llvm-project/clang/lib/StaticAnalyzer/Checkers/PthreadLockChecker.cpp

743 lines
28 KiB
C++

//===--- PthreadLockChecker.cpp - Check for locking problems ---*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines:
// * PthreadLockChecker, a simple lock -> unlock checker.
// Which also checks for XNU locks, which behave similarly enough to share
// code.
// * FuchsiaLocksChecker, which is also rather similar.
// * C11LockChecker which also closely follows Pthread semantics.
//
// TODO: Path notes.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
using namespace clang;
using namespace ento;
namespace {
struct LockState {
enum Kind {
Destroyed,
Locked,
Unlocked,
UntouchedAndPossiblyDestroyed,
UnlockedAndPossiblyDestroyed
} K;
private:
LockState(Kind K) : K(K) {}
public:
static LockState getLocked() { return LockState(Locked); }
static LockState getUnlocked() { return LockState(Unlocked); }
static LockState getDestroyed() { return LockState(Destroyed); }
static LockState getUntouchedAndPossiblyDestroyed() {
return LockState(UntouchedAndPossiblyDestroyed);
}
static LockState getUnlockedAndPossiblyDestroyed() {
return LockState(UnlockedAndPossiblyDestroyed);
}
bool operator==(const LockState &X) const { return K == X.K; }
bool isLocked() const { return K == Locked; }
bool isUnlocked() const { return K == Unlocked; }
bool isDestroyed() const { return K == Destroyed; }
bool isUntouchedAndPossiblyDestroyed() const {
return K == UntouchedAndPossiblyDestroyed;
}
bool isUnlockedAndPossiblyDestroyed() const {
return K == UnlockedAndPossiblyDestroyed;
}
void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(K); }
};
class PthreadLockChecker : public Checker<check::PostCall, check::DeadSymbols,
check::RegionChanges> {
public:
enum LockingSemantics { NotApplicable = 0, PthreadSemantics, XNUSemantics };
enum CheckerKind {
CK_PthreadLockChecker,
CK_FuchsiaLockChecker,
CK_C11LockChecker,
CK_NumCheckKinds
};
DefaultBool ChecksEnabled[CK_NumCheckKinds];
CheckerNameRef CheckNames[CK_NumCheckKinds];
private:
typedef void (PthreadLockChecker::*FnCheck)(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkkind) const;
CallDescriptionMap<FnCheck> PThreadCallbacks = {
// Init.
{{"pthread_mutex_init", 2}, &PthreadLockChecker::InitAnyLock},
// TODO: pthread_rwlock_init(2 arguments).
// TODO: lck_mtx_init(3 arguments).
// TODO: lck_mtx_alloc_init(2 arguments) => returns the mutex.
// TODO: lck_rw_init(3 arguments).
// TODO: lck_rw_alloc_init(2 arguments) => returns the mutex.
// Acquire.
{{"pthread_mutex_lock", 1}, &PthreadLockChecker::AcquirePthreadLock},
{{"pthread_rwlock_rdlock", 1}, &PthreadLockChecker::AcquirePthreadLock},
{{"pthread_rwlock_wrlock", 1}, &PthreadLockChecker::AcquirePthreadLock},
{{"lck_mtx_lock", 1}, &PthreadLockChecker::AcquireXNULock},
{{"lck_rw_lock_exclusive", 1}, &PthreadLockChecker::AcquireXNULock},
{{"lck_rw_lock_shared", 1}, &PthreadLockChecker::AcquireXNULock},
// Try.
{{"pthread_mutex_trylock", 1}, &PthreadLockChecker::TryPthreadLock},
{{"pthread_rwlock_tryrdlock", 1}, &PthreadLockChecker::TryPthreadLock},
{{"pthread_rwlock_trywrlock", 1}, &PthreadLockChecker::TryPthreadLock},
{{"lck_mtx_try_lock", 1}, &PthreadLockChecker::TryXNULock},
{{"lck_rw_try_lock_exclusive", 1}, &PthreadLockChecker::TryXNULock},
{{"lck_rw_try_lock_shared", 1}, &PthreadLockChecker::TryXNULock},
// Release.
{{"pthread_mutex_unlock", 1}, &PthreadLockChecker::ReleaseAnyLock},
{{"pthread_rwlock_unlock", 1}, &PthreadLockChecker::ReleaseAnyLock},
{{"lck_mtx_unlock", 1}, &PthreadLockChecker::ReleaseAnyLock},
{{"lck_rw_unlock_exclusive", 1}, &PthreadLockChecker::ReleaseAnyLock},
{{"lck_rw_unlock_shared", 1}, &PthreadLockChecker::ReleaseAnyLock},
{{"lck_rw_done", 1}, &PthreadLockChecker::ReleaseAnyLock},
// Destroy.
{{"pthread_mutex_destroy", 1}, &PthreadLockChecker::DestroyPthreadLock},
{{"lck_mtx_destroy", 2}, &PthreadLockChecker::DestroyXNULock},
// TODO: pthread_rwlock_destroy(1 argument).
// TODO: lck_rw_destroy(2 arguments).
};
CallDescriptionMap<FnCheck> FuchsiaCallbacks = {
// Init.
{{"spin_lock_init", 1}, &PthreadLockChecker::InitAnyLock},
// Acquire.
{{"spin_lock", 1}, &PthreadLockChecker::AcquirePthreadLock},
{{"spin_lock_save", 3}, &PthreadLockChecker::AcquirePthreadLock},
{{"sync_mutex_lock", 1}, &PthreadLockChecker::AcquirePthreadLock},
{{"sync_mutex_lock_with_waiter", 1},
&PthreadLockChecker::AcquirePthreadLock},
// Try.
{{"spin_trylock", 1}, &PthreadLockChecker::TryFuchsiaLock},
{{"sync_mutex_trylock", 1}, &PthreadLockChecker::TryFuchsiaLock},
{{"sync_mutex_timedlock", 2}, &PthreadLockChecker::TryFuchsiaLock},
// Release.
{{"spin_unlock", 1}, &PthreadLockChecker::ReleaseAnyLock},
{{"spin_unlock_restore", 3}, &PthreadLockChecker::ReleaseAnyLock},
{{"sync_mutex_unlock", 1}, &PthreadLockChecker::ReleaseAnyLock},
};
CallDescriptionMap<FnCheck> C11Callbacks = {
// Init.
{{"mtx_init", 2}, &PthreadLockChecker::InitAnyLock},
// Acquire.
{{"mtx_lock", 1}, &PthreadLockChecker::AcquirePthreadLock},
// Try.
{{"mtx_trylock", 1}, &PthreadLockChecker::TryC11Lock},
{{"mtx_timedlock", 2}, &PthreadLockChecker::TryC11Lock},
// Release.
{{"mtx_unlock", 1}, &PthreadLockChecker::ReleaseAnyLock},
// Destroy
{{"mtx_destroy", 1}, &PthreadLockChecker::DestroyPthreadLock},
};
ProgramStateRef resolvePossiblyDestroyedMutex(ProgramStateRef state,
const MemRegion *lockR,
const SymbolRef *sym) const;
void reportUseDestroyedBug(const CallEvent &Call, CheckerContext &C,
unsigned ArgNo, CheckerKind checkKind) const;
// Init.
void InitAnyLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void InitLockAux(const CallEvent &Call, CheckerContext &C, unsigned ArgNo,
SVal Lock, CheckerKind checkkind) const;
// Lock, Try-lock.
void AcquirePthreadLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void AcquireXNULock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void TryPthreadLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void TryXNULock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void TryFuchsiaLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void TryC11Lock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void AcquireLockAux(const CallEvent &Call, CheckerContext &C, unsigned ArgNo,
SVal lock, bool isTryLock, LockingSemantics semantics,
CheckerKind checkkind) const;
// Release.
void ReleaseAnyLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void ReleaseLockAux(const CallEvent &Call, CheckerContext &C, unsigned ArgNo,
SVal lock, CheckerKind checkkind) const;
// Destroy.
void DestroyPthreadLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void DestroyXNULock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkkind) const;
void DestroyLockAux(const CallEvent &Call, CheckerContext &C, unsigned ArgNo,
SVal Lock, LockingSemantics semantics,
CheckerKind checkkind) const;
public:
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
ProgramStateRef
checkRegionChanges(ProgramStateRef State, const InvalidatedSymbols *Symbols,
ArrayRef<const MemRegion *> ExplicitRegions,
ArrayRef<const MemRegion *> Regions,
const LocationContext *LCtx, const CallEvent *Call) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
private:
mutable std::unique_ptr<BugType> BT_doublelock[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_doubleunlock[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_destroylock[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_initlock[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_lor[CK_NumCheckKinds];
void initBugType(CheckerKind checkKind) const {
if (BT_doublelock[checkKind])
return;
BT_doublelock[checkKind].reset(
new BugType{CheckNames[checkKind], "Double locking", "Lock checker"});
BT_doubleunlock[checkKind].reset(
new BugType{CheckNames[checkKind], "Double unlocking", "Lock checker"});
BT_destroylock[checkKind].reset(new BugType{
CheckNames[checkKind], "Use destroyed lock", "Lock checker"});
BT_initlock[checkKind].reset(new BugType{
CheckNames[checkKind], "Init invalid lock", "Lock checker"});
BT_lor[checkKind].reset(new BugType{CheckNames[checkKind],
"Lock order reversal", "Lock checker"});
}
};
} // end anonymous namespace
// A stack of locks for tracking lock-unlock order.
REGISTER_LIST_WITH_PROGRAMSTATE(LockSet, const MemRegion *)
// An entry for tracking lock states.
REGISTER_MAP_WITH_PROGRAMSTATE(LockMap, const MemRegion *, LockState)
// Return values for unresolved calls to pthread_mutex_destroy().
REGISTER_MAP_WITH_PROGRAMSTATE(DestroyRetVal, const MemRegion *, SymbolRef)
void PthreadLockChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// An additional umbrella check that all functions modeled by this checker
// are global C functions.
// TODO: Maybe make this the default behavior of CallDescription
// with exactly one identifier?
// FIXME: Try to handle cases when the implementation was inlined rather
// than just giving up.
if (!Call.isGlobalCFunction() || C.wasInlined)
return;
if (const FnCheck *Callback = PThreadCallbacks.lookup(Call))
(this->**Callback)(Call, C, CK_PthreadLockChecker);
else if (const FnCheck *Callback = FuchsiaCallbacks.lookup(Call))
(this->**Callback)(Call, C, CK_FuchsiaLockChecker);
else if (const FnCheck *Callback = C11Callbacks.lookup(Call))
(this->**Callback)(Call, C, CK_C11LockChecker);
}
// When a lock is destroyed, in some semantics(like PthreadSemantics) we are not
// sure if the destroy call has succeeded or failed, and the lock enters one of
// the 'possibly destroyed' state. There is a short time frame for the
// programmer to check the return value to see if the lock was successfully
// destroyed. Before we model the next operation over that lock, we call this
// function to see if the return value was checked by now and set the lock state
// - either to destroyed state or back to its previous state.
// In PthreadSemantics, pthread_mutex_destroy() returns zero if the lock is
// successfully destroyed and it returns a non-zero value otherwise.
ProgramStateRef PthreadLockChecker::resolvePossiblyDestroyedMutex(
ProgramStateRef state, const MemRegion *lockR, const SymbolRef *sym) const {
const LockState *lstate = state->get<LockMap>(lockR);
// Existence in DestroyRetVal ensures existence in LockMap.
// Existence in Destroyed also ensures that the lock state for lockR is either
// UntouchedAndPossiblyDestroyed or UnlockedAndPossiblyDestroyed.
assert(lstate->isUntouchedAndPossiblyDestroyed() ||
lstate->isUnlockedAndPossiblyDestroyed());
ConstraintManager &CMgr = state->getConstraintManager();
ConditionTruthVal retZero = CMgr.isNull(state, *sym);
if (retZero.isConstrainedFalse()) {
if (lstate->isUntouchedAndPossiblyDestroyed())
state = state->remove<LockMap>(lockR);
else if (lstate->isUnlockedAndPossiblyDestroyed())
state = state->set<LockMap>(lockR, LockState::getUnlocked());
} else
state = state->set<LockMap>(lockR, LockState::getDestroyed());
// Removing the map entry (lockR, sym) from DestroyRetVal as the lock state is
// now resolved.
state = state->remove<DestroyRetVal>(lockR);
return state;
}
void PthreadLockChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
LockMapTy LM = State->get<LockMap>();
if (!LM.isEmpty()) {
Out << Sep << "Mutex states:" << NL;
for (auto I : LM) {
I.first->dumpToStream(Out);
if (I.second.isLocked())
Out << ": locked";
else if (I.second.isUnlocked())
Out << ": unlocked";
else if (I.second.isDestroyed())
Out << ": destroyed";
else if (I.second.isUntouchedAndPossiblyDestroyed())
Out << ": not tracked, possibly destroyed";
else if (I.second.isUnlockedAndPossiblyDestroyed())
Out << ": unlocked, possibly destroyed";
Out << NL;
}
}
LockSetTy LS = State->get<LockSet>();
if (!LS.isEmpty()) {
Out << Sep << "Mutex lock order:" << NL;
for (auto I : LS) {
I->dumpToStream(Out);
Out << NL;
}
}
// TODO: Dump destroyed mutex symbols?
}
void PthreadLockChecker::AcquirePthreadLock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
AcquireLockAux(Call, C, 0, Call.getArgSVal(0), false, PthreadSemantics,
checkKind);
}
void PthreadLockChecker::AcquireXNULock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
AcquireLockAux(Call, C, 0, Call.getArgSVal(0), false, XNUSemantics,
checkKind);
}
void PthreadLockChecker::TryPthreadLock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
AcquireLockAux(Call, C, 0, Call.getArgSVal(0), true, PthreadSemantics,
checkKind);
}
void PthreadLockChecker::TryXNULock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkKind) const {
AcquireLockAux(Call, C, 0, Call.getArgSVal(0), true, PthreadSemantics,
checkKind);
}
void PthreadLockChecker::TryFuchsiaLock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
AcquireLockAux(Call, C, 0, Call.getArgSVal(0), true, PthreadSemantics,
checkKind);
}
void PthreadLockChecker::TryC11Lock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkKind) const {
AcquireLockAux(Call, C, 0, Call.getArgSVal(0), true, PthreadSemantics,
checkKind);
}
void PthreadLockChecker::AcquireLockAux(const CallEvent &Call,
CheckerContext &C, unsigned ArgNo,
SVal lock, bool isTryLock,
enum LockingSemantics semantics,
CheckerKind checkKind) const {
if (!ChecksEnabled[checkKind])
return;
const MemRegion *lockR = lock.getAsRegion();
if (!lockR)
return;
ProgramStateRef state = C.getState();
const SymbolRef *sym = state->get<DestroyRetVal>(lockR);
if (sym)
state = resolvePossiblyDestroyedMutex(state, lockR, sym);
if (const LockState *LState = state->get<LockMap>(lockR)) {
if (LState->isLocked()) {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
initBugType(checkKind);
auto report = std::make_unique<PathSensitiveBugReport>(
*BT_doublelock[checkKind], "This lock has already been acquired", N);
report->addRange(Call.getArgExpr(ArgNo)->getSourceRange());
C.emitReport(std::move(report));
return;
} else if (LState->isDestroyed()) {
reportUseDestroyedBug(Call, C, ArgNo, checkKind);
return;
}
}
ProgramStateRef lockSucc = state;
if (isTryLock) {
// Bifurcate the state, and allow a mode where the lock acquisition fails.
SVal RetVal = Call.getReturnValue();
if (auto DefinedRetVal = RetVal.getAs<DefinedSVal>()) {
ProgramStateRef lockFail;
switch (semantics) {
case PthreadSemantics:
std::tie(lockFail, lockSucc) = state->assume(*DefinedRetVal);
break;
case XNUSemantics:
std::tie(lockSucc, lockFail) = state->assume(*DefinedRetVal);
break;
default:
llvm_unreachable("Unknown tryLock locking semantics");
}
assert(lockFail && lockSucc);
C.addTransition(lockFail);
}
// We might want to handle the case when the mutex lock function was inlined
// and returned an Unknown or Undefined value.
} else if (semantics == PthreadSemantics) {
// Assume that the return value was 0.
SVal RetVal = Call.getReturnValue();
if (auto DefinedRetVal = RetVal.getAs<DefinedSVal>()) {
// FIXME: If the lock function was inlined and returned true,
// we need to behave sanely - at least generate sink.
lockSucc = state->assume(*DefinedRetVal, false);
assert(lockSucc);
}
// We might want to handle the case when the mutex lock function was inlined
// and returned an Unknown or Undefined value.
} else {
// XNU locking semantics return void on non-try locks
assert((semantics == XNUSemantics) && "Unknown locking semantics");
lockSucc = state;
}
// Record that the lock was acquired.
lockSucc = lockSucc->add<LockSet>(lockR);
lockSucc = lockSucc->set<LockMap>(lockR, LockState::getLocked());
C.addTransition(lockSucc);
}
void PthreadLockChecker::ReleaseAnyLock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
ReleaseLockAux(Call, C, 0, Call.getArgSVal(0), checkKind);
}
void PthreadLockChecker::ReleaseLockAux(const CallEvent &Call,
CheckerContext &C, unsigned ArgNo,
SVal lock,
CheckerKind checkKind) const {
if (!ChecksEnabled[checkKind])
return;
const MemRegion *lockR = lock.getAsRegion();
if (!lockR)
return;
ProgramStateRef state = C.getState();
const SymbolRef *sym = state->get<DestroyRetVal>(lockR);
if (sym)
state = resolvePossiblyDestroyedMutex(state, lockR, sym);
if (const LockState *LState = state->get<LockMap>(lockR)) {
if (LState->isUnlocked()) {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
initBugType(checkKind);
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_doubleunlock[checkKind], "This lock has already been unlocked",
N);
Report->addRange(Call.getArgExpr(ArgNo)->getSourceRange());
C.emitReport(std::move(Report));
return;
} else if (LState->isDestroyed()) {
reportUseDestroyedBug(Call, C, ArgNo, checkKind);
return;
}
}
LockSetTy LS = state->get<LockSet>();
if (!LS.isEmpty()) {
const MemRegion *firstLockR = LS.getHead();
if (firstLockR != lockR) {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
initBugType(checkKind);
auto report = std::make_unique<PathSensitiveBugReport>(
*BT_lor[checkKind],
"This was not the most recently acquired lock. Possible "
"lock order reversal",
N);
report->addRange(Call.getArgExpr(ArgNo)->getSourceRange());
C.emitReport(std::move(report));
return;
}
// Record that the lock was released.
state = state->set<LockSet>(LS.getTail());
}
state = state->set<LockMap>(lockR, LockState::getUnlocked());
C.addTransition(state);
}
void PthreadLockChecker::DestroyPthreadLock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
DestroyLockAux(Call, C, 0, Call.getArgSVal(0), PthreadSemantics, checkKind);
}
void PthreadLockChecker::DestroyXNULock(const CallEvent &Call,
CheckerContext &C,
CheckerKind checkKind) const {
DestroyLockAux(Call, C, 0, Call.getArgSVal(0), XNUSemantics, checkKind);
}
void PthreadLockChecker::DestroyLockAux(const CallEvent &Call,
CheckerContext &C, unsigned ArgNo,
SVal Lock,
enum LockingSemantics semantics,
CheckerKind checkKind) const {
if (!ChecksEnabled[checkKind])
return;
const MemRegion *LockR = Lock.getAsRegion();
if (!LockR)
return;
ProgramStateRef State = C.getState();
const SymbolRef *sym = State->get<DestroyRetVal>(LockR);
if (sym)
State = resolvePossiblyDestroyedMutex(State, LockR, sym);
const LockState *LState = State->get<LockMap>(LockR);
// Checking the return value of the destroy method only in the case of
// PthreadSemantics
if (semantics == PthreadSemantics) {
if (!LState || LState->isUnlocked()) {
SymbolRef sym = Call.getReturnValue().getAsSymbol();
if (!sym) {
State = State->remove<LockMap>(LockR);
C.addTransition(State);
return;
}
State = State->set<DestroyRetVal>(LockR, sym);
if (LState && LState->isUnlocked())
State = State->set<LockMap>(
LockR, LockState::getUnlockedAndPossiblyDestroyed());
else
State = State->set<LockMap>(
LockR, LockState::getUntouchedAndPossiblyDestroyed());
C.addTransition(State);
return;
}
} else {
if (!LState || LState->isUnlocked()) {
State = State->set<LockMap>(LockR, LockState::getDestroyed());
C.addTransition(State);
return;
}
}
StringRef Message;
if (LState->isLocked()) {
Message = "This lock is still locked";
} else {
Message = "This lock has already been destroyed";
}
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
initBugType(checkKind);
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_destroylock[checkKind], Message, N);
Report->addRange(Call.getArgExpr(ArgNo)->getSourceRange());
C.emitReport(std::move(Report));
}
void PthreadLockChecker::InitAnyLock(const CallEvent &Call, CheckerContext &C,
CheckerKind checkKind) const {
InitLockAux(Call, C, 0, Call.getArgSVal(0), checkKind);
}
void PthreadLockChecker::InitLockAux(const CallEvent &Call, CheckerContext &C,
unsigned ArgNo, SVal Lock,
CheckerKind checkKind) const {
if (!ChecksEnabled[checkKind])
return;
const MemRegion *LockR = Lock.getAsRegion();
if (!LockR)
return;
ProgramStateRef State = C.getState();
const SymbolRef *sym = State->get<DestroyRetVal>(LockR);
if (sym)
State = resolvePossiblyDestroyedMutex(State, LockR, sym);
const struct LockState *LState = State->get<LockMap>(LockR);
if (!LState || LState->isDestroyed()) {
State = State->set<LockMap>(LockR, LockState::getUnlocked());
C.addTransition(State);
return;
}
StringRef Message;
if (LState->isLocked()) {
Message = "This lock is still being held";
} else {
Message = "This lock has already been initialized";
}
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
initBugType(checkKind);
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_initlock[checkKind], Message, N);
Report->addRange(Call.getArgExpr(ArgNo)->getSourceRange());
C.emitReport(std::move(Report));
}
void PthreadLockChecker::reportUseDestroyedBug(const CallEvent &Call,
CheckerContext &C,
unsigned ArgNo,
CheckerKind checkKind) const {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
initBugType(checkKind);
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_destroylock[checkKind], "This lock has already been destroyed", N);
Report->addRange(Call.getArgExpr(ArgNo)->getSourceRange());
C.emitReport(std::move(Report));
}
void PthreadLockChecker::checkDeadSymbols(SymbolReaper &SymReaper,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
for (auto I : State->get<DestroyRetVal>()) {
// Once the return value symbol dies, no more checks can be performed
// against it. See if the return value was checked before this point.
// This would remove the symbol from the map as well.
if (SymReaper.isDead(I.second))
State = resolvePossiblyDestroyedMutex(State, I.first, &I.second);
}
for (auto I : State->get<LockMap>()) {
// Stop tracking dead mutex regions as well.
if (!SymReaper.isLiveRegion(I.first))
State = State->remove<LockMap>(I.first);
}
// TODO: We probably need to clean up the lock stack as well.
// It is tricky though: even if the mutex cannot be unlocked anymore,
// it can still participate in lock order reversal resolution.
C.addTransition(State);
}
ProgramStateRef PthreadLockChecker::checkRegionChanges(
ProgramStateRef State, const InvalidatedSymbols *Symbols,
ArrayRef<const MemRegion *> ExplicitRegions,
ArrayRef<const MemRegion *> Regions, const LocationContext *LCtx,
const CallEvent *Call) const {
bool IsLibraryFunction = false;
if (Call && Call->isGlobalCFunction()) {
// Avoid invalidating mutex state when a known supported function is called.
if (PThreadCallbacks.lookup(*Call) || FuchsiaCallbacks.lookup(*Call) ||
C11Callbacks.lookup(*Call))
return State;
if (Call->isInSystemHeader())
IsLibraryFunction = true;
}
for (auto R : Regions) {
// We assume that system library function wouldn't touch the mutex unless
// it takes the mutex explicitly as an argument.
// FIXME: This is a bit quadratic.
if (IsLibraryFunction &&
std::find(ExplicitRegions.begin(), ExplicitRegions.end(), R) ==
ExplicitRegions.end())
continue;
State = State->remove<LockMap>(R);
State = State->remove<DestroyRetVal>(R);
// TODO: We need to invalidate the lock stack as well. This is tricky
// to implement correctly and efficiently though, because the effects
// of mutex escapes on lock order may be fairly varied.
}
return State;
}
void ento::registerPthreadLockBase(CheckerManager &mgr) {
mgr.registerChecker<PthreadLockChecker>();
}
bool ento::shouldRegisterPthreadLockBase(const CheckerManager &mgr) { return true; }
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &mgr) { \
PthreadLockChecker *checker = mgr.getChecker<PthreadLockChecker>(); \
checker->ChecksEnabled[PthreadLockChecker::CK_##name] = true; \
checker->CheckNames[PthreadLockChecker::CK_##name] = \
mgr.getCurrentCheckerName(); \
} \
\
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
REGISTER_CHECKER(PthreadLockChecker)
REGISTER_CHECKER(FuchsiaLockChecker)
REGISTER_CHECKER(C11LockChecker)