llvm-project/lldb/tools/debugserver/source/DNB.cpp

1780 lines
59 KiB
C++

//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 3/23/07.
//
//===----------------------------------------------------------------------===//
#include "DNB.h"
#include <inttypes.h>
#include <libproc.h>
#include <map>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <vector>
#if defined(__APPLE__)
#include <pthread.h>
#include <sched.h>
#endif
#define TRY_KQUEUE 1
#ifdef TRY_KQUEUE
#include <sys/event.h>
#include <sys/time.h>
#ifdef NOTE_EXIT_DETAIL
#define USE_KQUEUE
#endif
#endif
#include "CFBundle.h"
#include "CFString.h"
#include "DNBDataRef.h"
#include "DNBLog.h"
#include "DNBThreadResumeActions.h"
#include "DNBTimer.h"
#include "MacOSX/DarwinLog/DarwinLogCollector.h"
#include "MacOSX/Genealogy.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachTask.h"
#include "MacOSX/ThreadInfo.h"
typedef std::shared_ptr<MachProcess> MachProcessSP;
typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
typedef ProcessMap::iterator ProcessMapIter;
typedef ProcessMap::const_iterator ProcessMapConstIter;
size_t GetAllInfos(std::vector<struct kinfo_proc> &proc_infos);
static size_t
GetAllInfosMatchingName(const char *process_name,
std::vector<struct kinfo_proc> &matching_proc_infos);
//----------------------------------------------------------------------
// A Thread safe singleton to get a process map pointer.
//
// Returns a pointer to the existing process map, or a pointer to a
// newly created process map if CAN_CREATE is non-zero.
//----------------------------------------------------------------------
static ProcessMap *GetProcessMap(bool can_create) {
static ProcessMap *g_process_map_ptr = NULL;
if (can_create && g_process_map_ptr == NULL) {
static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
PTHREAD_MUTEX_LOCKER(locker, &g_process_map_mutex);
if (g_process_map_ptr == NULL)
g_process_map_ptr = new ProcessMap;
}
return g_process_map_ptr;
}
//----------------------------------------------------------------------
// Add PID to the shared process pointer map.
//
// Return non-zero value if we succeed in adding the process to the map.
// The only time this should fail is if we run out of memory and can't
// allocate a ProcessMap.
//----------------------------------------------------------------------
static nub_bool_t AddProcessToMap(nub_process_t pid, MachProcessSP &procSP) {
ProcessMap *process_map = GetProcessMap(true);
if (process_map) {
process_map->insert(std::make_pair(pid, procSP));
return true;
}
return false;
}
//----------------------------------------------------------------------
// Remove the shared pointer for PID from the process map.
//
// Returns the number of items removed from the process map.
//----------------------------------------------------------------------
// static size_t
// RemoveProcessFromMap (nub_process_t pid)
//{
// ProcessMap* process_map = GetProcessMap(false);
// if (process_map)
// {
// return process_map->erase(pid);
// }
// return 0;
//}
//----------------------------------------------------------------------
// Get the shared pointer for PID from the existing process map.
//
// Returns true if we successfully find a shared pointer to a
// MachProcess object.
//----------------------------------------------------------------------
static nub_bool_t GetProcessSP(nub_process_t pid, MachProcessSP &procSP) {
ProcessMap *process_map = GetProcessMap(false);
if (process_map != NULL) {
ProcessMapIter pos = process_map->find(pid);
if (pos != process_map->end()) {
procSP = pos->second;
return true;
}
}
procSP.reset();
return false;
}
#ifdef USE_KQUEUE
void *kqueue_thread(void *arg) {
int kq_id = (int)(intptr_t)arg;
#if defined(__APPLE__)
pthread_setname_np("kqueue thread");
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
struct sched_param thread_param;
int thread_sched_policy;
if (pthread_getschedparam(pthread_self(), &thread_sched_policy,
&thread_param) == 0) {
thread_param.sched_priority = 47;
pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param);
}
#endif
#endif
struct kevent death_event;
while (1) {
int n_events = kevent(kq_id, NULL, 0, &death_event, 1, NULL);
if (n_events == -1) {
if (errno == EINTR)
continue;
else {
DNBLogError("kqueue failed with error: (%d): %s", errno,
strerror(errno));
return NULL;
}
} else if (death_event.flags & EV_ERROR) {
int error_no = static_cast<int>(death_event.data);
const char *error_str = strerror(error_no);
if (error_str == NULL)
error_str = "Unknown error";
DNBLogError("Failed to initialize kqueue event: (%d): %s", error_no,
error_str);
return NULL;
} else {
int status;
const pid_t pid = (pid_t)death_event.ident;
const pid_t child_pid = waitpid(pid, &status, 0);
bool exited = false;
int signal = 0;
int exit_status = 0;
if (WIFSTOPPED(status)) {
signal = WSTOPSIG(status);
DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> STOPPED (signal = %i)",
child_pid, signal);
} else if (WIFEXITED(status)) {
exit_status = WEXITSTATUS(status);
exited = true;
DNBLogThreadedIf(LOG_PROCESS, "waitpid (%i) -> EXITED (status = %i)",
child_pid, exit_status);
} else if (WIFSIGNALED(status)) {
signal = WTERMSIG(status);
if (child_pid == abs(pid)) {
DNBLogThreadedIf(LOG_PROCESS,
"waitpid (%i) -> SIGNALED and EXITED (signal = %i)",
child_pid, signal);
char exit_info[64];
::snprintf(exit_info, sizeof(exit_info),
"Terminated due to signal %i", signal);
DNBProcessSetExitInfo(child_pid, exit_info);
exited = true;
exit_status = INT8_MAX;
} else {
DNBLogThreadedIf(LOG_PROCESS,
"waitpid (%i) -> SIGNALED (signal = %i)", child_pid,
signal);
}
}
if (exited) {
if (death_event.data & NOTE_EXIT_MEMORY)
DNBProcessSetExitInfo(child_pid, "Terminated due to memory issue");
else if (death_event.data & NOTE_EXIT_DECRYPTFAIL)
DNBProcessSetExitInfo(child_pid, "Terminated due to decrypt failure");
else if (death_event.data & NOTE_EXIT_CSERROR)
DNBProcessSetExitInfo(child_pid,
"Terminated due to code signing error");
DNBLogThreadedIf(
LOG_PROCESS,
"waitpid_process_thread (): setting exit status for pid = %i to %i",
child_pid, exit_status);
DNBProcessSetExitStatus(child_pid, status);
return NULL;
}
}
}
}
static bool spawn_kqueue_thread(pid_t pid) {
pthread_t thread;
int kq_id;
kq_id = kqueue();
if (kq_id == -1) {
DNBLogError("Could not get kqueue for pid = %i.", pid);
return false;
}
struct kevent reg_event;
EV_SET(&reg_event, pid, EVFILT_PROC, EV_ADD,
NOTE_EXIT | NOTE_EXITSTATUS | NOTE_EXIT_DETAIL, 0, NULL);
// Register the event:
int result = kevent(kq_id, &reg_event, 1, NULL, 0, NULL);
if (result != 0) {
DNBLogError(
"Failed to register kqueue NOTE_EXIT event for pid %i, error: %d.", pid,
result);
return false;
}
int ret =
::pthread_create(&thread, NULL, kqueue_thread, (void *)(intptr_t)kq_id);
// pthread_create returns 0 if successful
if (ret == 0) {
::pthread_detach(thread);
return true;
}
return false;
}
#endif // #if USE_KQUEUE
static void *waitpid_thread(void *arg) {
const pid_t pid = (pid_t)(intptr_t)arg;
int status;
#if defined(__APPLE__)
pthread_setname_np("waitpid thread");
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
struct sched_param thread_param;
int thread_sched_policy;
if (pthread_getschedparam(pthread_self(), &thread_sched_policy,
&thread_param) == 0) {
thread_param.sched_priority = 47;
pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param);
}
#endif
#endif
while (1) {
pid_t child_pid = waitpid(pid, &status, 0);
DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): waitpid (pid = %i, "
"&status, 0) => %i, status = %i, errno = %i",
pid, child_pid, status, errno);
if (child_pid < 0) {
if (errno == EINTR)
continue;
break;
} else {
if (WIFSTOPPED(status)) {
continue;
} else // if (WIFEXITED(status) || WIFSIGNALED(status))
{
DNBLogThreadedIf(
LOG_PROCESS,
"waitpid_thread (): setting exit status for pid = %i to %i",
child_pid, status);
DNBProcessSetExitStatus(child_pid, status);
return NULL;
}
}
}
// We should never exit as long as our child process is alive, so if we
// do something else went wrong and we should exit...
DNBLogThreadedIf(LOG_PROCESS, "waitpid_thread (): main loop exited, setting "
"exit status to an invalid value (-1) for pid "
"%i",
pid);
DNBProcessSetExitStatus(pid, -1);
return NULL;
}
static bool spawn_waitpid_thread(pid_t pid) {
#ifdef USE_KQUEUE
bool success = spawn_kqueue_thread(pid);
if (success)
return true;
#endif
pthread_t thread;
int ret =
::pthread_create(&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
// pthread_create returns 0 if successful
if (ret == 0) {
::pthread_detach(thread);
return true;
}
return false;
}
nub_process_t DNBProcessLaunch(
const char *path, char const *argv[], const char *envp[],
const char *working_directory, // NULL => don't change, non-NULL => set
// working directory for inferior to this
const char *stdin_path, const char *stdout_path, const char *stderr_path,
bool no_stdio, nub_launch_flavor_t launch_flavor, int disable_aslr,
const char *event_data, char *err_str, size_t err_len) {
DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, "
"working_dir=%s, stdin=%s, stdout=%s, "
"stderr=%s, no-stdio=%i, launch_flavor = %u, "
"disable_aslr = %d, err = %p, err_len = "
"%llu) called...",
__FUNCTION__, path, static_cast<void *>(argv),
static_cast<void *>(envp), working_directory, stdin_path,
stdout_path, stderr_path, no_stdio, launch_flavor,
disable_aslr, static_cast<void *>(err_str),
static_cast<uint64_t>(err_len));
if (err_str && err_len > 0)
err_str[0] = '\0';
struct stat path_stat;
if (::stat(path, &path_stat) == -1) {
char stat_error[256];
::strerror_r(errno, stat_error, sizeof(stat_error));
snprintf(err_str, err_len, "%s (%s)", stat_error, path);
return INVALID_NUB_PROCESS;
}
MachProcessSP processSP(new MachProcess);
if (processSP.get()) {
DNBError launch_err;
pid_t pid = processSP->LaunchForDebug(path, argv, envp, working_directory,
stdin_path, stdout_path, stderr_path,
no_stdio, launch_flavor, disable_aslr,
event_data, launch_err);
if (err_str) {
*err_str = '\0';
if (launch_err.Fail()) {
const char *launch_err_str = launch_err.AsString();
if (launch_err_str) {
strlcpy(err_str, launch_err_str, err_len - 1);
err_str[err_len - 1] =
'\0'; // Make sure the error string is terminated
}
}
}
DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
if (pid != INVALID_NUB_PROCESS) {
// Spawn a thread to reap our child inferior process...
spawn_waitpid_thread(pid);
if (processSP->Task().TaskPortForProcessID(launch_err) == TASK_NULL) {
// We failed to get the task for our process ID which is bad.
// Kill our process otherwise it will be stopped at the entry
// point and get reparented to someone else and never go away.
DNBLog("Could not get task port for process, sending SIGKILL and "
"exiting.");
kill(SIGKILL, pid);
if (err_str && err_len > 0) {
if (launch_err.AsString()) {
::snprintf(err_str, err_len,
"failed to get the task for process %i (%s)", pid,
launch_err.AsString());
} else {
::snprintf(err_str, err_len,
"failed to get the task for process %i", pid);
}
}
} else {
bool res = AddProcessToMap(pid, processSP);
UNUSED_IF_ASSERT_DISABLED(res);
assert(res && "Couldn't add process to map!");
return pid;
}
}
}
return INVALID_NUB_PROCESS;
}
// If there is one process with a given name, return the pid for that process.
nub_process_t DNBProcessGetPIDByName(const char *name) {
std::vector<struct kinfo_proc> matching_proc_infos;
size_t num_matching_proc_infos =
GetAllInfosMatchingName(name, matching_proc_infos);
if (num_matching_proc_infos == 1) {
return matching_proc_infos[0].kp_proc.p_pid;
}
return INVALID_NUB_PROCESS;
}
nub_process_t DNBProcessAttachByName(const char *name, struct timespec *timeout,
char *err_str, size_t err_len) {
if (err_str && err_len > 0)
err_str[0] = '\0';
std::vector<struct kinfo_proc> matching_proc_infos;
size_t num_matching_proc_infos =
GetAllInfosMatchingName(name, matching_proc_infos);
if (num_matching_proc_infos == 0) {
DNBLogError("error: no processes match '%s'\n", name);
return INVALID_NUB_PROCESS;
} else if (num_matching_proc_infos > 1) {
DNBLogError("error: %llu processes match '%s':\n",
(uint64_t)num_matching_proc_infos, name);
size_t i;
for (i = 0; i < num_matching_proc_infos; ++i)
DNBLogError("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid,
matching_proc_infos[i].kp_proc.p_comm);
return INVALID_NUB_PROCESS;
}
return DNBProcessAttach(matching_proc_infos[0].kp_proc.p_pid, timeout,
err_str, err_len);
}
nub_process_t DNBProcessAttach(nub_process_t attach_pid,
struct timespec *timeout, char *err_str,
size_t err_len) {
if (err_str && err_len > 0)
err_str[0] = '\0';
pid_t pid = INVALID_NUB_PROCESS;
MachProcessSP processSP(new MachProcess);
if (processSP.get()) {
DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...",
attach_pid);
pid = processSP->AttachForDebug(attach_pid, err_str, err_len);
if (pid != INVALID_NUB_PROCESS) {
bool res = AddProcessToMap(pid, processSP);
UNUSED_IF_ASSERT_DISABLED(res);
assert(res && "Couldn't add process to map!");
spawn_waitpid_thread(pid);
}
}
while (pid != INVALID_NUB_PROCESS) {
// Wait for process to start up and hit entry point
DNBLogThreadedIf(LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, "
"eEventProcessRunningStateChanged | "
"eEventProcessStoppedStateChanged, true, "
"INFINITE)...",
__FUNCTION__, pid);
nub_event_t set_events =
DNBProcessWaitForEvents(pid, eEventProcessRunningStateChanged |
eEventProcessStoppedStateChanged,
true, timeout);
DNBLogThreadedIf(LOG_PROCESS, "%s DNBProcessWaitForEvent (%4.4x, "
"eEventProcessRunningStateChanged | "
"eEventProcessStoppedStateChanged, true, "
"INFINITE) => 0x%8.8x",
__FUNCTION__, pid, set_events);
if (set_events == 0) {
if (err_str && err_len > 0)
snprintf(err_str, err_len, "operation timed out");
pid = INVALID_NUB_PROCESS;
} else {
if (set_events & (eEventProcessRunningStateChanged |
eEventProcessStoppedStateChanged)) {
nub_state_t pid_state = DNBProcessGetState(pid);
DNBLogThreadedIf(
LOG_PROCESS,
"%s process %4.4x state changed (eEventProcessStateChanged): %s",
__FUNCTION__, pid, DNBStateAsString(pid_state));
switch (pid_state) {
case eStateInvalid:
case eStateUnloaded:
case eStateAttaching:
case eStateLaunching:
case eStateSuspended:
break; // Ignore
case eStateRunning:
case eStateStepping:
// Still waiting to stop at entry point...
break;
case eStateStopped:
case eStateCrashed:
return pid;
case eStateDetached:
case eStateExited:
if (err_str && err_len > 0)
snprintf(err_str, err_len, "process exited");
return INVALID_NUB_PROCESS;
}
}
DNBProcessResetEvents(pid, set_events);
}
}
return INVALID_NUB_PROCESS;
}
size_t GetAllInfos(std::vector<struct kinfo_proc> &proc_infos) {
size_t size = 0;
int name[] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL};
u_int namelen = sizeof(name) / sizeof(int);
int err;
// Try to find out how many processes are around so we can
// size the buffer appropriately. sysctl's man page specifically suggests
// this approach, and says it returns a bit larger size than needed to
// handle any new processes created between then and now.
err = ::sysctl(name, namelen, NULL, &size, NULL, 0);
if ((err < 0) && (err != ENOMEM)) {
proc_infos.clear();
perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
return 0;
}
// Increase the size of the buffer by a few processes in case more have
// been spawned
proc_infos.resize(size / sizeof(struct kinfo_proc));
size = proc_infos.size() *
sizeof(struct kinfo_proc); // Make sure we don't exceed our resize...
err = ::sysctl(name, namelen, &proc_infos[0], &size, NULL, 0);
if (err < 0) {
proc_infos.clear();
return 0;
}
// Trim down our array to fit what we actually got back
proc_infos.resize(size / sizeof(struct kinfo_proc));
return proc_infos.size();
}
static size_t
GetAllInfosMatchingName(const char *full_process_name,
std::vector<struct kinfo_proc> &matching_proc_infos) {
matching_proc_infos.clear();
if (full_process_name && full_process_name[0]) {
// We only get the process name, not the full path, from the proc_info. So
// just take the
// base name of the process name...
const char *process_name;
process_name = strrchr(full_process_name, '/');
if (process_name == NULL)
process_name = full_process_name;
else
process_name++;
const size_t process_name_len = strlen(process_name);
std::vector<struct kinfo_proc> proc_infos;
const size_t num_proc_infos = GetAllInfos(proc_infos);
if (num_proc_infos > 0) {
uint32_t i;
for (i = 0; i < num_proc_infos; i++) {
// Skip zombie processes and processes with unset status
if (proc_infos[i].kp_proc.p_stat == 0 ||
proc_infos[i].kp_proc.p_stat == SZOMB)
continue;
// Check for process by name. We only check the first MAXCOMLEN
// chars as that is all that kp_proc.p_comm holds.
if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm,
MAXCOMLEN) == 0) {
if (process_name_len > MAXCOMLEN) {
// We found a matching process name whose first MAXCOMLEN
// characters match, but there is more to the name than
// this. We need to get the full process name. Use proc_pidpath,
// which will get
// us the full path to the executed process.
char proc_path_buf[PATH_MAX];
int return_val = proc_pidpath(proc_infos[i].kp_proc.p_pid,
proc_path_buf, PATH_MAX);
if (return_val > 0) {
// Okay, now search backwards from that to see if there is a
// slash in the name. Note, even though we got all the args we
// don't care
// because the list data is just a bunch of concatenated null
// terminated strings
// so strrchr will start from the end of argv0.
const char *argv_basename = strrchr(proc_path_buf, '/');
if (argv_basename) {
// Skip the '/'
++argv_basename;
} else {
// We didn't find a directory delimiter in the process argv[0],
// just use what was in there
argv_basename = proc_path_buf;
}
if (argv_basename) {
if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0) {
matching_proc_infos.push_back(proc_infos[i]);
}
}
}
} else {
// We found a matching process, add it to our list
matching_proc_infos.push_back(proc_infos[i]);
}
}
}
}
}
// return the newly added matches.
return matching_proc_infos.size();
}
nub_process_t DNBProcessAttachWait(
const char *waitfor_process_name, nub_launch_flavor_t launch_flavor,
bool ignore_existing, struct timespec *timeout_abstime,
useconds_t waitfor_interval, char *err_str, size_t err_len,
DNBShouldCancelCallback should_cancel_callback, void *callback_data) {
DNBError prepare_error;
std::vector<struct kinfo_proc> exclude_proc_infos;
size_t num_exclude_proc_infos;
// If the PrepareForAttach returns a valid token, use MachProcess to check
// for the process, otherwise scan the process table.
const void *attach_token = MachProcess::PrepareForAttach(
waitfor_process_name, launch_flavor, true, prepare_error);
if (prepare_error.Fail()) {
DNBLogError("Error in PrepareForAttach: %s", prepare_error.AsString());
return INVALID_NUB_PROCESS;
}
if (attach_token == NULL) {
if (ignore_existing)
num_exclude_proc_infos =
GetAllInfosMatchingName(waitfor_process_name, exclude_proc_infos);
else
num_exclude_proc_infos = 0;
}
DNBLogThreadedIf(LOG_PROCESS, "Waiting for '%s' to appear...\n",
waitfor_process_name);
// Loop and try to find the process by name
nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
while (waitfor_pid == INVALID_NUB_PROCESS) {
if (attach_token != NULL) {
nub_process_t pid;
pid = MachProcess::CheckForProcess(attach_token, launch_flavor);
if (pid != INVALID_NUB_PROCESS) {
waitfor_pid = pid;
break;
}
} else {
// Get the current process list, and check for matches that
// aren't in our original list. If anyone wants to attach
// to an existing process by name, they should do it with
// --attach=PROCNAME. Else we will wait for the first matching
// process that wasn't in our exclusion list.
std::vector<struct kinfo_proc> proc_infos;
const size_t num_proc_infos =
GetAllInfosMatchingName(waitfor_process_name, proc_infos);
for (size_t i = 0; i < num_proc_infos; i++) {
nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
for (size_t j = 0; j < num_exclude_proc_infos; j++) {
if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid) {
// This process was in our exclusion list, don't use it.
curr_pid = INVALID_NUB_PROCESS;
break;
}
}
// If we didn't find CURR_PID in our exclusion list, then use it.
if (curr_pid != INVALID_NUB_PROCESS) {
// We found our process!
waitfor_pid = curr_pid;
break;
}
}
}
// If we haven't found our process yet, check for a timeout
// and then sleep for a bit until we poll again.
if (waitfor_pid == INVALID_NUB_PROCESS) {
if (timeout_abstime != NULL) {
// Check to see if we have a waitfor-duration option that
// has timed out?
if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime)) {
if (err_str && err_len > 0)
snprintf(err_str, err_len, "operation timed out");
DNBLogError("error: waiting for process '%s' timed out.\n",
waitfor_process_name);
return INVALID_NUB_PROCESS;
}
}
// Call the should cancel callback as well...
if (should_cancel_callback != NULL &&
should_cancel_callback(callback_data)) {
DNBLogThreadedIf(
LOG_PROCESS,
"DNBProcessAttachWait cancelled by should_cancel callback.");
waitfor_pid = INVALID_NUB_PROCESS;
break;
}
::usleep(waitfor_interval); // Sleep for WAITFOR_INTERVAL, then poll again
}
}
if (waitfor_pid != INVALID_NUB_PROCESS) {
DNBLogThreadedIf(LOG_PROCESS, "Attaching to %s with pid %i...\n",
waitfor_process_name, waitfor_pid);
waitfor_pid =
DNBProcessAttach(waitfor_pid, timeout_abstime, err_str, err_len);
}
bool success = waitfor_pid != INVALID_NUB_PROCESS;
MachProcess::CleanupAfterAttach(attach_token, launch_flavor, success,
prepare_error);
return waitfor_pid;
}
nub_bool_t DNBProcessDetach(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
const bool remove = true;
DNBLogThreaded(
"Disabling breakpoints and watchpoints, and detaching from %d.", pid);
procSP->DisableAllBreakpoints(remove);
procSP->DisableAllWatchpoints(remove);
return procSP->Detach();
}
return false;
}
nub_bool_t DNBProcessKill(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->Kill();
}
return false;
}
nub_bool_t DNBProcessSignal(nub_process_t pid, int signal) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->Signal(signal);
}
return false;
}
nub_bool_t DNBProcessInterrupt(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->Interrupt();
return false;
}
nub_bool_t DNBProcessSendEvent(nub_process_t pid, const char *event) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
// FIXME: Do something with the error...
DNBError send_error;
return procSP->SendEvent(event, send_error);
}
return false;
}
nub_bool_t DNBProcessIsAlive(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return MachTask::IsValid(procSP->Task().TaskPort());
}
return eStateInvalid;
}
//----------------------------------------------------------------------
// Process and Thread state information
//----------------------------------------------------------------------
nub_state_t DNBProcessGetState(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetState();
}
return eStateInvalid;
}
//----------------------------------------------------------------------
// Process and Thread state information
//----------------------------------------------------------------------
nub_bool_t DNBProcessGetExitStatus(nub_process_t pid, int *status) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetExitStatus(status);
}
return false;
}
nub_bool_t DNBProcessSetExitStatus(nub_process_t pid, int status) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
procSP->SetExitStatus(status);
return true;
}
return false;
}
const char *DNBProcessGetExitInfo(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetExitInfo();
}
return NULL;
}
nub_bool_t DNBProcessSetExitInfo(nub_process_t pid, const char *info) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
procSP->SetExitInfo(info);
return true;
}
return false;
}
const char *DNBThreadGetName(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->ThreadGetName(tid);
return NULL;
}
nub_bool_t
DNBThreadGetIdentifierInfo(nub_process_t pid, nub_thread_t tid,
thread_identifier_info_data_t *ident_info) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
return false;
}
nub_state_t DNBThreadGetState(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->ThreadGetState(tid);
}
return eStateInvalid;
}
const char *DNBStateAsString(nub_state_t state) {
switch (state) {
case eStateInvalid:
return "Invalid";
case eStateUnloaded:
return "Unloaded";
case eStateAttaching:
return "Attaching";
case eStateLaunching:
return "Launching";
case eStateStopped:
return "Stopped";
case eStateRunning:
return "Running";
case eStateStepping:
return "Stepping";
case eStateCrashed:
return "Crashed";
case eStateDetached:
return "Detached";
case eStateExited:
return "Exited";
case eStateSuspended:
return "Suspended";
}
return "nub_state_t ???";
}
Genealogy::ThreadActivitySP DNBGetGenealogyInfoForThread(nub_process_t pid,
nub_thread_t tid,
bool &timed_out) {
Genealogy::ThreadActivitySP thread_activity_sp;
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
thread_activity_sp = procSP->GetGenealogyInfoForThread(tid, timed_out);
return thread_activity_sp;
}
Genealogy::ProcessExecutableInfoSP DNBGetGenealogyImageInfo(nub_process_t pid,
size_t idx) {
Genealogy::ProcessExecutableInfoSP image_info_sp;
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
image_info_sp = procSP->GetGenealogyImageInfo(idx);
}
return image_info_sp;
}
ThreadInfo::QoS DNBGetRequestedQoSForThread(nub_process_t pid, nub_thread_t tid,
nub_addr_t tsd,
uint64_t dti_qos_class_index) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetRequestedQoS(tid, tsd, dti_qos_class_index);
}
return ThreadInfo::QoS();
}
nub_addr_t DNBGetPThreadT(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetPThreadT(tid);
}
return INVALID_NUB_ADDRESS;
}
nub_addr_t DNBGetDispatchQueueT(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetDispatchQueueT(tid);
}
return INVALID_NUB_ADDRESS;
}
nub_addr_t
DNBGetTSDAddressForThread(nub_process_t pid, nub_thread_t tid,
uint64_t plo_pthread_tsd_base_address_offset,
uint64_t plo_pthread_tsd_base_offset,
uint64_t plo_pthread_tsd_entry_size) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetTSDAddressForThread(
tid, plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset,
plo_pthread_tsd_entry_size);
}
return INVALID_NUB_ADDRESS;
}
JSONGenerator::ObjectSP DNBGetLoadedDynamicLibrariesInfos(
nub_process_t pid, nub_addr_t image_list_address, nub_addr_t image_count) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetLoadedDynamicLibrariesInfos(pid, image_list_address,
image_count);
}
return JSONGenerator::ObjectSP();
}
JSONGenerator::ObjectSP DNBGetAllLoadedLibrariesInfos(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetAllLoadedLibrariesInfos(pid);
}
return JSONGenerator::ObjectSP();
}
JSONGenerator::ObjectSP
DNBGetLibrariesInfoForAddresses(nub_process_t pid,
std::vector<uint64_t> &macho_addresses) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetLibrariesInfoForAddresses(pid, macho_addresses);
}
return JSONGenerator::ObjectSP();
}
JSONGenerator::ObjectSP DNBGetSharedCacheInfo(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->GetSharedCacheInfo(pid);
}
return JSONGenerator::ObjectSP();
}
const char *DNBProcessGetExecutablePath(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->Path();
}
return NULL;
}
nub_size_t DNBProcessGetArgumentCount(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->ArgumentCount();
}
return 0;
}
const char *DNBProcessGetArgumentAtIndex(nub_process_t pid, nub_size_t idx) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->ArgumentAtIndex(idx);
}
return NULL;
}
//----------------------------------------------------------------------
// Execution control
//----------------------------------------------------------------------
nub_bool_t DNBProcessResume(nub_process_t pid,
const DNBThreadResumeAction *actions,
size_t num_actions) {
DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
DNBThreadResumeActions thread_actions(actions, num_actions);
// Below we add a default thread plan just in case one wasn't
// provided so all threads always know what they were supposed to do
if (thread_actions.IsEmpty()) {
// No thread plans were given, so the default it to run all threads
thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, 0);
} else {
// Some thread plans were given which means anything that wasn't
// specified should remain stopped.
thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0);
}
return procSP->Resume(thread_actions);
}
return false;
}
nub_bool_t DNBProcessHalt(nub_process_t pid) {
DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->Signal(SIGSTOP);
return false;
}
//
// nub_bool_t
// DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
//{
// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)",
// __FUNCTION__, pid, tid, (uint32_t)step);
// MachProcessSP procSP;
// if (GetProcessSP (pid, procSP))
// {
// return procSP->Resume(tid, step, 0);
// }
// return false;
//}
//
// nub_bool_t
// DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t
// step, int signal)
//{
// DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u,
// signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
// MachProcessSP procSP;
// if (GetProcessSP (pid, procSP))
// {
// return procSP->Resume(tid, step, signal);
// }
// return false;
//}
nub_event_t DNBProcessWaitForEvents(nub_process_t pid, nub_event_t event_mask,
bool wait_for_set,
struct timespec *timeout) {
nub_event_t result = 0;
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
if (wait_for_set)
result = procSP->Events().WaitForSetEvents(event_mask, timeout);
else
result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
}
return result;
}
void DNBProcessResetEvents(nub_process_t pid, nub_event_t event_mask) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
procSP->Events().ResetEvents(event_mask);
}
// Breakpoints
nub_bool_t DNBBreakpointSet(nub_process_t pid, nub_addr_t addr, nub_size_t size,
nub_bool_t hardware) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->CreateBreakpoint(addr, size, hardware) != NULL;
return false;
}
nub_bool_t DNBBreakpointClear(nub_process_t pid, nub_addr_t addr) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->DisableBreakpoint(addr, true);
return false; // Failed
}
//----------------------------------------------------------------------
// Watchpoints
//----------------------------------------------------------------------
nub_bool_t DNBWatchpointSet(nub_process_t pid, nub_addr_t addr, nub_size_t size,
uint32_t watch_flags, nub_bool_t hardware) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->CreateWatchpoint(addr, size, watch_flags, hardware) != NULL;
return false;
}
nub_bool_t DNBWatchpointClear(nub_process_t pid, nub_addr_t addr) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->DisableWatchpoint(addr, true);
return false; // Failed
}
//----------------------------------------------------------------------
// Return the number of supported hardware watchpoints.
//----------------------------------------------------------------------
uint32_t DNBWatchpointGetNumSupportedHWP(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetNumSupportedHardwareWatchpoints();
return 0;
}
//----------------------------------------------------------------------
// Read memory in the address space of process PID. This call will take
// care of setting and restoring permissions and breaking up the memory
// read into multiple chunks as required.
//
// RETURNS: number of bytes actually read
//----------------------------------------------------------------------
nub_size_t DNBProcessMemoryRead(nub_process_t pid, nub_addr_t addr,
nub_size_t size, void *buf) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->ReadMemory(addr, size, buf);
return 0;
}
uint64_t DNBProcessMemoryReadInteger(nub_process_t pid, nub_addr_t addr,
nub_size_t integer_size,
uint64_t fail_value) {
union Integers {
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
};
if (integer_size <= sizeof(uint64_t)) {
Integers ints;
if (DNBProcessMemoryRead(pid, addr, integer_size, &ints) == integer_size) {
switch (integer_size) {
case 1:
return ints.u8;
case 2:
return ints.u16;
case 3:
return ints.u32 & 0xffffffu;
case 4:
return ints.u32;
case 5:
return ints.u32 & 0x000000ffffffffffull;
case 6:
return ints.u32 & 0x0000ffffffffffffull;
case 7:
return ints.u32 & 0x00ffffffffffffffull;
case 8:
return ints.u64;
}
}
}
return fail_value;
}
nub_addr_t DNBProcessMemoryReadPointer(nub_process_t pid, nub_addr_t addr) {
cpu_type_t cputype = DNBProcessGetCPUType(pid);
if (cputype) {
const nub_size_t pointer_size = (cputype & CPU_ARCH_ABI64) ? 8 : 4;
return DNBProcessMemoryReadInteger(pid, addr, pointer_size, 0);
}
return 0;
}
std::string DNBProcessMemoryReadCString(nub_process_t pid, nub_addr_t addr) {
std::string cstr;
char buffer[256];
const nub_size_t max_buffer_cstr_length = sizeof(buffer) - 1;
buffer[max_buffer_cstr_length] = '\0';
nub_size_t length = 0;
nub_addr_t curr_addr = addr;
do {
nub_size_t bytes_read =
DNBProcessMemoryRead(pid, curr_addr, max_buffer_cstr_length, buffer);
if (bytes_read == 0)
break;
length = strlen(buffer);
cstr.append(buffer, length);
curr_addr += length;
} while (length == max_buffer_cstr_length);
return cstr;
}
std::string DNBProcessMemoryReadCStringFixed(nub_process_t pid, nub_addr_t addr,
nub_size_t fixed_length) {
std::string cstr;
char buffer[fixed_length + 1];
buffer[fixed_length] = '\0';
nub_size_t bytes_read = DNBProcessMemoryRead(pid, addr, fixed_length, buffer);
if (bytes_read > 0)
cstr.assign(buffer);
return cstr;
}
//----------------------------------------------------------------------
// Write memory to the address space of process PID. This call will take
// care of setting and restoring permissions and breaking up the memory
// write into multiple chunks as required.
//
// RETURNS: number of bytes actually written
//----------------------------------------------------------------------
nub_size_t DNBProcessMemoryWrite(nub_process_t pid, nub_addr_t addr,
nub_size_t size, const void *buf) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->WriteMemory(addr, size, buf);
return 0;
}
nub_addr_t DNBProcessMemoryAllocate(nub_process_t pid, nub_size_t size,
uint32_t permissions) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->Task().AllocateMemory(size, permissions);
return 0;
}
nub_bool_t DNBProcessMemoryDeallocate(nub_process_t pid, nub_addr_t addr) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->Task().DeallocateMemory(addr);
return 0;
}
//----------------------------------------------------------------------
// Find attributes of the memory region that contains ADDR for process PID,
// if possible, and return a string describing those attributes.
//
// Returns 1 if we could find attributes for this region and OUTBUF can
// be sent to the remote debugger.
//
// Returns 0 if we couldn't find the attributes for a region of memory at
// that address and OUTBUF should not be sent.
//
// Returns -1 if this platform cannot look up information about memory regions
// or if we do not yet have a valid launched process.
//
//----------------------------------------------------------------------
int DNBProcessMemoryRegionInfo(nub_process_t pid, nub_addr_t addr,
DNBRegionInfo *region_info) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->Task().GetMemoryRegionInfo(addr, region_info);
return -1;
}
std::string DNBProcessGetProfileData(nub_process_t pid,
DNBProfileDataScanType scanType) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->Task().GetProfileData(scanType);
return std::string("");
}
nub_bool_t DNBProcessSetEnableAsyncProfiling(nub_process_t pid,
nub_bool_t enable,
uint64_t interval_usec,
DNBProfileDataScanType scan_type) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type);
return true;
}
return false;
}
//----------------------------------------------------------------------
// Get the number of threads for the specified process.
//----------------------------------------------------------------------
nub_size_t DNBProcessGetNumThreads(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetNumThreads();
return 0;
}
//----------------------------------------------------------------------
// Get the thread ID of the current thread.
//----------------------------------------------------------------------
nub_thread_t DNBProcessGetCurrentThread(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetCurrentThread();
return 0;
}
//----------------------------------------------------------------------
// Get the mach port number of the current thread.
//----------------------------------------------------------------------
nub_thread_t DNBProcessGetCurrentThreadMachPort(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetCurrentThreadMachPort();
return 0;
}
//----------------------------------------------------------------------
// Change the current thread.
//----------------------------------------------------------------------
nub_thread_t DNBProcessSetCurrentThread(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->SetCurrentThread(tid);
return INVALID_NUB_THREAD;
}
//----------------------------------------------------------------------
// Dump a string describing a thread's stop reason to the specified file
// handle
//----------------------------------------------------------------------
nub_bool_t DNBThreadGetStopReason(nub_process_t pid, nub_thread_t tid,
struct DNBThreadStopInfo *stop_info) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetThreadStoppedReason(tid, stop_info);
return false;
}
//----------------------------------------------------------------------
// Return string description for the specified thread.
//
// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
// string from a static buffer that must be copied prior to subsequent
// calls.
//----------------------------------------------------------------------
const char *DNBThreadGetInfo(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetThreadInfo(tid);
return NULL;
}
//----------------------------------------------------------------------
// Get the thread ID given a thread index.
//----------------------------------------------------------------------
nub_thread_t DNBProcessGetThreadAtIndex(nub_process_t pid, size_t thread_idx) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetThreadAtIndex(thread_idx);
return INVALID_NUB_THREAD;
}
//----------------------------------------------------------------------
// Do whatever is needed to sync the thread's register state with it's kernel
// values.
//----------------------------------------------------------------------
nub_bool_t DNBProcessSyncThreadState(nub_process_t pid, nub_thread_t tid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->SyncThreadState(tid);
return false;
}
nub_addr_t DNBProcessGetSharedLibraryInfoAddress(nub_process_t pid) {
MachProcessSP procSP;
DNBError err;
if (GetProcessSP(pid, procSP))
return procSP->Task().GetDYLDAllImageInfosAddress(err);
return INVALID_NUB_ADDRESS;
}
nub_bool_t DNBProcessSharedLibrariesUpdated(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
procSP->SharedLibrariesUpdated();
return true;
}
return false;
}
const char *DNBGetDeploymentInfo(nub_process_t pid,
const struct load_command& lc,
uint64_t load_command_address,
uint32_t& major_version,
uint32_t& minor_version,
uint32_t& patch_version) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetDeploymentInfo(lc, load_command_address,
major_version, minor_version,
patch_version);
return nullptr;
}
//----------------------------------------------------------------------
// Get the current shared library information for a process. Only return
// the shared libraries that have changed since the last shared library
// state changed event if only_changed is non-zero.
//----------------------------------------------------------------------
nub_size_t
DNBProcessGetSharedLibraryInfo(nub_process_t pid, nub_bool_t only_changed,
struct DNBExecutableImageInfo **image_infos) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->CopyImageInfos(image_infos, only_changed);
// If we have no process, then return NULL for the shared library info
// and zero for shared library count
*image_infos = NULL;
return 0;
}
uint32_t DNBGetRegisterCPUType() {
return DNBArchProtocol::GetRegisterCPUType();
}
//----------------------------------------------------------------------
// Get the register set information for a specific thread.
//----------------------------------------------------------------------
const DNBRegisterSetInfo *DNBGetRegisterSetInfo(nub_size_t *num_reg_sets) {
return DNBArchProtocol::GetRegisterSetInfo(num_reg_sets);
}
//----------------------------------------------------------------------
// Read a register value by register set and register index.
//----------------------------------------------------------------------
nub_bool_t DNBThreadGetRegisterValueByID(nub_process_t pid, nub_thread_t tid,
uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
MachProcessSP procSP;
::bzero(value, sizeof(DNBRegisterValue));
if (GetProcessSP(pid, procSP)) {
if (tid != INVALID_NUB_THREAD)
return procSP->GetRegisterValue(tid, set, reg, value);
}
return false;
}
nub_bool_t DNBThreadSetRegisterValueByID(nub_process_t pid, nub_thread_t tid,
uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
if (tid != INVALID_NUB_THREAD) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->SetRegisterValue(tid, set, reg, value);
}
return false;
}
nub_size_t DNBThreadGetRegisterContext(nub_process_t pid, nub_thread_t tid,
void *buf, size_t buf_len) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
if (tid != INVALID_NUB_THREAD)
return procSP->GetThreadList().GetRegisterContext(tid, buf, buf_len);
}
::bzero(buf, buf_len);
return 0;
}
nub_size_t DNBThreadSetRegisterContext(nub_process_t pid, nub_thread_t tid,
const void *buf, size_t buf_len) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
if (tid != INVALID_NUB_THREAD)
return procSP->GetThreadList().SetRegisterContext(tid, buf, buf_len);
}
return 0;
}
uint32_t DNBThreadSaveRegisterState(nub_process_t pid, nub_thread_t tid) {
if (tid != INVALID_NUB_THREAD) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetThreadList().SaveRegisterState(tid);
}
return 0;
}
nub_bool_t DNBThreadRestoreRegisterState(nub_process_t pid, nub_thread_t tid,
uint32_t save_id) {
if (tid != INVALID_NUB_THREAD) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetThreadList().RestoreRegisterState(tid, save_id);
}
return false;
}
//----------------------------------------------------------------------
// Read a register value by name.
//----------------------------------------------------------------------
nub_bool_t DNBThreadGetRegisterValueByName(nub_process_t pid, nub_thread_t tid,
uint32_t reg_set,
const char *reg_name,
DNBRegisterValue *value) {
MachProcessSP procSP;
::bzero(value, sizeof(DNBRegisterValue));
if (GetProcessSP(pid, procSP)) {
const struct DNBRegisterSetInfo *set_info;
nub_size_t num_reg_sets = 0;
set_info = DNBGetRegisterSetInfo(&num_reg_sets);
if (set_info) {
uint32_t set = reg_set;
uint32_t reg;
if (set == REGISTER_SET_ALL) {
for (set = 1; set < num_reg_sets; ++set) {
for (reg = 0; reg < set_info[set].num_registers; ++reg) {
if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
return procSP->GetRegisterValue(tid, set, reg, value);
}
}
} else {
for (reg = 0; reg < set_info[set].num_registers; ++reg) {
if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
return procSP->GetRegisterValue(tid, set, reg, value);
}
}
}
}
return false;
}
//----------------------------------------------------------------------
// Read a register set and register number from the register name.
//----------------------------------------------------------------------
nub_bool_t DNBGetRegisterInfoByName(const char *reg_name,
DNBRegisterInfo *info) {
const struct DNBRegisterSetInfo *set_info;
nub_size_t num_reg_sets = 0;
set_info = DNBGetRegisterSetInfo(&num_reg_sets);
if (set_info) {
uint32_t set, reg;
for (set = 1; set < num_reg_sets; ++set) {
for (reg = 0; reg < set_info[set].num_registers; ++reg) {
if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0) {
*info = set_info[set].registers[reg];
return true;
}
}
}
for (set = 1; set < num_reg_sets; ++set) {
uint32_t reg;
for (reg = 0; reg < set_info[set].num_registers; ++reg) {
if (set_info[set].registers[reg].alt == NULL)
continue;
if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0) {
*info = set_info[set].registers[reg];
return true;
}
}
}
}
::bzero(info, sizeof(DNBRegisterInfo));
return false;
}
//----------------------------------------------------------------------
// Set the name to address callback function that this nub can use
// for any name to address lookups that are needed.
//----------------------------------------------------------------------
nub_bool_t DNBProcessSetNameToAddressCallback(nub_process_t pid,
DNBCallbackNameToAddress callback,
void *baton) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
procSP->SetNameToAddressCallback(callback, baton);
return true;
}
return false;
}
//----------------------------------------------------------------------
// Set the name to address callback function that this nub can use
// for any name to address lookups that are needed.
//----------------------------------------------------------------------
nub_bool_t DNBProcessSetSharedLibraryInfoCallback(
nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback,
void *baton) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
procSP->SetSharedLibraryInfoCallback(callback, baton);
return true;
}
return false;
}
nub_addr_t DNBProcessLookupAddress(nub_process_t pid, const char *name,
const char *shlib) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP)) {
return procSP->LookupSymbol(name, shlib);
}
return INVALID_NUB_ADDRESS;
}
nub_size_t DNBProcessGetAvailableSTDOUT(nub_process_t pid, char *buf,
nub_size_t buf_size) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetAvailableSTDOUT(buf, buf_size);
return 0;
}
nub_size_t DNBProcessGetAvailableSTDERR(nub_process_t pid, char *buf,
nub_size_t buf_size) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetAvailableSTDERR(buf, buf_size);
return 0;
}
nub_size_t DNBProcessGetAvailableProfileData(nub_process_t pid, char *buf,
nub_size_t buf_size) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetAsyncProfileData(buf, buf_size);
return 0;
}
DarwinLogEventVector DNBProcessGetAvailableDarwinLogEvents(nub_process_t pid) {
return DarwinLogCollector::GetEventsForProcess(pid);
}
nub_size_t DNBProcessGetStopCount(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->StopCount();
return 0;
}
uint32_t DNBProcessGetCPUType(nub_process_t pid) {
MachProcessSP procSP;
if (GetProcessSP(pid, procSP))
return procSP->GetCPUType();
return 0;
}
nub_bool_t DNBResolveExecutablePath(const char *path, char *resolved_path,
size_t resolved_path_size) {
if (path == NULL || path[0] == '\0')
return false;
char max_path[PATH_MAX];
std::string result;
CFString::GlobPath(path, result);
if (result.empty())
result = path;
struct stat path_stat;
if (::stat(path, &path_stat) == 0) {
if ((path_stat.st_mode & S_IFMT) == S_IFDIR) {
CFBundle bundle(path);
CFReleaser<CFURLRef> url(bundle.CopyExecutableURL());
if (url.get()) {
if (::CFURLGetFileSystemRepresentation(
url.get(), true, (UInt8 *)resolved_path, resolved_path_size))
return true;
}
}
}
if (realpath(path, max_path)) {
// Found the path relatively...
::strlcpy(resolved_path, max_path, resolved_path_size);
return strlen(resolved_path) + 1 < resolved_path_size;
} else {
// Not a relative path, check the PATH environment variable if the
const char *PATH = getenv("PATH");
if (PATH) {
const char *curr_path_start = PATH;
const char *curr_path_end;
while (curr_path_start && *curr_path_start) {
curr_path_end = strchr(curr_path_start, ':');
if (curr_path_end == NULL) {
result.assign(curr_path_start);
curr_path_start = NULL;
} else if (curr_path_end > curr_path_start) {
size_t len = curr_path_end - curr_path_start;
result.assign(curr_path_start, len);
curr_path_start += len + 1;
} else
break;
result += '/';
result += path;
struct stat s;
if (stat(result.c_str(), &s) == 0) {
::strlcpy(resolved_path, result.c_str(), resolved_path_size);
return result.size() + 1 < resolved_path_size;
}
}
}
}
return false;
}
bool DNBGetOSVersionNumbers(uint64_t *major, uint64_t *minor, uint64_t *patch) {
return MachProcess::GetOSVersionNumbers(major, minor, patch);
}
void DNBInitialize() {
DNBLogThreadedIf(LOG_PROCESS, "DNBInitialize ()");
#if defined(__i386__) || defined(__x86_64__)
DNBArchImplI386::Initialize();
DNBArchImplX86_64::Initialize();
#elif defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
DNBArchMachARM::Initialize();
DNBArchMachARM64::Initialize();
#endif
}
void DNBTerminate() {}
nub_bool_t DNBSetArchitecture(const char *arch) {
if (arch && arch[0]) {
if (strcasecmp(arch, "i386") == 0)
return DNBArchProtocol::SetArchitecture(CPU_TYPE_I386);
else if ((strcasecmp(arch, "x86_64") == 0) ||
(strcasecmp(arch, "x86_64h") == 0))
return DNBArchProtocol::SetArchitecture(CPU_TYPE_X86_64);
else if (strstr(arch, "arm64") == arch || strstr(arch, "armv8") == arch ||
strstr(arch, "aarch64") == arch)
return DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64);
else if (strstr(arch, "arm") == arch)
return DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM);
}
return false;
}