// because if the function has no other effects, other checkers would probably
|
|
// never want to improve upon the modeling done by this checker.
|
|
//
|
|
// Non-pure functions, for which only partial improvement over the default
|
|
// behavior is expected, are modeled via check::PostCall, non-intrusively.
|
|
//
|
|
// The following standard C functions are currently supported:
|
|
//
|
|
// fgetc getline isdigit isupper toascii
|
|
// fread isalnum isgraph isxdigit
|
|
// fwrite isalpha islower read
|
|
// getc isascii isprint write
|
|
// getchar isblank ispunct toupper
|
|
// getdelim iscntrl isspace tolower
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::ento;
|
|
|
|
namespace {
|
|
class StdLibraryFunctionsChecker
|
|
: public Checker<check::PreCall, check::PostCall, eval::Call> {
|
|
|
|
class Summary;
|
|
|
|
/// Specify how much the analyzer engine should entrust modeling this function
|
|
/// to us. If he doesn't, he performs additional invalidations.
|
|
enum InvalidationKind { NoEvalCall, EvalCallAsPure };
|
|
|
|
// The universal integral type to use in value range descriptions.
|
|
// Unsigned to make sure overflows are well-defined.
|
|
typedef uint64_t RangeInt;
|
|
|
|
/// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
|
|
/// a non-negative integer, which less than 5 and not equal to 2. For
|
|
/// `ComparesToArgument', holds information about how exactly to compare to
|
|
/// the argument.
|
|
typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
|
|
|
|
/// A reference to an argument or return value by its number.
|
|
/// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
|
|
/// obviously uint32_t should be enough for all practical purposes.
|
|
typedef uint32_t ArgNo;
|
|
static const ArgNo Ret;
|
|
|
|
class ValueConstraint;
|
|
|
|
// Pointer to the ValueConstraint. We need a copyable, polymorphic and
|
|
// default initialize able type (vector needs that). A raw pointer was good,
|
|
// however, we cannot default initialize that. unique_ptr makes the Summary
|
|
// class non-copyable, therefore not an option. Releasing the copyability
|
|
// requirement would render the initialization of the Summary map infeasible.
|
|
using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
|
|
|
|
/// Polymorphic base class that represents a constraint on a given argument
|
|
/// (or return value) of a function. Derived classes implement different kind
|
|
/// of constraints, e.g range constraints or correlation between two
|
|
/// arguments.
|
|
class ValueConstraint {
|
|
public:
|
|
ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
|
|
virtual ~ValueConstraint() {}
|
|
/// Apply the effects of the constraint on the given program state. If null
|
|
/// is returned then the constraint is not feasible.
|
|
virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary,
|
|
CheckerContext &C) const = 0;
|
|
virtual ValueConstraintPtr negate() const {
|
|
llvm_unreachable("Not implemented");
|
|
};
|
|
|
|
// Check whether the constraint is malformed or not. It is malformed if the
|
|
// specified argument has a mismatch with the given FunctionDecl (e.g. the
|
|
// arg number is out-of-range of the function's argument list).
|
|
bool checkValidity(const FunctionDecl *FD) const {
|
|
const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams();
|
|
assert(ValidArg && "Arg out of range!");
|
|
if (!ValidArg)
|
|
return false;
|
|
// Subclasses may further refine the validation.
|
|
return checkSpecificValidity(FD);
|
|
}
|
|
ArgNo getArgNo() const { return ArgN; }
|
|
|
|
protected:
|
|
ArgNo ArgN; // Argument to which we apply the constraint.
|
|
|
|
/// Do polymorphic sanity check on the constraint.
|
|
virtual bool checkSpecificValidity(const FunctionDecl *FD) const {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// Given a range, should the argument stay inside or outside this range?
|
|
enum RangeKind { OutOfRange, WithinRange };
|
|
|
|
/// Encapsulates a single range on a single symbol within a branch.
|
|
class RangeConstraint : public ValueConstraint {
|
|
RangeKind Kind; // Kind of range definition.
|
|
IntRangeVector Args; // Polymorphic arguments.
|
|
|
|
public:
|
|
RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
|
|
: ValueConstraint(ArgN), Kind(Kind), Args(Args) {}
|
|
|
|
const IntRangeVector &getRanges() const { return Args; }
|
|
|
|
private:
|
|
ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
ProgramStateRef applyAsWithinRange(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
|
|
public:
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary,
|
|
CheckerContext &C) const override {
|
|
switch (Kind) {
|
|
case OutOfRange:
|
|
return applyAsOutOfRange(State, Call, Summary);
|
|
case WithinRange:
|
|
return applyAsWithinRange(State, Call, Summary);
|
|
}
|
|
llvm_unreachable("Unknown range kind!");
|
|
}
|
|
|
|
ValueConstraintPtr negate() const override {
|
|
RangeConstraint Tmp(*this);
|
|
switch (Kind) {
|
|
case OutOfRange:
|
|
Tmp.Kind = WithinRange;
|
|
break;
|
|
case WithinRange:
|
|
Tmp.Kind = OutOfRange;
|
|
break;
|
|
}
|
|
return std::make_shared<RangeConstraint>(Tmp);
|
|
}
|
|
|
|
bool checkSpecificValidity(const FunctionDecl *FD) const override {
|
|
const bool ValidArg =
|
|
getArgType(FD, ArgN)->isIntegralType(FD->getASTContext());
|
|
assert(ValidArg &&
|
|
"This constraint should be applied on an integral type");
|
|
return ValidArg;
|
|
}
|
|
};
|
|
|
|
class ComparisonConstraint : public ValueConstraint {
|
|
BinaryOperator::Opcode Opcode;
|
|
ArgNo OtherArgN;
|
|
|
|
public:
|
|
ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
|
|
ArgNo OtherArgN)
|
|
: ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
|
|
ArgNo getOtherArgNo() const { return OtherArgN; }
|
|
BinaryOperator::Opcode getOpcode() const { return Opcode; }
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary,
|
|
CheckerContext &C) const override;
|
|
};
|
|
|
|
class NotNullConstraint : public ValueConstraint {
|
|
using ValueConstraint::ValueConstraint;
|
|
// This variable has a role when we negate the constraint.
|
|
bool CannotBeNull = true;
|
|
|
|
public:
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary,
|
|
CheckerContext &C) const override {
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
if (V.isUndef())
|
|
return State;
|
|
|
|
DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
|
|
if (!L.getAs<Loc>())
|
|
return State;
|
|
|
|
return State->assume(L, CannotBeNull);
|
|
}
|
|
|
|
ValueConstraintPtr negate() const override {
|
|
NotNullConstraint Tmp(*this);
|
|
Tmp.CannotBeNull = !this->CannotBeNull;
|
|
return std::make_shared<NotNullConstraint>(Tmp);
|
|
}
|
|
|
|
bool checkSpecificValidity(const FunctionDecl *FD) const override {
|
|
const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
|
|
assert(ValidArg &&
|
|
"This constraint should be applied only on a pointer type");
|
|
return ValidArg;
|
|
}
|
|
};
|
|
|
|
// Represents a buffer argument with an additional size argument.
|
|
// E.g. the first two arguments here:
|
|
// ctime_s(char *buffer, rsize_t bufsz, const time_t *time);
|
|
// Another example:
|
|
// size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
|
|
// // Here, ptr is the buffer, and its minimum size is `size * nmemb`.
|
|
class BufferSizeConstraint : public ValueConstraint {
|
|
// The argument which holds the size of the buffer.
|
|
ArgNo SizeArgN;
|
|
// The argument which is a multiplier to size. This is set in case of
|
|
// `fread` like functions where the size is computed as a multiplication of
|
|
// two arguments.
|
|
llvm::Optional<ArgNo> SizeMultiplierArgN;
|
|
// The operator we use in apply. This is negated in negate().
|
|
BinaryOperator::Opcode Op = BO_LE;
|
|
|
|
public:
|
|
BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize)
|
|
: ValueConstraint(Buffer), SizeArgN(BufSize) {}
|
|
|
|
BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier)
|
|
: ValueConstraint(Buffer), SizeArgN(BufSize),
|
|
SizeMultiplierArgN(BufSizeMultiplier) {}
|
|
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary,
|
|
CheckerContext &C) const override {
|
|
SValBuilder &SvalBuilder = C.getSValBuilder();
|
|
// The buffer argument.
|
|
SVal BufV = getArgSVal(Call, getArgNo());
|
|
// The size argument.
|
|
SVal SizeV = getArgSVal(Call, SizeArgN);
|
|
// Multiply with another argument if given.
|
|
if (SizeMultiplierArgN) {
|
|
SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN);
|
|
SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV,
|
|
Summary.getArgType(SizeArgN));
|
|
}
|
|
// The dynamic size of the buffer argument, got from the analyzer engine.
|
|
SVal BufDynSize = getDynamicSizeWithOffset(State, BufV);
|
|
|
|
SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize,
|
|
SvalBuilder.getContext().BoolTy);
|
|
if (auto F = Feasible.getAs<DefinedOrUnknownSVal>())
|
|
return State->assume(*F, true);
|
|
|
|
// We can get here only if the size argument or the dynamic size is
|
|
// undefined. But the dynamic size should never be undefined, only
|
|
// unknown. So, here, the size of the argument is undefined, i.e. we
|
|
// cannot apply the constraint. Actually, other checkers like
|
|
// CallAndMessage should catch this situation earlier, because we call a
|
|
// function with an uninitialized argument.
|
|
llvm_unreachable("Size argument or the dynamic size is Undefined");
|
|
}
|
|
|
|
ValueConstraintPtr negate() const override {
|
|
BufferSizeConstraint Tmp(*this);
|
|
Tmp.Op = BinaryOperator::negateComparisonOp(Op);
|
|
return std::make_shared<BufferSizeConstraint>(Tmp);
|
|
}
|
|
|
|
bool checkSpecificValidity(const FunctionDecl *FD) const override {
|
|
const bool ValidArg = getArgType(FD, ArgN)->isPointerType();
|
|
assert(ValidArg &&
|
|
"This constraint should be applied only on a pointer type");
|
|
return ValidArg;
|
|
}
|
|
};
|
|
|
|
/// The complete list of constraints that defines a single branch.
|
|
typedef std::vector<ValueConstraintPtr> ConstraintSet;
|
|
|
|
using ArgTypes = std::vector<QualType>;
|
|
|
|
// A placeholder type, we use it whenever we do not care about the concrete
|
|
// type in a Signature.
|
|
const QualType Irrelevant{};
|
|
bool static isIrrelevant(QualType T) { return T.isNull(); }
|
|
|
|
// The signature of a function we want to describe with a summary. This is a
|
|
// concessive signature, meaning there may be irrelevant types in the
|
|
// signature which we do not check against a function with concrete types.
|
|
struct Signature {
|
|
ArgTypes ArgTys;
|
|
QualType RetTy;
|
|
Signature(ArgTypes ArgTys, QualType RetTy) : ArgTys(ArgTys), RetTy(RetTy) {
|
|
assertRetTypeSuitableForSignature(RetTy);
|
|
for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
|
|
QualType ArgTy = ArgTys[I];
|
|
assertArgTypeSuitableForSignature(ArgTy);
|
|
}
|
|
}
|
|
|
|
bool matches(const FunctionDecl *FD) const;
|
|
|
|
private:
|
|
static void assertArgTypeSuitableForSignature(QualType T) {
|
|
assert((T.isNull() || !T->isVoidType()) &&
|
|
"We should have no void types in the spec");
|
|
assert((T.isNull() || T.isCanonical()) &&
|
|
"We should only have canonical types in the spec");
|
|
}
|
|
static void assertRetTypeSuitableForSignature(QualType T) {
|
|
assert((T.isNull() || T.isCanonical()) &&
|
|
"We should only have canonical types in the spec");
|
|
}
|
|
};
|
|
|
|
static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) {
|
|
assert(FD && "Function must be set");
|
|
QualType T = (ArgN == Ret)
|
|
? FD->getReturnType().getCanonicalType()
|
|
: FD->getParamDecl(ArgN)->getType().getCanonicalType();
|
|
return T;
|
|
}
|
|
|
|
using Cases = std::vector<ConstraintSet>;
|
|
|
|
/// A summary includes information about
|
|
/// * function prototype (signature)
|
|
/// * approach to invalidation,
|
|
/// * a list of branches - a list of list of ranges -
|
|
/// A branch represents a path in the exploded graph of a function (which
|
|
/// is a tree). So, a branch is a series of assumptions. In other words,
|
|
/// branches represent split states and additional assumptions on top of
|
|
/// the splitting assumption.
|
|
/// For example, consider the branches in `isalpha(x)`
|
|
/// Branch 1)
|
|
/// x is in range ['A', 'Z'] or in ['a', 'z']
|
|
/// then the return value is not 0. (I.e. out-of-range [0, 0])
|
|
/// Branch 2)
|
|
/// x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
|
|
/// then the return value is 0.
|
|
/// * a list of argument constraints, that must be true on every branch.
|
|
/// If these constraints are not satisfied that means a fatal error
|
|
/// usually resulting in undefined behaviour.
|
|
///
|
|
/// Application of a summary:
|
|
/// The signature and argument constraints together contain information
|
|
/// about which functions are handled by the summary. The signature can use
|
|
/// "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in
|
|
/// a signature means that type is not compared to the type of the parameter
|
|
/// in the found FunctionDecl. Argument constraints may specify additional
|
|
/// rules for the given parameter's type, those rules are checked once the
|
|
/// signature is matched.
|
|
class Summary {
|
|
Optional<Signature> Sign;
|
|
const InvalidationKind InvalidationKd;
|
|
Cases CaseConstraints;
|
|
ConstraintSet ArgConstraints;
|
|
|
|
// The function to which the summary applies. This is set after lookup and
|
|
// match to the signature.
|
|
const FunctionDecl *FD = nullptr;
|
|
|
|
public:
|
|
Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
|
|
: Sign(Signature(ArgTys, RetTy)), InvalidationKd(InvalidationKd) {}
|
|
|
|
Summary(InvalidationKind InvalidationKd) : InvalidationKd(InvalidationKd) {}
|
|
|
|
Summary &setSignature(const Signature &S) {
|
|
Sign = S;
|
|
return *this;
|
|
}
|
|
|
|
Summary &Case(ConstraintSet &&CS) {
|
|
CaseConstraints.push_back(std::move(CS));
|
|
return *this;
|
|
}
|
|
Summary &ArgConstraint(ValueConstraintPtr VC) {
|
|
ArgConstraints.push_back(VC);
|
|
return *this;
|
|
}
|
|
|
|
InvalidationKind getInvalidationKd() const { return InvalidationKd; }
|
|
const Cases &getCaseConstraints() const { return CaseConstraints; }
|
|
const ConstraintSet &getArgConstraints() const { return ArgConstraints; }
|
|
|
|
QualType getArgType(ArgNo ArgN) const {
|
|
return StdLibraryFunctionsChecker::getArgType(FD, ArgN);
|
|
}
|
|
|
|
// Returns true if the summary should be applied to the given function.
|
|
// And if yes then store the function declaration.
|
|
bool matchesAndSet(const FunctionDecl *FD) {
|
|
assert(Sign &&
|
|
"Signature must be set before comparing to a FunctionDecl");
|
|
bool Result = Sign->matches(FD) && validateByConstraints(FD);
|
|
if (Result) {
|
|
assert(!this->FD && "FD must not be set more than once");
|
|
this->FD = FD;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
private:
|
|
// Once we know the exact type of the function then do sanity check on all
|
|
// the given constraints.
|
|
bool validateByConstraints(const FunctionDecl *FD) const {
|
|
for (const ConstraintSet &Case : CaseConstraints)
|
|
for (const ValueConstraintPtr &Constraint : Case)
|
|
if (!Constraint->checkValidity(FD))
|
|
return false;
|
|
for (const ValueConstraintPtr &Constraint : ArgConstraints)
|
|
if (!Constraint->checkValidity(FD))
|
|
return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// The map of all functions supported by the checker. It is initialized
|
|
// lazily, and it doesn't change after initialization.
|
|
using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
|
|
mutable FunctionSummaryMapType FunctionSummaryMap;
|
|
|
|
mutable std::unique_ptr<BugType> BT_InvalidArg;
|
|
|
|
static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
|
|
return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
|
|
}
|
|
|
|
public:
|
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
|
|
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
|
|
|
|
enum CheckKind {
|
|
CK_StdCLibraryFunctionArgsChecker,
|
|
CK_StdCLibraryFunctionsTesterChecker,
|
|
CK_NumCheckKinds
|
|
};
|
|
DefaultBool ChecksEnabled[CK_NumCheckKinds];
|
|
CheckerNameRef CheckNames[CK_NumCheckKinds];
|
|
|
|
bool DisplayLoadedSummaries = false;
|
|
bool ModelPOSIX = false;
|
|
|
|
private:
|
|
Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
|
|
CheckerContext &C) const;
|
|
Optional<Summary> findFunctionSummary(const CallEvent &Call,
|
|
CheckerContext &C) const;
|
|
|
|
void initFunctionSummaries(CheckerContext &C) const;
|
|
|
|
void reportBug(const CallEvent &Call, ExplodedNode *N,
|
|
CheckerContext &C) const {
|
|
if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
|
|
return;
|
|
// TODO Add detailed diagnostic.
|
|
StringRef Msg = "Function argument constraint is not satisfied";
|
|
if (!BT_InvalidArg)
|
|
BT_InvalidArg = std::make_unique<BugType>(
|
|
CheckNames[CK_StdCLibraryFunctionArgsChecker],
|
|
"Unsatisfied argument constraints", categories::LogicError);
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
|
|
bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
|
|
C.emitReport(std::move(R));
|
|
}
|
|
};
|
|
|
|
const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
|
|
std::numeric_limits<ArgNo>::max();
|
|
|
|
} // end of anonymous namespace
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
ConstraintManager &CM = Mgr.getConstraintManager();
|
|
QualType T = Summary.getArgType(getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
if (auto N = V.getAs<NonLoc>()) {
|
|
const IntRangeVector &R = getRanges();
|
|
size_t E = R.size();
|
|
for (size_t I = 0; I != E; ++I) {
|
|
const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
|
|
const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
|
|
assert(Min <= Max);
|
|
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
|
|
if (!State)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
ConstraintManager &CM = Mgr.getConstraintManager();
|
|
QualType T = Summary.getArgType(getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
// "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
|
|
// We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
|
|
// and then cut away all holes in R one by one.
|
|
//
|
|
// E.g. consider a range list R as [A, B] and [C, D]
|
|
// -------+--------+------------------+------------+----------->
|
|
// A B C D
|
|
// Then we assume that the value is not in [-inf, A - 1],
|
|
// then not in [D + 1, +inf], then not in [B + 1, C - 1]
|
|
if (auto N = V.getAs<NonLoc>()) {
|
|
const IntRangeVector &R = getRanges();
|
|
size_t E = R.size();
|
|
|
|
const llvm::APSInt &MinusInf = BVF.getMinValue(T);
|
|
const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
|
|
|
|
const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
|
|
if (Left != PlusInf) {
|
|
assert(MinusInf <= Left);
|
|
State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
|
|
const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
|
|
if (Right != MinusInf) {
|
|
assert(Right <= PlusInf);
|
|
State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
|
|
for (size_t I = 1; I != E; ++I) {
|
|
const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
|
|
const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
|
|
if (Min <= Max) {
|
|
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
|
|
ProgramStateRef State, const CallEvent &Call, const Summary &Summary,
|
|
CheckerContext &C) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
QualType CondT = SVB.getConditionType();
|
|
QualType T = Summary.getArgType(getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
BinaryOperator::Opcode Op = getOpcode();
|
|
ArgNo OtherArg = getOtherArgNo();
|
|
SVal OtherV = getArgSVal(Call, OtherArg);
|
|
QualType OtherT = Summary.getArgType(OtherArg);
|
|
// Note: we avoid integral promotion for comparison.
|
|
OtherV = SVB.evalCast(OtherV, T, OtherT);
|
|
if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
|
|
.getAs<DefinedOrUnknownSVal>())
|
|
State = State->assume(*CompV, true);
|
|
return State;
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
|
|
if (!FoundSummary)
|
|
return;
|
|
|
|
const Summary &Summary = *FoundSummary;
|
|
ProgramStateRef State = C.getState();
|
|
|
|
ProgramStateRef NewState = State;
|
|
for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) {
|
|
ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C);
|
|
ProgramStateRef FailureSt =
|
|
Constraint->negate()->apply(NewState, Call, Summary, C);
|
|
// The argument constraint is not satisfied.
|
|
if (FailureSt && !SuccessSt) {
|
|
if (ExplodedNode *N = C.generateErrorNode(NewState))
|
|
reportBug(Call, N, C);
|
|
break;
|
|
} else {
|
|
// We will apply the constraint even if we cannot reason about the
|
|
// argument. This means both SuccessSt and FailureSt can be true. If we
|
|
// weren't applying the constraint that would mean that symbolic
|
|
// execution continues on a code whose behaviour is undefined.
|
|
assert(SuccessSt);
|
|
NewState = SuccessSt;
|
|
}
|
|
}
|
|
if (NewState && NewState != State)
|
|
C.addTransition(NewState);
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
|
|
if (!FoundSummary)
|
|
return;
|
|
|
|
// Now apply the constraints.
|
|
const Summary &Summary = *FoundSummary;
|
|
ProgramStateRef State = C.getState();
|
|
|
|
// Apply case/branch specifications.
|
|
for (const ConstraintSet &Case : Summary.getCaseConstraints()) {
|
|
ProgramStateRef NewState = State;
|
|
for (const ValueConstraintPtr &Constraint : Case) {
|
|
NewState = Constraint->apply(NewState, Call, Summary, C);
|
|
if (!NewState)
|
|
break;
|
|
}
|
|
|
|
if (NewState && NewState != State)
|
|
C.addTransition(NewState);
|
|
}
|
|
}
|
|
|
|
bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
|
|
if (!FoundSummary)
|
|
return false;
|
|
|
|
const Summary &Summary = *FoundSummary;
|
|
switch (Summary.getInvalidationKd()) {
|
|
case EvalCallAsPure: {
|
|
ProgramStateRef State = C.getState();
|
|
const LocationContext *LC = C.getLocationContext();
|
|
const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
SVal V = C.getSValBuilder().conjureSymbolVal(
|
|
CE, LC, CE->getType().getCanonicalType(), C.blockCount());
|
|
State = State->BindExpr(CE, LC, V);
|
|
C.addTransition(State);
|
|
return true;
|
|
}
|
|
case NoEvalCall:
|
|
// Summary tells us to avoid performing eval::Call. The function is possibly
|
|
// evaluated by another checker, or evaluated conservatively.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown invalidation kind!");
|
|
}
|
|
|
|
bool StdLibraryFunctionsChecker::Signature::matches(
|
|
const FunctionDecl *FD) const {
|
|
// Check number of arguments:
|
|
if (FD->param_size() != ArgTys.size())
|
|
return false;
|
|
|
|
// Check return type.
|
|
if (!isIrrelevant(RetTy))
|
|
if (RetTy != FD->getReturnType().getCanonicalType())
|
|
return false;
|
|
|
|
// Check argument types.
|
|
for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
|
|
QualType ArgTy = ArgTys[I];
|
|
if (isIrrelevant(ArgTy))
|
|
continue;
|
|
if (ArgTy != FD->getParamDecl(I)->getType().getCanonicalType())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<StdLibraryFunctionsChecker::Summary>
|
|
StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
|
|
CheckerContext &C) const {
|
|
if (!FD)
|
|
return None;
|
|
|
|
initFunctionSummaries(C);
|
|
|
|
auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
|
|
if (FSMI == FunctionSummaryMap.end())
|
|
return None;
|
|
return FSMI->second;
|
|
}
|
|
|
|
Optional<StdLibraryFunctionsChecker::Summary>
|
|
StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
|
|
if (!FD)
|
|
return None;
|
|
return findFunctionSummary(FD, C);
|
|
}
|
|
|
|
static llvm::Optional<QualType> lookupType(StringRef Name,
|
|
const ASTContext &ACtx) {
|
|
IdentifierInfo &II = ACtx.Idents.get(Name);
|
|
auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
|
|
if (LookupRes.size() == 0)
|
|
return None;
|
|
|
|
// Prioritze typedef declarations.
|
|
// This is needed in case of C struct typedefs. E.g.:
|
|
// typedef struct FILE FILE;
|
|
// In this case, we have a RecordDecl 'struct FILE' with the name 'FILE' and
|
|
// we have a TypedefDecl with the name 'FILE'.
|
|
for (Decl *D : LookupRes)
|
|
if (auto *TD = dyn_cast<TypedefNameDecl>(D))
|
|
return ACtx.getTypeDeclType(TD).getCanonicalType();
|
|
|
|
// Find the first TypeDecl.
|
|
// There maybe cases when a function has the same name as a struct.
|
|
// E.g. in POSIX: `struct stat` and the function `stat()`:
|
|
// int stat(const char *restrict path, struct stat *restrict buf);
|
|
for (Decl *D : LookupRes)
|
|
if (auto *TD = dyn_cast<TypeDecl>(D))
|
|
return ACtx.getTypeDeclType(TD).getCanonicalType();
|
|
return None;
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::initFunctionSummaries(
|
|
CheckerContext &C) const {
|
|
if (!FunctionSummaryMap.empty())
|
|
return;
|
|
|
|
SValBuilder &SVB = C.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
const ASTContext &ACtx = BVF.getContext();
|
|
|
|
auto getRestrictTy = [&ACtx](QualType Ty) {
|
|
return ACtx.getLangOpts().C99 ? ACtx.getRestrictType(Ty) : Ty;
|
|
};
|
|
|
|
// These types are useful for writing specifications quickly,
|
|
// New specifications should probably introduce more types.
|
|
// Some types are hard to obtain from the AST, eg. "ssize_t".
|
|
// In such cases it should be possible to provide multiple variants
|
|
// of function summary for common cases (eg. ssize_t could be int or long
|
|
// or long long, so three summary variants would be enough).
|
|
// Of course, function variants are also useful for C++ overloads.
|
|
const QualType VoidTy = ACtx.VoidTy;
|
|
const QualType IntTy = ACtx.IntTy;
|
|
const QualType UnsignedIntTy = ACtx.UnsignedIntTy;
|
|
const QualType LongTy = ACtx.LongTy;
|
|
const QualType LongLongTy = ACtx.LongLongTy;
|
|
const QualType SizeTy = ACtx.getSizeType();
|
|
|
|
const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
|
|
const QualType IntPtrTy = ACtx.getPointerType(IntTy); // int *
|
|
const QualType UnsignedIntPtrTy =
|
|
ACtx.getPointerType(UnsignedIntTy); // unsigned int *
|
|
const QualType VoidPtrRestrictTy = getRestrictTy(VoidPtrTy);
|
|
const QualType ConstVoidPtrTy =
|
|
ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
|
|
const QualType CharPtrTy = ACtx.getPointerType(ACtx.CharTy); // char *
|
|
const QualType CharPtrRestrictTy = getRestrictTy(CharPtrTy);
|
|
const QualType ConstCharPtrTy =
|
|
ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
|
|
const QualType ConstCharPtrRestrictTy = getRestrictTy(ConstCharPtrTy);
|
|
const QualType Wchar_tPtrTy = ACtx.getPointerType(ACtx.WCharTy); // wchar_t *
|
|
const QualType ConstWchar_tPtrTy =
|
|
ACtx.getPointerType(ACtx.WCharTy.withConst()); // const wchar_t *
|
|
const QualType ConstVoidPtrRestrictTy = getRestrictTy(ConstVoidPtrTy);
|
|
|
|
const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
|
|
const RangeInt UnsignedIntMax =
|
|
BVF.getMaxValue(UnsignedIntTy).getLimitedValue();
|
|
const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
|
|
const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
|
|
const RangeInt SizeMax = BVF.getMaxValue(SizeTy).getLimitedValue();
|
|
|
|
// Set UCharRangeMax to min of int or uchar maximum value.
|
|
// The C standard states that the arguments of functions like isalpha must
|
|
// be representable as an unsigned char. Their type is 'int', so the max
|
|
// value of the argument should be min(UCharMax, IntMax). This just happen
|
|
// to be true for commonly used and well tested instruction set
|
|
// architectures, but not for others.
|
|
const RangeInt UCharRangeMax =
|
|
std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
|
|
|
|
// The platform dependent value of EOF.
|
|
// Try our best to parse this from the Preprocessor, otherwise fallback to -1.
|
|
const auto EOFv = [&C]() -> RangeInt {
|
|
if (const llvm::Optional<int> OptInt =
|
|
tryExpandAsInteger("EOF", C.getPreprocessor()))
|
|
return *OptInt;
|
|
return -1;
|
|
}();
|
|
|
|
// Auxiliary class to aid adding summaries to the summary map.
|
|
struct AddToFunctionSummaryMap {
|
|
const ASTContext &ACtx;
|
|
FunctionSummaryMapType ⤅
|
|
bool DisplayLoadedSummaries;
|
|
AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM,
|
|
bool DisplayLoadedSummaries)
|
|
: ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) {
|
|
}
|
|
|
|
// Add a summary to a FunctionDecl found by lookup. The lookup is performed
|
|
// by the given Name, and in the global scope. The summary will be attached
|
|
// to the found FunctionDecl only if the signatures match.
|
|
//
|
|
// Returns true if the summary has been added, false otherwise.
|
|
bool operator()(StringRef Name, Summary S) {
|
|
IdentifierInfo &II = ACtx.Idents.get(Name);
|
|
auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
|
|
if (LookupRes.size() == 0)
|
|
return false;
|
|
for (Decl *D : LookupRes) {
|
|
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (S.matchesAndSet(FD)) {
|
|
auto Res = Map.insert({FD->getCanonicalDecl(), S});
|
|
assert(Res.second && "Function already has a summary set!");
|
|
(void)Res;
|
|
if (DisplayLoadedSummaries) {
|
|
llvm::errs() << "Loaded summary for: ";
|
|
FD->print(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
bool operator()(StringRef Name, Signature Sign, Summary Sum) {
|
|
return operator()(Name, Sum.setSignature(Sign));
|
|
}
|
|
// Add several summaries for the given name.
|
|
void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
|
|
for (const Summary &S : Summaries)
|
|
operator()(Name, S);
|
|
}
|
|
} addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries);
|
|
|
|
// We are finally ready to define specifications for all supported functions.
|
|
//
|
|
// The signature needs to have the correct number of arguments.
|
|
// However, we insert `Irrelevant' when the type is insignificant.
|
|
//
|
|
// Argument ranges should always cover all variants. If return value
|
|
// is completely unknown, omit it from the respective range set.
|
|
//
|
|
// All types in the spec need to be canonical.
|
|
//
|
|
// Every item in the list of range sets represents a particular
|
|
// execution path the analyzer would need to explore once
|
|
// the call is modeled - a new program state is constructed
|
|
// for every range set, and each range line in the range set
|
|
// corresponds to a specific constraint within this state.
|
|
//
|
|
// Upon comparing to another argument, the other argument is casted
|
|
// to the current argument's type. This avoids proper promotion but
|
|
// seems useful. For example, read() receives size_t argument,
|
|
// and its return value, which is of type ssize_t, cannot be greater
|
|
// than this argument. If we made a promotion, and the size argument
|
|
// is equal to, say, 10, then we'd impose a range of [0, 10] on the
|
|
// return value, however the correct range is [-1, 10].
|
|
//
|
|
// Please update the list of functions in the header after editing!
|
|
|
|
// Below are helpers functions to create the summaries.
|
|
auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
|
|
IntRangeVector Ranges) {
|
|
return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
|
|
};
|
|
auto BufferSize = [](auto... Args) {
|
|
return std::make_shared<BufferSizeConstraint>(Args...);
|
|
};
|
|
struct {
|
|
auto operator()(RangeKind Kind, IntRangeVector Ranges) {
|
|
return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
|
|
}
|
|
auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
|
|
return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
|
|
}
|
|
} ReturnValueCondition;
|
|
auto Range = [](RangeInt b, RangeInt e) {
|
|
return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
|
|
};
|
|
auto SingleValue = [](RangeInt v) {
|
|
return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
|
|
};
|
|
auto LessThanOrEq = BO_LE;
|
|
auto NotNull = [&](ArgNo ArgN) {
|
|
return std::make_shared<NotNullConstraint>(ArgN);
|
|
};
|
|
|
|
Optional<QualType> FileTy = lookupType("FILE", ACtx);
|
|
Optional<QualType> FilePtrTy, FilePtrRestrictTy;
|
|
if (FileTy) {
|
|
// FILE *
|
|
FilePtrTy = ACtx.getPointerType(*FileTy);
|
|
// FILE *restrict
|
|
FilePtrRestrictTy = getRestrictTy(*FilePtrTy);
|
|
}
|
|
|
|
using RetType = QualType;
|
|
// Templates for summaries that are reused by many functions.
|
|
auto Getc = [&]() {
|
|
return Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.Case({ReturnValueCondition(WithinRange,
|
|
{{EOFv, EOFv}, {0, UCharRangeMax}})});
|
|
};
|
|
auto Read = [&](RetType R, RangeInt Max) {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
|
|
NoEvalCall)
|
|
.Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
|
|
ReturnValueCondition(WithinRange, Range(-1, Max))});
|
|
};
|
|
auto Fread = [&]() {
|
|
return Summary(
|
|
ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, *FilePtrRestrictTy},
|
|
RetType{SizeTy}, NoEvalCall)
|
|
.Case({
|
|
ReturnValueCondition(LessThanOrEq, ArgNo(2)),
|
|
})
|
|
.ArgConstraint(NotNull(ArgNo(0)));
|
|
};
|
|
auto Fwrite = [&]() {
|
|
return Summary(ArgTypes{ConstVoidPtrRestrictTy, SizeTy, SizeTy,
|
|
*FilePtrRestrictTy},
|
|
RetType{SizeTy}, NoEvalCall)
|
|
.Case({
|
|
ReturnValueCondition(LessThanOrEq, ArgNo(2)),
|
|
})
|
|
.ArgConstraint(NotNull(ArgNo(0)));
|
|
};
|
|
auto Getline = [&](RetType R, RangeInt Max) {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
|
|
NoEvalCall)
|
|
.Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
|
|
};
|
|
|
|
// The isascii() family of functions.
|
|
// The behavior is undefined if the value of the argument is not
|
|
// representable as unsigned char or is not equal to EOF. See e.g. C99
|
|
// 7.4.1.2 The isalpha function (p: 181-182).
|
|
addToFunctionSummaryMap(
|
|
"isalnum",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Boils down to isupper() or islower() or isdigit().
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
// No post-condition. We are completely unaware of
|
|
// locale-specific return values.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
.Case(
|
|
{ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})
|
|
.ArgConstraint(ArgumentCondition(
|
|
0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
|
|
addToFunctionSummaryMap(
|
|
"isalpha",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isascii",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isblank",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"iscntrl",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isdigit",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isgraph",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"islower",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Is certainly lowercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// Is ascii but not lowercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
|
|
ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
// Is not an unsigned char.
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isprint",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"ispunct",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(
|
|
0U, WithinRange,
|
|
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isspace",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Space, '\f', '\n', '\r', '\t', '\v'.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isupper",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Is certainly uppercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
// Other.
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'A', 'Z'}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isxdigit",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"toupper", Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(
|
|
0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
|
|
addToFunctionSummaryMap(
|
|
"tolower", Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(
|
|
0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
|
|
addToFunctionSummaryMap(
|
|
"toascii", Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(
|
|
0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
|
|
|
|
// The getc() family of functions that returns either a char or an EOF.
|
|
if (FilePtrTy) {
|
|
addToFunctionSummaryMap("getc", Getc());
|
|
addToFunctionSummaryMap("fgetc", Getc());
|
|
}
|
|
addToFunctionSummaryMap(
|
|
"getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
|
|
.Case({ReturnValueCondition(
|
|
WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
|
|
|
|
// read()-like functions that never return more than buffer size.
|
|
if (FilePtrRestrictTy) {
|
|
addToFunctionSummaryMap("fread", Fread());
|
|
addToFunctionSummaryMap("fwrite", Fwrite());
|
|
}
|
|
|
|
// We are not sure how ssize_t is defined on every platform, so we
|
|
// provide three variants that should cover common cases.
|
|
// FIXME these are actually defined by POSIX and not by the C standard, we
|
|
// should handle them together with the rest of the POSIX functions.
|
|
addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
|
|
Read(LongLongTy, LongLongMax)});
|
|
addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
|
|
Read(LongLongTy, LongLongMax)});
|
|
|
|
// getline()-like functions either fail or read at least the delimiter.
|
|
// FIXME these are actually defined by POSIX and not by the C standard, we
|
|
// should handle them together with the rest of the POSIX functions.
|
|
addToFunctionSummaryMap("getline",
|
|
{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
|
|
Getline(LongLongTy, LongLongMax)});
|
|
addToFunctionSummaryMap("getdelim",
|
|
{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
|
|
Getline(LongLongTy, LongLongMax)});
|
|
|
|
if (ModelPOSIX) {
|
|
|
|
// long a64l(const char *str64);
|
|
addToFunctionSummaryMap(
|
|
"a64l", Summary(ArgTypes{ConstCharPtrTy}, RetType{LongTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// char *l64a(long value);
|
|
addToFunctionSummaryMap(
|
|
"l64a", Summary(ArgTypes{LongTy}, RetType{CharPtrTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, LongMax))));
|
|
|
|
// int access(const char *pathname, int amode);
|
|
addToFunctionSummaryMap("access", Summary(ArgTypes{ConstCharPtrTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int faccessat(int dirfd, const char *pathname, int mode, int flags);
|
|
addToFunctionSummaryMap(
|
|
"faccessat", Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int dup(int fildes);
|
|
addToFunctionSummaryMap(
|
|
"dup", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
// int dup2(int fildes1, int filedes2);
|
|
addToFunctionSummaryMap(
|
|
"dup2",
|
|
Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(1, WithinRange, Range(0, IntMax))));
|
|
|
|
// int fdatasync(int fildes);
|
|
addToFunctionSummaryMap(
|
|
"fdatasync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
|
|
// int fnmatch(const char *pattern, const char *string, int flags);
|
|
addToFunctionSummaryMap(
|
|
"fnmatch", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, IntTy},
|
|
RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int fsync(int fildes);
|
|
addToFunctionSummaryMap(
|
|
"fsync", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
Optional<QualType> Off_tTy = lookupType("off_t", ACtx);
|
|
|
|
if (Off_tTy)
|
|
// int truncate(const char *path, off_t length);
|
|
addToFunctionSummaryMap("truncate",
|
|
Summary(ArgTypes{ConstCharPtrTy, *Off_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int symlink(const char *oldpath, const char *newpath);
|
|
addToFunctionSummaryMap("symlink",
|
|
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int symlinkat(const char *oldpath, int newdirfd, const char *newpath);
|
|
addToFunctionSummaryMap(
|
|
"symlinkat",
|
|
Summary(ArgTypes{ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy},
|
|
NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(ArgumentCondition(1, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(2))));
|
|
|
|
if (Off_tTy)
|
|
// int lockf(int fd, int cmd, off_t len);
|
|
addToFunctionSummaryMap(
|
|
"lockf",
|
|
Summary(ArgTypes{IntTy, IntTy, *Off_tTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
Optional<QualType> Mode_tTy = lookupType("mode_t", ACtx);
|
|
|
|
if (Mode_tTy)
|
|
// int creat(const char *pathname, mode_t mode);
|
|
addToFunctionSummaryMap("creat",
|
|
Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// unsigned int sleep(unsigned int seconds);
|
|
addToFunctionSummaryMap(
|
|
"sleep",
|
|
Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));
|
|
|
|
Optional<QualType> DirTy = lookupType("DIR", ACtx);
|
|
Optional<QualType> DirPtrTy;
|
|
if (DirTy)
|
|
DirPtrTy = ACtx.getPointerType(*DirTy);
|
|
|
|
if (DirPtrTy)
|
|
// int dirfd(DIR *dirp);
|
|
addToFunctionSummaryMap(
|
|
"dirfd", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// unsigned int alarm(unsigned int seconds);
|
|
addToFunctionSummaryMap(
|
|
"alarm",
|
|
Summary(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax))));
|
|
|
|
if (DirPtrTy)
|
|
// int closedir(DIR *dir);
|
|
addToFunctionSummaryMap(
|
|
"closedir", Summary(ArgTypes{*DirPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// char *strdup(const char *s);
|
|
addToFunctionSummaryMap("strdup", Summary(ArgTypes{ConstCharPtrTy},
|
|
RetType{CharPtrTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// char *strndup(const char *s, size_t n);
|
|
addToFunctionSummaryMap(
|
|
"strndup", Summary(ArgTypes{ConstCharPtrTy, SizeTy}, RetType{CharPtrTy},
|
|
NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(ArgumentCondition(1, WithinRange,
|
|
Range(0, SizeMax))));
|
|
|
|
// wchar_t *wcsdup(const wchar_t *s);
|
|
addToFunctionSummaryMap("wcsdup", Summary(ArgTypes{ConstWchar_tPtrTy},
|
|
RetType{Wchar_tPtrTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int mkstemp(char *template);
|
|
addToFunctionSummaryMap(
|
|
"mkstemp", Summary(ArgTypes{CharPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// char *mkdtemp(char *template);
|
|
addToFunctionSummaryMap(
|
|
"mkdtemp", Summary(ArgTypes{CharPtrTy}, RetType{CharPtrTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// char *getcwd(char *buf, size_t size);
|
|
addToFunctionSummaryMap(
|
|
"getcwd",
|
|
Summary(ArgTypes{CharPtrTy, SizeTy}, RetType{CharPtrTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(1, WithinRange, Range(0, SizeMax))));
|
|
|
|
if (Mode_tTy) {
|
|
// int mkdir(const char *pathname, mode_t mode);
|
|
addToFunctionSummaryMap("mkdir",
|
|
Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int mkdirat(int dirfd, const char *pathname, mode_t mode);
|
|
addToFunctionSummaryMap(
|
|
"mkdirat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
}
|
|
|
|
Optional<QualType> Dev_tTy = lookupType("dev_t", ACtx);
|
|
|
|
if (Mode_tTy && Dev_tTy) {
|
|
// int mknod(const char *pathname, mode_t mode, dev_t dev);
|
|
addToFunctionSummaryMap(
|
|
"mknod", Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy, *Dev_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev);
|
|
addToFunctionSummaryMap("mknodat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
|
|
*Mode_tTy, *Dev_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
}
|
|
|
|
if (Mode_tTy) {
|
|
// int chmod(const char *path, mode_t mode);
|
|
addToFunctionSummaryMap("chmod",
|
|
Summary(ArgTypes{ConstCharPtrTy, *Mode_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags);
|
|
addToFunctionSummaryMap(
|
|
"fchmodat", Summary(ArgTypes{IntTy, ConstCharPtrTy, *Mode_tTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int fchmod(int fildes, mode_t mode);
|
|
addToFunctionSummaryMap(
|
|
"fchmod",
|
|
Summary(ArgTypes{IntTy, *Mode_tTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
}
|
|
|
|
Optional<QualType> Uid_tTy = lookupType("uid_t", ACtx);
|
|
Optional<QualType> Gid_tTy = lookupType("gid_t", ACtx);
|
|
|
|
if (Uid_tTy && Gid_tTy) {
|
|
// int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group,
|
|
// int flags);
|
|
addToFunctionSummaryMap(
|
|
"fchownat",
|
|
Summary(ArgTypes{IntTy, ConstCharPtrTy, *Uid_tTy, *Gid_tTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int chown(const char *path, uid_t owner, gid_t group);
|
|
addToFunctionSummaryMap(
|
|
"chown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int lchown(const char *path, uid_t owner, gid_t group);
|
|
addToFunctionSummaryMap(
|
|
"lchown", Summary(ArgTypes{ConstCharPtrTy, *Uid_tTy, *Gid_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int fchown(int fildes, uid_t owner, gid_t group);
|
|
addToFunctionSummaryMap(
|
|
"fchown", Summary(ArgTypes{IntTy, *Uid_tTy, *Gid_tTy}, RetType{IntTy},
|
|
NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
}
|
|
|
|
// int rmdir(const char *pathname);
|
|
addToFunctionSummaryMap(
|
|
"rmdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int chdir(const char *path);
|
|
addToFunctionSummaryMap(
|
|
"chdir", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int link(const char *oldpath, const char *newpath);
|
|
addToFunctionSummaryMap("link",
|
|
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int linkat(int fd1, const char *path1, int fd2, const char *path2,
|
|
// int flag);
|
|
addToFunctionSummaryMap(
|
|
"linkat",
|
|
Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(ArgumentCondition(2, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(3))));
|
|
|
|
// int unlink(const char *pathname);
|
|
addToFunctionSummaryMap(
|
|
"unlink", Summary(ArgTypes{ConstCharPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int unlinkat(int fd, const char *path, int flag);
|
|
addToFunctionSummaryMap(
|
|
"unlinkat",
|
|
Summary(ArgTypes{IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy},
|
|
NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
Optional<QualType> StructStatTy = lookupType("stat", ACtx);
|
|
Optional<QualType> StructStatPtrTy, StructStatPtrRestrictTy;
|
|
if (StructStatTy) {
|
|
StructStatPtrTy = ACtx.getPointerType(*StructStatTy);
|
|
StructStatPtrRestrictTy = getRestrictTy(*StructStatPtrTy);
|
|
}
|
|
|
|
if (StructStatPtrTy)
|
|
// int fstat(int fd, struct stat *statbuf);
|
|
addToFunctionSummaryMap(
|
|
"fstat",
|
|
Summary(ArgTypes{IntTy, *StructStatPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
if (StructStatPtrRestrictTy) {
|
|
// int stat(const char *restrict path, struct stat *restrict buf);
|
|
addToFunctionSummaryMap(
|
|
"stat",
|
|
Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int lstat(const char *restrict path, struct stat *restrict buf);
|
|
addToFunctionSummaryMap(
|
|
"lstat",
|
|
Summary(ArgTypes{ConstCharPtrRestrictTy, *StructStatPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int fstatat(int fd, const char *restrict path,
|
|
// struct stat *restrict buf, int flag);
|
|
addToFunctionSummaryMap(
|
|
"fstatat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy,
|
|
*StructStatPtrRestrictTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(NotNull(ArgNo(2))));
|
|
}
|
|
|
|
if (DirPtrTy) {
|
|
// DIR *opendir(const char *name);
|
|
addToFunctionSummaryMap("opendir", Summary(ArgTypes{ConstCharPtrTy},
|
|
RetType{*DirPtrTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// DIR *fdopendir(int fd);
|
|
addToFunctionSummaryMap(
|
|
"fdopendir", Summary(ArgTypes{IntTy}, RetType{*DirPtrTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
}
|
|
|
|
// int isatty(int fildes);
|
|
addToFunctionSummaryMap(
|
|
"isatty", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
if (FilePtrTy) {
|
|
// FILE *popen(const char *command, const char *type);
|
|
addToFunctionSummaryMap("popen",
|
|
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
|
|
RetType{*FilePtrTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int pclose(FILE *stream);
|
|
addToFunctionSummaryMap(
|
|
"pclose", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
}
|
|
|
|
// int close(int fildes);
|
|
addToFunctionSummaryMap(
|
|
"close", Summary(ArgTypes{IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
// long fpathconf(int fildes, int name);
|
|
addToFunctionSummaryMap(
|
|
"fpathconf",
|
|
Summary(ArgTypes{IntTy, IntTy}, RetType{LongTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
// long pathconf(const char *path, int name);
|
|
addToFunctionSummaryMap("pathconf", Summary(ArgTypes{ConstCharPtrTy, IntTy},
|
|
RetType{LongTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
if (FilePtrTy)
|
|
// FILE *fdopen(int fd, const char *mode);
|
|
addToFunctionSummaryMap(
|
|
"fdopen", Summary(ArgTypes{IntTy, ConstCharPtrTy},
|
|
RetType{*FilePtrTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
if (DirPtrTy) {
|
|
// void rewinddir(DIR *dir);
|
|
addToFunctionSummaryMap(
|
|
"rewinddir", Summary(ArgTypes{*DirPtrTy}, RetType{VoidTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// void seekdir(DIR *dirp, long loc);
|
|
addToFunctionSummaryMap("seekdir", Summary(ArgTypes{*DirPtrTy, LongTy},
|
|
RetType{VoidTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
}
|
|
|
|
// int rand_r(unsigned int *seedp);
|
|
addToFunctionSummaryMap("rand_r", Summary(ArgTypes{UnsignedIntPtrTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int strcasecmp(const char *s1, const char *s2);
|
|
addToFunctionSummaryMap("strcasecmp",
|
|
Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy},
|
|
RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
|
|
// int strncasecmp(const char *s1, const char *s2, size_t n);
|
|
addToFunctionSummaryMap(
|
|
"strncasecmp", Summary(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, SizeTy},
|
|
RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(ArgumentCondition(
|
|
2, WithinRange, Range(0, SizeMax))));
|
|
|
|
if (FilePtrTy && Off_tTy) {
|
|
|
|
// int fileno(FILE *stream);
|
|
addToFunctionSummaryMap(
|
|
"fileno", Summary(ArgTypes{*FilePtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int fseeko(FILE *stream, off_t offset, int whence);
|
|
addToFunctionSummaryMap("fseeko",
|
|
Summary(ArgTypes{*FilePtrTy, *Off_tTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// off_t ftello(FILE *stream);
|
|
addToFunctionSummaryMap(
|
|
"ftello", Summary(ArgTypes{*FilePtrTy}, RetType{*Off_tTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
}
|
|
|
|
if (Off_tTy) {
|
|
Optional<RangeInt> Off_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue();
|
|
|
|
// void *mmap(void *addr, size_t length, int prot, int flags, int fd,
|
|
// off_t offset);
|
|
addToFunctionSummaryMap(
|
|
"mmap",
|
|
Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off_tTy},
|
|
RetType{VoidPtrTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(4, WithinRange, Range(0, *Off_tMax))));
|
|
}
|
|
|
|
Optional<QualType> Off64_tTy = lookupType("off64_t", ACtx);
|
|
Optional<RangeInt> Off64_tMax;
|
|
if (Off64_tTy) {
|
|
Off64_tMax = BVF.getMaxValue(*Off_tTy).getLimitedValue();
|
|
// void *mmap64(void *addr, size_t length, int prot, int flags, int fd,
|
|
// off64_t offset);
|
|
addToFunctionSummaryMap(
|
|
"mmap64",
|
|
Summary(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, *Off64_tTy},
|
|
RetType{VoidPtrTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(1, WithinRange, Range(1, SizeMax)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(4, WithinRange, Range(0, *Off64_tMax))));
|
|
}
|
|
|
|
// int pipe(int fildes[2]);
|
|
addToFunctionSummaryMap(
|
|
"pipe", Summary(ArgTypes{IntPtrTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
if (Off_tTy)
|
|
// off_t lseek(int fildes, off_t offset, int whence);
|
|
addToFunctionSummaryMap(
|
|
"lseek", Summary(ArgTypes{IntTy, *Off_tTy, IntTy}, RetType{*Off_tTy},
|
|
NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
|
|
Optional<QualType> Ssize_tTy = lookupType("ssize_t", ACtx);
|
|
|
|
if (Ssize_tTy) {
|
|
// ssize_t readlink(const char *restrict path, char *restrict buf,
|
|
// size_t bufsize);
|
|
addToFunctionSummaryMap(
|
|
"readlink",
|
|
Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy},
|
|
RetType{*Ssize_tTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
|
|
/*BufSize=*/ArgNo(2)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(2, WithinRange, Range(0, SizeMax))));
|
|
|
|
// ssize_t readlinkat(int fd, const char *restrict path,
|
|
// char *restrict buf, size_t bufsize);
|
|
addToFunctionSummaryMap(
|
|
"readlinkat", Summary(ArgTypes{IntTy, ConstCharPtrRestrictTy,
|
|
CharPtrRestrictTy, SizeTy},
|
|
RetType{*Ssize_tTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(NotNull(ArgNo(2)))
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(2),
|
|
/*BufSize=*/ArgNo(3)))
|
|
.ArgConstraint(ArgumentCondition(
|
|
3, WithinRange, Range(0, SizeMax))));
|
|
}
|
|
|
|
// int renameat(int olddirfd, const char *oldpath, int newdirfd, const char
|
|
// *newpath);
|
|
addToFunctionSummaryMap("renameat", Summary(ArgTypes{IntTy, ConstCharPtrTy,
|
|
IntTy, ConstCharPtrTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(NotNull(ArgNo(3))));
|
|
|
|
// char *realpath(const char *restrict file_name,
|
|
// char *restrict resolved_name);
|
|
addToFunctionSummaryMap(
|
|
"realpath", Summary(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy},
|
|
RetType{CharPtrTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
QualType CharPtrConstPtr = ACtx.getPointerType(CharPtrTy.withConst());
|
|
|
|
// int execv(const char *path, char *const argv[]);
|
|
addToFunctionSummaryMap("execv",
|
|
Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int execvp(const char *file, char *const argv[]);
|
|
addToFunctionSummaryMap("execvp",
|
|
Summary(ArgTypes{ConstCharPtrTy, CharPtrConstPtr},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
|
|
// int getopt(int argc, char * const argv[], const char *optstring);
|
|
addToFunctionSummaryMap(
|
|
"getopt",
|
|
Summary(ArgTypes{IntTy, CharPtrConstPtr, ConstCharPtrTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(NotNull(ArgNo(2))));
|
|
|
|
Optional<QualType> StructSockaddrTy = lookupType("sockaddr", ACtx);
|
|
Optional<QualType> StructSockaddrPtrTy, ConstStructSockaddrPtrTy,
|
|
StructSockaddrPtrRestrictTy, ConstStructSockaddrPtrRestrictTy;
|
|
if (StructSockaddrTy) {
|
|
StructSockaddrPtrTy = ACtx.getPointerType(*StructSockaddrTy);
|
|
ConstStructSockaddrPtrTy =
|
|
ACtx.getPointerType(StructSockaddrTy->withConst());
|
|
StructSockaddrPtrRestrictTy = getRestrictTy(*StructSockaddrPtrTy);
|
|
ConstStructSockaddrPtrRestrictTy =
|
|
getRestrictTy(*ConstStructSockaddrPtrTy);
|
|
}
|
|
Optional<QualType> Socklen_tTy = lookupType("socklen_t", ACtx);
|
|
Optional<QualType> Socklen_tPtrTy, Socklen_tPtrRestrictTy;
|
|
Optional<RangeInt> Socklen_tMax;
|
|
if (Socklen_tTy) {
|
|
Socklen_tMax = BVF.getMaxValue(*Socklen_tTy).getLimitedValue();
|
|
Socklen_tPtrTy = ACtx.getPointerType(*Socklen_tTy);
|
|
Socklen_tPtrRestrictTy = getRestrictTy(*Socklen_tPtrTy);
|
|
}
|
|
|
|
// In 'socket.h' of some libc implementations with C99, sockaddr parameter
|
|
// is a transparent union of the underlying sockaddr_ family of pointers
|
|
// instead of being a pointer to struct sockaddr. In these cases, the
|
|
// standardized signature will not match, thus we try to match with another
|
|
// signature that has the joker Irrelevant type. We also remove those
|
|
// constraints which require pointer types for the sockaddr param.
|
|
if (StructSockaddrPtrRestrictTy && Socklen_tPtrRestrictTy) {
|
|
auto Accept = Summary(NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax)));
|
|
if (!addToFunctionSummaryMap(
|
|
"accept",
|
|
// int accept(int socket, struct sockaddr *restrict address,
|
|
// socklen_t *restrict address_len);
|
|
Signature(ArgTypes{IntTy, *StructSockaddrPtrRestrictTy,
|
|
*Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}),
|
|
Accept))
|
|
addToFunctionSummaryMap(
|
|
"accept",
|
|
Signature(ArgTypes{IntTy, Irrelevant, *Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}),
|
|
Accept);
|
|
|
|
// int bind(int socket, const struct sockaddr *address, socklen_t
|
|
// address_len);
|
|
if (!addToFunctionSummaryMap(
|
|
"bind",
|
|
Summary(ArgTypes{IntTy, *ConstStructSockaddrPtrTy, *Socklen_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(
|
|
BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2)))
|
|
.ArgConstraint(ArgumentCondition(2, WithinRange,
|
|
Range(0, *Socklen_tMax)))))
|
|
// Do not add constraints on sockaddr.
|
|
addToFunctionSummaryMap(
|
|
"bind", Summary(ArgTypes{IntTy, Irrelevant, *Socklen_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(ArgumentCondition(
|
|
2, WithinRange, Range(0, *Socklen_tMax))));
|
|
|
|
// int getpeername(int socket, struct sockaddr *restrict address,
|
|
// socklen_t *restrict address_len);
|
|
if (!addToFunctionSummaryMap(
|
|
"getpeername",
|
|
Summary(ArgTypes{IntTy, *StructSockaddrPtrRestrictTy,
|
|
*Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(NotNull(ArgNo(2)))))
|
|
addToFunctionSummaryMap(
|
|
"getpeername",
|
|
Summary(ArgTypes{IntTy, Irrelevant, *Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
// int getsockname(int socket, struct sockaddr *restrict address,
|
|
// socklen_t *restrict address_len);
|
|
if (!addToFunctionSummaryMap(
|
|
"getsockname",
|
|
Summary(ArgTypes{IntTy, *StructSockaddrPtrRestrictTy,
|
|
*Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))
|
|
.ArgConstraint(NotNull(ArgNo(2)))))
|
|
addToFunctionSummaryMap(
|
|
"getsockname",
|
|
Summary(ArgTypes{IntTy, Irrelevant, *Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
// int connect(int socket, const struct sockaddr *address, socklen_t
|
|
// address_len);
|
|
if (!addToFunctionSummaryMap(
|
|
"connect",
|
|
Summary(ArgTypes{IntTy, *ConstStructSockaddrPtrTy, *Socklen_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(NotNull(ArgNo(1)))))
|
|
addToFunctionSummaryMap(
|
|
"connect", Summary(ArgTypes{IntTy, Irrelevant, *Socklen_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
|
|
auto Recvfrom = Summary(NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax)))
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
|
|
/*BufSize=*/ArgNo(2)));
|
|
if (Ssize_tTy &&
|
|
!addToFunctionSummaryMap(
|
|
"recvfrom",
|
|
// ssize_t recvfrom(int socket, void *restrict buffer,
|
|
// size_t length,
|
|
// int flags, struct sockaddr *restrict address,
|
|
// socklen_t *restrict address_len);
|
|
Signature(ArgTypes{IntTy, VoidPtrRestrictTy, SizeTy, IntTy,
|
|
*StructSockaddrPtrRestrictTy,
|
|
*Socklen_tPtrRestrictTy},
|
|
RetType{*Ssize_tTy}),
|
|
Recvfrom))
|
|
addToFunctionSummaryMap(
|
|
"recvfrom",
|
|
Signature(ArgTypes{IntTy, VoidPtrRestrictTy, SizeTy, IntTy,
|
|
Irrelevant, *Socklen_tPtrRestrictTy},
|
|
RetType{*Ssize_tTy}),
|
|
Recvfrom);
|
|
|
|
auto Sendto = Summary(NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
|
|
/*BufSize=*/ArgNo(2)));
|
|
if (Ssize_tTy &&
|
|
!addToFunctionSummaryMap(
|
|
"sendto",
|
|
// ssize_t sendto(int socket, const void *message, size_t length,
|
|
// int flags, const struct sockaddr *dest_addr,
|
|
// socklen_t dest_len);
|
|
Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy,
|
|
*ConstStructSockaddrPtrTy, *Socklen_tTy},
|
|
RetType{*Ssize_tTy}),
|
|
Sendto))
|
|
addToFunctionSummaryMap(
|
|
"sendto",
|
|
Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy, Irrelevant,
|
|
*Socklen_tTy},
|
|
RetType{*Ssize_tTy}),
|
|
Sendto);
|
|
}
|
|
|
|
// int listen(int sockfd, int backlog);
|
|
addToFunctionSummaryMap(
|
|
"listen", Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax))));
|
|
|
|
if (Ssize_tTy)
|
|
// ssize_t recv(int sockfd, void *buf, size_t len, int flags);
|
|
addToFunctionSummaryMap(
|
|
"recv", Summary(ArgTypes{IntTy, VoidPtrTy, SizeTy, IntTy},
|
|
RetType{*Ssize_tTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
|
|
/*BufSize=*/ArgNo(2))));
|
|
|
|
Optional<QualType> StructMsghdrTy = lookupType("msghdr", ACtx);
|
|
Optional<QualType> StructMsghdrPtrTy, ConstStructMsghdrPtrTy;
|
|
if (StructMsghdrTy) {
|
|
StructMsghdrPtrTy = ACtx.getPointerType(*StructMsghdrTy);
|
|
ConstStructMsghdrPtrTy = ACtx.getPointerType(StructMsghdrTy->withConst());
|
|
}
|
|
|
|
if (Ssize_tTy && StructMsghdrPtrTy)
|
|
// ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
|
|
addToFunctionSummaryMap(
|
|
"recvmsg", Summary(ArgTypes{IntTy, *StructMsghdrPtrTy, IntTy},
|
|
RetType{*Ssize_tTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
|
|
if (Ssize_tTy && ConstStructMsghdrPtrTy)
|
|
// ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
|
|
addToFunctionSummaryMap(
|
|
"sendmsg", Summary(ArgTypes{IntTy, *ConstStructMsghdrPtrTy, IntTy},
|
|
RetType{*Ssize_tTy}, NoEvalCall)
|
|
.ArgConstraint(ArgumentCondition(0, WithinRange,
|
|
Range(0, IntMax))));
|
|
|
|
if (Socklen_tTy)
|
|
// int setsockopt(int socket, int level, int option_name,
|
|
// const void *option_value, socklen_t option_len);
|
|
addToFunctionSummaryMap(
|
|
"setsockopt",
|
|
Summary(ArgTypes{IntTy, IntTy, IntTy, ConstVoidPtrTy, *Socklen_tTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(3)))
|
|
.ArgConstraint(
|
|
BufferSize(/*Buffer=*/ArgNo(3), /*BufSize=*/ArgNo(4)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(4, WithinRange, Range(0, *Socklen_tMax))));
|
|
|
|
if (Socklen_tPtrRestrictTy)
|
|
// int getsockopt(int socket, int level, int option_name,
|
|
// void *restrict option_value,
|
|
// socklen_t *restrict option_len);
|
|
addToFunctionSummaryMap(
|
|
"getsockopt", Summary(ArgTypes{IntTy, IntTy, IntTy, VoidPtrRestrictTy,
|
|
*Socklen_tPtrRestrictTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(3)))
|
|
.ArgConstraint(NotNull(ArgNo(4))));
|
|
|
|
if (Ssize_tTy)
|
|
// ssize_t send(int sockfd, const void *buf, size_t len, int flags);
|
|
addToFunctionSummaryMap(
|
|
"send", Summary(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy},
|
|
RetType{*Ssize_tTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
ArgumentCondition(0, WithinRange, Range(0, IntMax)))
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1),
|
|
/*BufSize=*/ArgNo(2))));
|
|
|
|
// int socketpair(int domain, int type, int protocol, int sv[2]);
|
|
addToFunctionSummaryMap("socketpair",
|
|
Summary(ArgTypes{IntTy, IntTy, IntTy, IntPtrTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(NotNull(ArgNo(3))));
|
|
|
|
if (ConstStructSockaddrPtrRestrictTy && Socklen_tTy)
|
|
// int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen,
|
|
// char *restrict node, socklen_t nodelen,
|
|
// char *restrict service,
|
|
// socklen_t servicelen, int flags);
|
|
//
|
|
// This is defined in netdb.h. And contrary to 'socket.h', the sockaddr
|
|
// parameter is never handled as a transparent union in netdb.h
|
|
addToFunctionSummaryMap(
|
|
"getnameinfo",
|
|
Summary(ArgTypes{*ConstStructSockaddrPtrRestrictTy, *Socklen_tTy,
|
|
CharPtrRestrictTy, *Socklen_tTy, CharPtrRestrictTy,
|
|
*Socklen_tTy, IntTy},
|
|
RetType{IntTy}, NoEvalCall)
|
|
.ArgConstraint(
|
|
BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(1, WithinRange, Range(0, *Socklen_tMax)))
|
|
.ArgConstraint(
|
|
BufferSize(/*Buffer=*/ArgNo(2), /*BufSize=*/ArgNo(3)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(3, WithinRange, Range(0, *Socklen_tMax)))
|
|
.ArgConstraint(
|
|
BufferSize(/*Buffer=*/ArgNo(4), /*BufSize=*/ArgNo(5)))
|
|
.ArgConstraint(
|
|
ArgumentCondition(5, WithinRange, Range(0, *Socklen_tMax))));
|
|
}
|
|
|
|
// Functions for testing.
|
|
if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
|
|
addToFunctionSummaryMap(
|
|
"__two_constrained_args",
|
|
Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
|
|
.ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
|
|
addToFunctionSummaryMap(
|
|
"__arg_constrained_twice",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
|
|
.ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
|
|
addToFunctionSummaryMap(
|
|
"__defaultparam",
|
|
Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
addToFunctionSummaryMap("__variadic",
|
|
Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
|
|
RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
addToFunctionSummaryMap(
|
|
"__buf_size_arg_constraint",
|
|
Summary(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy},
|
|
EvalCallAsPure)
|
|
.ArgConstraint(
|
|
BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))));
|
|
addToFunctionSummaryMap(
|
|
"__buf_size_arg_constraint_mul",
|
|
Summary(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy},
|
|
EvalCallAsPure)
|
|
.ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1),
|
|
/*BufSizeMultiplier=*/ArgNo(2))));
|
|
}
|
|
}
|
|
|
|
void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
|
|
auto *Checker = mgr.registerChecker<StdLibraryFunctionsChecker>();
|
|
Checker->DisplayLoadedSummaries =
|
|
mgr.getAnalyzerOptions().getCheckerBooleanOption(
|
|
Checker, "DisplayLoadedSummaries");
|
|
Checker->ModelPOSIX =
|
|
mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker, "ModelPOSIX");
|
|
}
|
|
|
|
bool ento::shouldRegisterStdCLibraryFunctionsChecker(
|
|
const CheckerManager &mgr) {
|
|
return true;
|
|
}
|
|
|
|
#define REGISTER_CHECKER(name) \
|
|
void ento::register##name(CheckerManager &mgr) { \
|
|
StdLibraryFunctionsChecker *checker = \
|
|
mgr.getChecker<StdLibraryFunctionsChecker>(); \
|
|
checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true; \
|
|
checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] = \
|
|
mgr.getCurrentCheckerName(); \
|
|
} \
|
|
\
|
|
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
|
|
|
|
REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
|
|
REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)
|