forked from OSchip/llvm-project
1118 lines
42 KiB
C++
1118 lines
42 KiB
C++
//===-------------- ARM64CollectLOH.cpp - ARM64 collect LOH pass --*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that collect the Linker Optimization Hint (LOH).
|
|
// This pass should be run at the very end of the compilation flow, just before
|
|
// assembly printer.
|
|
// To be useful for the linker, the LOH must be printed into the assembly file.
|
|
//
|
|
// A LOH describes a sequence of instructions that may be optimized by the
|
|
// linker.
|
|
// This same sequence cannot be optimized by the compiler because some of
|
|
// the information will be known at link time.
|
|
// For instance, consider the following sequence:
|
|
// L1: adrp xA, sym@PAGE
|
|
// L2: add xB, xA, sym@PAGEOFF
|
|
// L3: ldr xC, [xB, #imm]
|
|
// This sequence can be turned into:
|
|
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
|
|
// L3: ldr xC, sym+#imm
|
|
// It may also be turned into either the following more efficient
|
|
// code sequences:
|
|
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
|
|
// L1: adrp xA, sym@PAGE
|
|
// L3: ldr xC, [xB, sym@PAGEOFF + #imm]
|
|
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
|
|
// L1: adr xA, sym
|
|
// L3: ldr xC, [xB, #imm]
|
|
//
|
|
// To be valid a LOH must meet all the requirements needed by all the related
|
|
// possible linker transformations.
|
|
// For instance, using the running example, the constraints to emit
|
|
// ".loh AdrpAddLdr" are:
|
|
// - L1, L2, and L3 instructions are of the expected type, i.e.,
|
|
// respectively ADRP, ADD (immediate), and LD.
|
|
// - The result of L1 is used only by L2.
|
|
// - The register argument (xA) used in the ADD instruction is defined
|
|
// only by L1.
|
|
// - The result of L2 is used only by L3.
|
|
// - The base address (xB) in L3 is defined only L2.
|
|
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
|
|
// @PAGE/@PAGEOFF with no additional constants
|
|
//
|
|
// Currently supported LOHs are:
|
|
// * So called non-ADRP-related:
|
|
// - .loh AdrpAddLdr L1, L2, L3:
|
|
// L1: adrp xA, sym@PAGE
|
|
// L2: add xB, xA, sym@PAGEOFF
|
|
// L3: ldr xC, [xB, #imm]
|
|
// - .loh AdrpLdrGotLdr L1, L2, L3:
|
|
// L1: adrp xA, sym@GOTPAGE
|
|
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
|
|
// L3: ldr xC, [xB, #imm]
|
|
// - .loh AdrpLdr L1, L3:
|
|
// L1: adrp xA, sym@PAGE
|
|
// L3: ldr xC, [xA, sym@PAGEOFF]
|
|
// - .loh AdrpAddStr L1, L2, L3:
|
|
// L1: adrp xA, sym@PAGE
|
|
// L2: add xB, xA, sym@PAGEOFF
|
|
// L3: str xC, [xB, #imm]
|
|
// - .loh AdrpLdrGotStr L1, L2, L3:
|
|
// L1: adrp xA, sym@GOTPAGE
|
|
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
|
|
// L3: str xC, [xB, #imm]
|
|
// - .loh AdrpAdd L1, L2:
|
|
// L1: adrp xA, sym@PAGE
|
|
// L2: add xB, xA, sym@PAGEOFF
|
|
// For all these LOHs, L1, L2, L3 form a simple chain:
|
|
// L1 result is used only by L2 and L2 result by L3.
|
|
// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
|
|
// by L1.
|
|
// All these LOHs aim at using more efficient load/store patterns by folding
|
|
// some instructions used to compute the address directly into the load/store.
|
|
//
|
|
// * So called ADRP-related:
|
|
// - .loh AdrpAdrp L2, L1:
|
|
// L2: ADRP xA, sym1@PAGE
|
|
// L1: ADRP xA, sym2@PAGE
|
|
// L2 dominates L1 and xA is not redifined between L2 and L1
|
|
// This LOH aims at getting rid of redundant ADRP instructions.
|
|
//
|
|
// The overall design for emitting the LOHs is:
|
|
// 1. ARM64CollectLOH (this pass) records the LOHs in the ARM64FunctionInfo.
|
|
// 2. ARM64AsmPrinter reads the LOHs from ARM64FunctionInfo and it:
|
|
// 1. Associates them a label.
|
|
// 2. Emits them in a MCStreamer (EmitLOHDirective).
|
|
// - The MCMachOStreamer records them into the MCAssembler.
|
|
// - The MCAsmStreamer prints them.
|
|
// - Other MCStreamers ignore them.
|
|
// 3. Closes the MCStreamer:
|
|
// - The MachObjectWriter gets them from the MCAssembler and writes
|
|
// them in the object file.
|
|
// - Other ObjectWriters ignore them.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM64.h"
|
|
#include "ARM64InstrInfo.h"
|
|
#include "ARM64MachineFunctionInfo.h"
|
|
#include "MCTargetDesc/ARM64AddressingModes.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm64-collect-loh"
|
|
|
|
static cl::opt<bool>
|
|
PreCollectRegister("arm64-collect-loh-pre-collect-register", cl::Hidden,
|
|
cl::desc("Restrict analysis to registers invovled"
|
|
" in LOHs"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
BasicBlockScopeOnly("arm64-collect-loh-bb-only", cl::Hidden,
|
|
cl::desc("Restrict analysis at basic block scope"),
|
|
cl::init(true));
|
|
|
|
STATISTIC(NumADRPSimpleCandidate,
|
|
"Number of simplifiable ADRP dominate by another");
|
|
STATISTIC(NumADRPComplexCandidate2,
|
|
"Number of simplifiable ADRP reachable by 2 defs");
|
|
STATISTIC(NumADRPComplexCandidate3,
|
|
"Number of simplifiable ADRP reachable by 3 defs");
|
|
STATISTIC(NumADRPComplexCandidateOther,
|
|
"Number of simplifiable ADRP reachable by 4 or more defs");
|
|
STATISTIC(NumADDToSTRWithImm,
|
|
"Number of simplifiable STR with imm reachable by ADD");
|
|
STATISTIC(NumLDRToSTRWithImm,
|
|
"Number of simplifiable STR with imm reachable by LDR");
|
|
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
|
|
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
|
|
STATISTIC(NumADDToLDRWithImm,
|
|
"Number of simplifiable LDR with imm reachable by ADD");
|
|
STATISTIC(NumLDRToLDRWithImm,
|
|
"Number of simplifiable LDR with imm reachable by LDR");
|
|
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
|
|
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
|
|
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
|
|
STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
|
|
STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
|
|
STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
|
|
STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
|
|
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
|
|
STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
|
|
|
|
namespace llvm {
|
|
void initializeARM64CollectLOHPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
struct ARM64CollectLOH : public MachineFunctionPass {
|
|
static char ID;
|
|
ARM64CollectLOH() : MachineFunctionPass(ID) {
|
|
initializeARM64CollectLOHPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
const char *getPassName() const override {
|
|
return "ARM64 Collect Linker Optimization Hint (LOH)";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<MachineDominatorTree>();
|
|
}
|
|
|
|
private:
|
|
};
|
|
|
|
/// A set of MachineInstruction.
|
|
typedef SetVector<const MachineInstr *> SetOfMachineInstr;
|
|
/// Map a basic block to a set of instructions per register.
|
|
/// This is used to represent the exposed uses of a basic block
|
|
/// per register.
|
|
typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *>
|
|
BlockToSetOfInstrsPerColor;
|
|
/// Map a basic block to an instruction per register.
|
|
/// This is used to represent the live-out definitions of a basic block
|
|
/// per register.
|
|
typedef MapVector<const MachineBasicBlock *, const MachineInstr **>
|
|
BlockToInstrPerColor;
|
|
/// Map an instruction to a set of instructions. Used to represent the
|
|
/// mapping def to reachable uses or use to definitions.
|
|
typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
|
|
/// Map a basic block to a BitVector.
|
|
/// This is used to record the kill registers per basic block.
|
|
typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
|
|
|
|
/// Map a register to a dense id.
|
|
typedef DenseMap<unsigned, unsigned> MapRegToId;
|
|
/// Map a dense id to a register. Used for debug purposes.
|
|
typedef SmallVector<unsigned, 32> MapIdToReg;
|
|
} // end anonymous namespace.
|
|
|
|
char ARM64CollectLOH::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ARM64CollectLOH, "arm64-collect-loh",
|
|
"ARM64 Collect Linker Optimization Hint (LOH)", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_END(ARM64CollectLOH, "arm64-collect-loh",
|
|
"ARM64 Collect Linker Optimization Hint (LOH)", false,
|
|
false)
|
|
|
|
/// Given a couple (MBB, reg) get the corresponding set of instruction from
|
|
/// the given "sets".
|
|
/// If this couple does not reference any set, an empty set is added to "sets"
|
|
/// for this couple and returned.
|
|
/// \param nbRegs is used internally allocate some memory. It must be consistent
|
|
/// with the way sets is used.
|
|
static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
|
|
const MachineBasicBlock &MBB, unsigned reg,
|
|
unsigned nbRegs) {
|
|
SetOfMachineInstr *result;
|
|
BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
|
|
if (it != sets.end())
|
|
result = it->second;
|
|
else
|
|
result = sets[&MBB] = new SetOfMachineInstr[nbRegs];
|
|
|
|
return result[reg];
|
|
}
|
|
|
|
/// Given a couple (reg, MI) get the corresponding set of instructions from the
|
|
/// the given "sets".
|
|
/// This is used to get the uses record in sets of a definition identified by
|
|
/// MI and reg, i.e., MI defines reg.
|
|
/// If the couple does not reference anything, an empty set is added to
|
|
/// "sets[reg]".
|
|
/// \pre set[reg] is valid.
|
|
static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
|
|
const MachineInstr &MI) {
|
|
return sets[reg][&MI];
|
|
}
|
|
|
|
/// Same as getUses but does not modify the input map: sets.
|
|
/// \return NULL if the couple (reg, MI) is not in sets.
|
|
static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
|
|
const MachineInstr &MI) {
|
|
InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
|
|
if (Res != sets[reg].end())
|
|
return &(Res->second);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Initialize the reaching definition algorithm:
|
|
/// For each basic block BB in MF, record:
|
|
/// - its kill set.
|
|
/// - its reachable uses (uses that are exposed to BB's predecessors).
|
|
/// - its the generated definitions.
|
|
/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
|
|
/// the list of uses of exposed defintions.
|
|
/// \param ADRPMode specifies to only consider ADRP instructions for generated
|
|
/// definition. It also consider definitions of ADRP instructions as uses and
|
|
/// ignore other uses. The ADRPMode is used to collect the information for LHO
|
|
/// that involve ADRP operation only.
|
|
static void initReachingDef(MachineFunction &MF,
|
|
InstrToInstrs *ColorOpToReachedUses,
|
|
BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
|
|
BlockToSetOfInstrsPerColor &ReachableUses,
|
|
const MapRegToId &RegToId,
|
|
const MachineInstr *DummyOp, bool ADRPMode) {
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
|
|
|
|
unsigned NbReg = RegToId.size();
|
|
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
const MachineInstr **&BBGen = Gen[&MBB];
|
|
BBGen = new const MachineInstr *[NbReg];
|
|
memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg);
|
|
|
|
BitVector &BBKillSet = Kill[&MBB];
|
|
BBKillSet.resize(NbReg);
|
|
for (const MachineInstr &MI : MBB) {
|
|
bool IsADRP = MI.getOpcode() == ARM64::ADRP;
|
|
|
|
// Process uses first.
|
|
if (IsADRP || !ADRPMode)
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
// Treat ADRP def as use, as the goal of the analysis is to find
|
|
// ADRP defs reached by other ADRP defs.
|
|
if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
|
|
(ADRPMode && (!IsADRP || !MO.isDef())))
|
|
continue;
|
|
unsigned CurReg = MO.getReg();
|
|
MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
|
|
if (ItCurRegId == RegToId.end())
|
|
continue;
|
|
CurReg = ItCurRegId->second;
|
|
|
|
// if CurReg has not been defined, this use is reachable.
|
|
if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
|
|
getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
|
|
// current basic block definition for this color, if any, is in Gen.
|
|
if (BBGen[CurReg])
|
|
getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
|
|
}
|
|
|
|
// Process clobbers.
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isRegMask())
|
|
continue;
|
|
// Clobbers kill the related colors.
|
|
const uint32_t *PreservedRegs = MO.getRegMask();
|
|
|
|
// Set generated regs.
|
|
for (const auto Entry : RegToId) {
|
|
unsigned Reg = Entry.second;
|
|
// Use the global register ID when querying APIs external to this
|
|
// pass.
|
|
if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
|
|
// Do not register clobbered definition for no ADRP.
|
|
// This definition is not used anyway (otherwise register
|
|
// allocation is wrong).
|
|
BBGen[Reg] = ADRPMode ? &MI : nullptr;
|
|
BBKillSet.set(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process register defs.
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned CurReg = MO.getReg();
|
|
MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
|
|
if (ItCurRegId == RegToId.end())
|
|
continue;
|
|
|
|
for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
|
|
MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
|
|
assert(ItRegId != RegToId.end() &&
|
|
"Sub-register of an "
|
|
"involved register, not recorded as involved!");
|
|
BBKillSet.set(ItRegId->second);
|
|
BBGen[ItRegId->second] = &MI;
|
|
}
|
|
BBGen[ItCurRegId->second] = &MI;
|
|
}
|
|
}
|
|
|
|
// If we restrict our analysis to basic block scope, conservatively add a
|
|
// dummy
|
|
// use for each generated value.
|
|
if (!ADRPMode && DummyOp && !MBB.succ_empty())
|
|
for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
|
|
if (BBGen[CurReg])
|
|
getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
|
|
}
|
|
}
|
|
|
|
/// Reaching def core algorithm:
|
|
/// while an Out has changed
|
|
/// for each bb
|
|
/// for each color
|
|
/// In[bb][color] = U Out[bb.predecessors][color]
|
|
/// insert reachableUses[bb][color] in each in[bb][color]
|
|
/// op.reachedUses
|
|
///
|
|
/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
|
|
static void reachingDefAlgorithm(MachineFunction &MF,
|
|
InstrToInstrs *ColorOpToReachedUses,
|
|
BlockToSetOfInstrsPerColor &In,
|
|
BlockToSetOfInstrsPerColor &Out,
|
|
BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
|
|
BlockToSetOfInstrsPerColor &ReachableUses,
|
|
unsigned NbReg) {
|
|
bool HasChanged;
|
|
do {
|
|
HasChanged = false;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
unsigned CurReg;
|
|
for (CurReg = 0; CurReg < NbReg; ++CurReg) {
|
|
SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
|
|
SetOfMachineInstr &BBReachableUses =
|
|
getSet(ReachableUses, MBB, CurReg, NbReg);
|
|
SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
|
|
unsigned Size = BBOutSet.size();
|
|
// In[bb][color] = U Out[bb.predecessors][color]
|
|
for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
|
|
SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
|
|
BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
|
|
}
|
|
// insert reachableUses[bb][color] in each in[bb][color] op.reachedses
|
|
for (const MachineInstr *MI : BBInSet) {
|
|
SetOfMachineInstr &OpReachedUses =
|
|
getUses(ColorOpToReachedUses, CurReg, *MI);
|
|
OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
|
|
}
|
|
// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
|
|
if (!Kill[&MBB].test(CurReg))
|
|
BBOutSet.insert(BBInSet.begin(), BBInSet.end());
|
|
if (Gen[&MBB][CurReg])
|
|
BBOutSet.insert(Gen[&MBB][CurReg]);
|
|
HasChanged |= BBOutSet.size() != Size;
|
|
}
|
|
}
|
|
} while (HasChanged);
|
|
}
|
|
|
|
/// Release all memory dynamically allocated during the reaching
|
|
/// definition algorithm.
|
|
static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
|
|
BlockToSetOfInstrsPerColor &Out,
|
|
BlockToInstrPerColor &Gen,
|
|
BlockToSetOfInstrsPerColor &ReachableUses) {
|
|
for (auto &IT : Out)
|
|
delete[] IT.second;
|
|
for (auto &IT : In)
|
|
delete[] IT.second;
|
|
for (auto &IT : ReachableUses)
|
|
delete[] IT.second;
|
|
for (auto &IT : Gen)
|
|
delete[] IT.second;
|
|
}
|
|
|
|
/// Reaching definition algorithm.
|
|
/// \param MF function on which the algorithm will operate.
|
|
/// \param[out] ColorOpToReachedUses will contain the result of the reaching
|
|
/// def algorithm.
|
|
/// \param ADRPMode specify whether the reaching def algorithm should be tuned
|
|
/// for ADRP optimization. \see initReachingDef for more details.
|
|
/// \param DummyOp if not NULL, the algorithm will work at
|
|
/// basic block scope and will set for every exposed definition a use to
|
|
/// @p DummyOp.
|
|
/// \pre ColorOpToReachedUses is an array of at least number of registers of
|
|
/// InstrToInstrs.
|
|
static void reachingDef(MachineFunction &MF,
|
|
InstrToInstrs *ColorOpToReachedUses,
|
|
const MapRegToId &RegToId, bool ADRPMode = false,
|
|
const MachineInstr *DummyOp = nullptr) {
|
|
// structures:
|
|
// For each basic block.
|
|
// Out: a set per color of definitions that reach the
|
|
// out boundary of this block.
|
|
// In: Same as Out but for in boundary.
|
|
// Gen: generated color in this block (one operation per color).
|
|
// Kill: register set of killed color in this block.
|
|
// ReachableUses: a set per color of uses (operation) reachable
|
|
// for "In" definitions.
|
|
BlockToSetOfInstrsPerColor Out, In, ReachableUses;
|
|
BlockToInstrPerColor Gen;
|
|
BlockToRegSet Kill;
|
|
|
|
// Initialize Gen, kill and reachableUses.
|
|
initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
|
|
DummyOp, ADRPMode);
|
|
|
|
// Algo.
|
|
if (!DummyOp)
|
|
reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
|
|
ReachableUses, RegToId.size());
|
|
|
|
// finit.
|
|
finitReachingDef(In, Out, Gen, ReachableUses);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// print the result of the reaching definition algorithm.
|
|
static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
|
|
unsigned NbReg, const TargetRegisterInfo *TRI,
|
|
const MapIdToReg &IdToReg) {
|
|
unsigned CurReg;
|
|
for (CurReg = 0; CurReg < NbReg; ++CurReg) {
|
|
if (ColorOpToReachedUses[CurReg].empty())
|
|
continue;
|
|
DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
|
|
|
|
for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
|
|
DEBUG(dbgs() << "Def:\n");
|
|
DEBUG(DefsIt.first->print(dbgs()));
|
|
DEBUG(dbgs() << "Reachable uses:\n");
|
|
for (const MachineInstr *MI : DefsIt.second) {
|
|
DEBUG(MI->print(dbgs()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
/// Answer the following question: Can Def be one of the definition
|
|
/// involved in a part of a LOH?
|
|
static bool canDefBePartOfLOH(const MachineInstr *Def) {
|
|
unsigned Opc = Def->getOpcode();
|
|
// Accept ADRP, ADDLow and LOADGot.
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case ARM64::ADRP:
|
|
return true;
|
|
case ARM64::ADDXri:
|
|
// Check immediate to see if the immediate is an address.
|
|
switch (Def->getOperand(2).getType()) {
|
|
default:
|
|
return false;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_BlockAddress:
|
|
return true;
|
|
}
|
|
case ARM64::LDRXui:
|
|
// Check immediate to see if the immediate is an address.
|
|
switch (Def->getOperand(2).getType()) {
|
|
default:
|
|
return false;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return true;
|
|
}
|
|
}
|
|
// Unreachable.
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the given instruction can the end of a LOH chain involving a
|
|
/// store.
|
|
static bool isCandidateStore(const MachineInstr *Instr) {
|
|
switch (Instr->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ARM64::STRBui:
|
|
case ARM64::STRHui:
|
|
case ARM64::STRWui:
|
|
case ARM64::STRXui:
|
|
case ARM64::STRSui:
|
|
case ARM64::STRDui:
|
|
case ARM64::STRQui:
|
|
// In case we have str xA, [xA, #imm], this is two different uses
|
|
// of xA and we cannot fold, otherwise the xA stored may be wrong,
|
|
// even if #imm == 0.
|
|
if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
|
|
/// Build the Use to Defs information and filter out obvious non-LOH candidates.
|
|
/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
|
|
/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
|
|
/// i.e., no simple chain.
|
|
/// \param ADRPMode -- \see initReachingDef.
|
|
static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
|
|
const InstrToInstrs *ColorOpToReachedUses,
|
|
const MapRegToId &RegToId,
|
|
bool ADRPMode = false) {
|
|
|
|
SetOfMachineInstr NotCandidate;
|
|
unsigned NbReg = RegToId.size();
|
|
MapRegToId::const_iterator EndIt = RegToId.end();
|
|
for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
|
|
// If this color is never defined, continue.
|
|
if (ColorOpToReachedUses[CurReg].empty())
|
|
continue;
|
|
|
|
for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
|
|
for (const MachineInstr *MI : DefsIt.second) {
|
|
const MachineInstr *Def = DefsIt.first;
|
|
MapRegToId::const_iterator It;
|
|
// if all the reaching defs are not adrp, this use will not be
|
|
// simplifiable.
|
|
if ((ADRPMode && Def->getOpcode() != ARM64::ADRP) ||
|
|
(!ADRPMode && !canDefBePartOfLOH(Def)) ||
|
|
(!ADRPMode && isCandidateStore(MI) &&
|
|
// store are LOH candidate iff the end of the chain is used as
|
|
// base.
|
|
((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
|
|
It->second != CurReg))) {
|
|
NotCandidate.insert(MI);
|
|
continue;
|
|
}
|
|
// Do not consider self reaching as a simplifiable case for ADRP.
|
|
if (!ADRPMode || MI != DefsIt.first) {
|
|
UseToReachingDefs[MI].insert(DefsIt.first);
|
|
// If UsesIt has several reaching definitions, it is not
|
|
// candidate for simplificaton in non-ADRPMode.
|
|
if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
|
|
NotCandidate.insert(MI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (const MachineInstr *Elem : NotCandidate) {
|
|
DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
|
|
// It would have been better if we could just remove the entry
|
|
// from the map. Because of that, we have to filter the garbage
|
|
// (second.empty) in the subsequence analysis.
|
|
UseToReachingDefs[Elem].clear();
|
|
}
|
|
}
|
|
|
|
/// Based on the use to defs information (in ADRPMode), compute the
|
|
/// opportunities of LOH ADRP-related.
|
|
static void computeADRP(const InstrToInstrs &UseToDefs,
|
|
ARM64FunctionInfo &ARM64FI,
|
|
const MachineDominatorTree *MDT) {
|
|
DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
|
|
for (const auto &Entry : UseToDefs) {
|
|
unsigned Size = Entry.second.size();
|
|
if (Size == 0)
|
|
continue;
|
|
if (Size == 1) {
|
|
const MachineInstr *L2 = *Entry.second.begin();
|
|
const MachineInstr *L1 = Entry.first;
|
|
if (!MDT->dominates(L2, L1)) {
|
|
DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
|
|
<< '\n');
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
|
|
SmallVector<const MachineInstr *, 2> Args;
|
|
Args.push_back(L2);
|
|
Args.push_back(L1);
|
|
ARM64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
|
|
++NumADRPSimpleCandidate;
|
|
}
|
|
#ifdef DEBUG
|
|
else if (Size == 2)
|
|
++NumADRPComplexCandidate2;
|
|
else if (Size == 3)
|
|
++NumADRPComplexCandidate3;
|
|
else
|
|
++NumADRPComplexCandidateOther;
|
|
#endif
|
|
// if Size < 1, the use should have been removed from the candidates
|
|
assert(Size >= 1 && "No reaching defs for that use!");
|
|
}
|
|
}
|
|
|
|
/// Check whether the given instruction can be the end of a LOH chain
|
|
/// involving a load.
|
|
static bool isCandidateLoad(const MachineInstr *Instr) {
|
|
switch (Instr->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ARM64::LDRSBWui:
|
|
case ARM64::LDRSBXui:
|
|
case ARM64::LDRSHWui:
|
|
case ARM64::LDRSHXui:
|
|
case ARM64::LDRSWui:
|
|
case ARM64::LDRBui:
|
|
case ARM64::LDRHui:
|
|
case ARM64::LDRWui:
|
|
case ARM64::LDRXui:
|
|
case ARM64::LDRSui:
|
|
case ARM64::LDRDui:
|
|
case ARM64::LDRQui:
|
|
if (Instr->getOperand(2).getTargetFlags() & ARM64II::MO_GOT)
|
|
return false;
|
|
return true;
|
|
}
|
|
// Unreachable.
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the given instruction can load a litteral.
|
|
static bool supportLoadFromLiteral(const MachineInstr *Instr) {
|
|
switch (Instr->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ARM64::LDRSWui:
|
|
case ARM64::LDRWui:
|
|
case ARM64::LDRXui:
|
|
case ARM64::LDRSui:
|
|
case ARM64::LDRDui:
|
|
case ARM64::LDRQui:
|
|
return true;
|
|
}
|
|
// Unreachable.
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the given instruction is a LOH candidate.
|
|
/// \param UseToDefs is used to check that Instr is at the end of LOH supported
|
|
/// chain.
|
|
/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
|
|
/// already been filtered out.
|
|
static bool isCandidate(const MachineInstr *Instr,
|
|
const InstrToInstrs &UseToDefs,
|
|
const MachineDominatorTree *MDT) {
|
|
if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
|
|
return false;
|
|
|
|
const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
|
|
if (Def->getOpcode() != ARM64::ADRP) {
|
|
// At this point, Def is ADDXri or LDRXui of the right type of
|
|
// symbol, because we filtered out the uses that were not defined
|
|
// by these kind of instructions (+ ADRP).
|
|
|
|
// Check if this forms a simple chain: each intermediate node must
|
|
// dominates the next one.
|
|
if (!MDT->dominates(Def, Instr))
|
|
return false;
|
|
// Move one node up in the simple chain.
|
|
if (UseToDefs.find(Def) ==
|
|
UseToDefs.end()
|
|
// The map may contain garbage we have to ignore.
|
|
||
|
|
UseToDefs.find(Def)->second.empty())
|
|
return false;
|
|
Instr = Def;
|
|
Def = *UseToDefs.find(Def)->second.begin();
|
|
}
|
|
// Check if we reached the top of the simple chain:
|
|
// - top is ADRP.
|
|
// - check the simple chain property: each intermediate node must
|
|
// dominates the next one.
|
|
if (Def->getOpcode() == ARM64::ADRP)
|
|
return MDT->dominates(Def, Instr);
|
|
return false;
|
|
}
|
|
|
|
static bool registerADRCandidate(const MachineInstr &Use,
|
|
const InstrToInstrs &UseToDefs,
|
|
const InstrToInstrs *DefsPerColorToUses,
|
|
ARM64FunctionInfo &ARM64FI,
|
|
SetOfMachineInstr *InvolvedInLOHs,
|
|
const MapRegToId &RegToId) {
|
|
// Look for opportunities to turn ADRP -> ADD or
|
|
// ADRP -> LDR GOTPAGEOFF into ADR.
|
|
// If ADRP has more than one use. Give up.
|
|
if (Use.getOpcode() != ARM64::ADDXri &&
|
|
(Use.getOpcode() != ARM64::LDRXui ||
|
|
!(Use.getOperand(2).getTargetFlags() & ARM64II::MO_GOT)))
|
|
return false;
|
|
InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
|
|
// The map may contain garbage that we need to ignore.
|
|
if (It == UseToDefs.end() || It->second.empty())
|
|
return false;
|
|
const MachineInstr &Def = **It->second.begin();
|
|
if (Def.getOpcode() != ARM64::ADRP)
|
|
return false;
|
|
// Check the number of users of ADRP.
|
|
const SetOfMachineInstr *Users =
|
|
getUses(DefsPerColorToUses,
|
|
RegToId.find(Def.getOperand(0).getReg())->second, Def);
|
|
if (Users->size() > 1) {
|
|
++NumADRComplexCandidate;
|
|
return false;
|
|
}
|
|
++NumADRSimpleCandidate;
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
|
|
"ADRP already involved in LOH.");
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
|
|
"ADD already involved in LOH.");
|
|
DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
|
|
|
|
SmallVector<const MachineInstr *, 2> Args;
|
|
Args.push_back(&Def);
|
|
Args.push_back(&Use);
|
|
|
|
ARM64FI.addLOHDirective(Use.getOpcode() == ARM64::ADDXri ? MCLOH_AdrpAdd
|
|
: MCLOH_AdrpLdrGot,
|
|
Args);
|
|
return true;
|
|
}
|
|
|
|
/// Based on the use to defs information (in non-ADRPMode), compute the
|
|
/// opportunities of LOH non-ADRP-related
|
|
static void computeOthers(const InstrToInstrs &UseToDefs,
|
|
const InstrToInstrs *DefsPerColorToUses,
|
|
ARM64FunctionInfo &ARM64FI, const MapRegToId &RegToId,
|
|
const MachineDominatorTree *MDT) {
|
|
SetOfMachineInstr *InvolvedInLOHs = nullptr;
|
|
#ifdef DEBUG
|
|
SetOfMachineInstr InvolvedInLOHsStorage;
|
|
InvolvedInLOHs = &InvolvedInLOHsStorage;
|
|
#endif // DEBUG
|
|
DEBUG(dbgs() << "*** Compute LOH for Others\n");
|
|
// ADRP -> ADD/LDR -> LDR/STR pattern.
|
|
// Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
|
|
|
|
// FIXME: When the statistics are not important,
|
|
// This initial filtering loop can be merged into the next loop.
|
|
// Currently, we didn't do it to have the same code for both DEBUG and
|
|
// NDEBUG builds. Indeed, the iterator of the second loop would need
|
|
// to be changed.
|
|
SetOfMachineInstr PotentialCandidates;
|
|
SetOfMachineInstr PotentialADROpportunities;
|
|
for (auto &Use : UseToDefs) {
|
|
// If no definition is available, this is a non candidate.
|
|
if (Use.second.empty())
|
|
continue;
|
|
// Keep only instructions that are load or store and at the end of
|
|
// a ADRP -> ADD/LDR/Nothing chain.
|
|
// We already filtered out the no-chain cases.
|
|
if (!isCandidate(Use.first, UseToDefs, MDT)) {
|
|
PotentialADROpportunities.insert(Use.first);
|
|
continue;
|
|
}
|
|
PotentialCandidates.insert(Use.first);
|
|
}
|
|
|
|
// Make the following distinctions for statistics as the linker does
|
|
// know how to decode instructions:
|
|
// - ADD/LDR/Nothing make there different patterns.
|
|
// - LDR/STR make two different patterns.
|
|
// Hence, 6 - 1 base patterns.
|
|
// (because ADRP-> Nothing -> STR is not simplifiable)
|
|
|
|
// The linker is only able to have a simple semantic, i.e., if pattern A
|
|
// do B.
|
|
// However, we want to see the opportunity we may miss if we were able to
|
|
// catch more complex cases.
|
|
|
|
// PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
|
|
// A potential candidate becomes a candidate, if its current immediate
|
|
// operand is zero and all nodes of the chain have respectively only one user
|
|
#ifdef DEBUG
|
|
SetOfMachineInstr DefsOfPotentialCandidates;
|
|
#endif
|
|
for (const MachineInstr *Candidate : PotentialCandidates) {
|
|
// Get the definition of the candidate i.e., ADD or LDR.
|
|
const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
|
|
// Record the elements of the chain.
|
|
const MachineInstr *L1 = Def;
|
|
const MachineInstr *L2 = nullptr;
|
|
unsigned ImmediateDefOpc = Def->getOpcode();
|
|
if (Def->getOpcode() != ARM64::ADRP) {
|
|
// Check the number of users of this node.
|
|
const SetOfMachineInstr *Users =
|
|
getUses(DefsPerColorToUses,
|
|
RegToId.find(Def->getOperand(0).getReg())->second, *Def);
|
|
if (Users->size() > 1) {
|
|
#ifdef DEBUG
|
|
// if all the uses of this def are in potential candidate, this is
|
|
// a complex candidate of level 2.
|
|
bool IsLevel2 = true;
|
|
for (const MachineInstr *MI : *Users) {
|
|
if (!PotentialCandidates.count(MI)) {
|
|
++NumTooCplxLvl2;
|
|
IsLevel2 = false;
|
|
break;
|
|
}
|
|
}
|
|
if (IsLevel2)
|
|
++NumCplxLvl2;
|
|
#endif // DEBUG
|
|
PotentialADROpportunities.insert(Def);
|
|
continue;
|
|
}
|
|
L2 = Def;
|
|
Def = *UseToDefs.find(Def)->second.begin();
|
|
L1 = Def;
|
|
} // else the element in the middle of the chain is nothing, thus
|
|
// Def already contains the first element of the chain.
|
|
|
|
// Check the number of users of the first node in the chain, i.e., ADRP
|
|
const SetOfMachineInstr *Users =
|
|
getUses(DefsPerColorToUses,
|
|
RegToId.find(Def->getOperand(0).getReg())->second, *Def);
|
|
if (Users->size() > 1) {
|
|
#ifdef DEBUG
|
|
// if all the uses of this def are in the defs of the potential candidate,
|
|
// this is a complex candidate of level 1
|
|
if (DefsOfPotentialCandidates.empty()) {
|
|
// lazy init
|
|
DefsOfPotentialCandidates = PotentialCandidates;
|
|
for (const MachineInstr *Candidate : PotentialCandidates) {
|
|
if (!UseToDefs.find(Candidate)->second.empty())
|
|
DefsOfPotentialCandidates.insert(
|
|
*UseToDefs.find(Candidate)->second.begin());
|
|
}
|
|
}
|
|
bool Found = false;
|
|
for (auto &Use : *Users) {
|
|
if (!DefsOfPotentialCandidates.count(Use)) {
|
|
++NumTooCplxLvl1;
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found)
|
|
++NumCplxLvl1;
|
|
#endif // DEBUG
|
|
continue;
|
|
}
|
|
|
|
bool IsL2Add = (ImmediateDefOpc == ARM64::ADDXri);
|
|
// If the chain is three instructions long and ldr is the second element,
|
|
// then this ldr must load form GOT, otherwise this is not a correct chain.
|
|
if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != ARM64II::MO_GOT)
|
|
continue;
|
|
SmallVector<const MachineInstr *, 3> Args;
|
|
MCLOHType Kind;
|
|
if (isCandidateLoad(Candidate)) {
|
|
if (!L2) {
|
|
// At this point, the candidate LOH indicates that the ldr instruction
|
|
// may use a direct access to the symbol. There is not such encoding
|
|
// for loads of byte and half.
|
|
if (!supportLoadFromLiteral(Candidate))
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
|
|
<< '\n');
|
|
Kind = MCLOH_AdrpLdr;
|
|
Args.push_back(L1);
|
|
Args.push_back(Candidate);
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
|
|
"L1 already involved in LOH.");
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
|
|
"Candidate already involved in LOH.");
|
|
++NumADRPToLDR;
|
|
} else {
|
|
DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
|
|
<< "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
|
|
<< '\n');
|
|
|
|
Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
|
|
Args.push_back(L1);
|
|
Args.push_back(L2);
|
|
Args.push_back(Candidate);
|
|
|
|
PotentialADROpportunities.remove(L2);
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
|
|
"L1 already involved in LOH.");
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
|
|
"L2 already involved in LOH.");
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
|
|
"Candidate already involved in LOH.");
|
|
#ifdef DEBUG
|
|
// get the immediate of the load
|
|
if (Candidate->getOperand(2).getImm() == 0)
|
|
if (ImmediateDefOpc == ARM64::ADDXri)
|
|
++NumADDToLDR;
|
|
else
|
|
++NumLDRToLDR;
|
|
else if (ImmediateDefOpc == ARM64::ADDXri)
|
|
++NumADDToLDRWithImm;
|
|
else
|
|
++NumLDRToLDRWithImm;
|
|
#endif // DEBUG
|
|
}
|
|
} else {
|
|
if (ImmediateDefOpc == ARM64::ADRP)
|
|
continue;
|
|
else {
|
|
|
|
DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
|
|
<< "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
|
|
<< '\n');
|
|
|
|
Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
|
|
Args.push_back(L1);
|
|
Args.push_back(L2);
|
|
Args.push_back(Candidate);
|
|
|
|
PotentialADROpportunities.remove(L2);
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
|
|
"L1 already involved in LOH.");
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
|
|
"L2 already involved in LOH.");
|
|
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
|
|
"Candidate already involved in LOH.");
|
|
#ifdef DEBUG
|
|
// get the immediate of the store
|
|
if (Candidate->getOperand(2).getImm() == 0)
|
|
if (ImmediateDefOpc == ARM64::ADDXri)
|
|
++NumADDToSTR;
|
|
else
|
|
++NumLDRToSTR;
|
|
else if (ImmediateDefOpc == ARM64::ADDXri)
|
|
++NumADDToSTRWithImm;
|
|
else
|
|
++NumLDRToSTRWithImm;
|
|
#endif // DEBUG
|
|
}
|
|
}
|
|
ARM64FI.addLOHDirective(Kind, Args);
|
|
}
|
|
|
|
// Now, we grabbed all the big patterns, check ADR opportunities.
|
|
for (const MachineInstr *Candidate : PotentialADROpportunities)
|
|
registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, ARM64FI,
|
|
InvolvedInLOHs, RegToId);
|
|
}
|
|
|
|
/// Look for every register defined by potential LOHs candidates.
|
|
/// Map these registers with dense id in @p RegToId and vice-versa in
|
|
/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
|
|
static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
|
|
MapIdToReg &IdToReg,
|
|
const TargetRegisterInfo *TRI) {
|
|
unsigned CurRegId = 0;
|
|
if (!PreCollectRegister) {
|
|
unsigned NbReg = TRI->getNumRegs();
|
|
for (; CurRegId < NbReg; ++CurRegId) {
|
|
RegToId[CurRegId] = CurRegId;
|
|
DEBUG(IdToReg.push_back(CurRegId));
|
|
DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
DEBUG(dbgs() << "** Collect Involved Register\n");
|
|
for (const auto &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
if (!canDefBePartOfLOH(&MI))
|
|
continue;
|
|
|
|
// Process defs
|
|
for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
|
|
IOEnd = MI.operands_end();
|
|
IO != IOEnd; ++IO) {
|
|
if (!IO->isReg() || !IO->isDef())
|
|
continue;
|
|
unsigned CurReg = IO->getReg();
|
|
for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
|
|
if (RegToId.find(*AI) == RegToId.end()) {
|
|
DEBUG(IdToReg.push_back(*AI);
|
|
assert(IdToReg[CurRegId] == *AI &&
|
|
"Reg index mismatches insertion index."));
|
|
RegToId[*AI] = CurRegId++;
|
|
DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
|
|
const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
|
|
|
|
MapRegToId RegToId;
|
|
MapIdToReg IdToReg;
|
|
ARM64FunctionInfo *ARM64FI = MF.getInfo<ARM64FunctionInfo>();
|
|
assert(ARM64FI && "No MachineFunctionInfo for this function!");
|
|
|
|
DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
|
|
|
|
collectInvolvedReg(MF, RegToId, IdToReg, TRI);
|
|
if (RegToId.empty())
|
|
return false;
|
|
|
|
MachineInstr *DummyOp = nullptr;
|
|
if (BasicBlockScopeOnly) {
|
|
const ARM64InstrInfo *TII =
|
|
static_cast<const ARM64InstrInfo *>(TM.getInstrInfo());
|
|
// For local analysis, create a dummy operation to record uses that are not
|
|
// local.
|
|
DummyOp = MF.CreateMachineInstr(TII->get(ARM64::COPY), DebugLoc());
|
|
}
|
|
|
|
unsigned NbReg = RegToId.size();
|
|
bool Modified = false;
|
|
|
|
// Start with ADRP.
|
|
InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
|
|
|
|
// Compute the reaching def in ADRP mode, meaning ADRP definitions
|
|
// are first considered as uses.
|
|
reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
|
|
DEBUG(dbgs() << "ADRP reaching defs\n");
|
|
DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
|
|
|
|
// Translate the definition to uses map into a use to definitions map to ease
|
|
// statistic computation.
|
|
InstrToInstrs ADRPToReachingDefs;
|
|
reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
|
|
|
|
// Compute LOH for ADRP.
|
|
computeADRP(ADRPToReachingDefs, *ARM64FI, MDT);
|
|
delete[] ColorOpToReachedUses;
|
|
|
|
// Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
|
|
ColorOpToReachedUses = new InstrToInstrs[NbReg];
|
|
|
|
// first perform a regular reaching def analysis.
|
|
reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
|
|
DEBUG(dbgs() << "All reaching defs\n");
|
|
DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
|
|
|
|
// Turn that into a use to defs to ease statistic computation.
|
|
InstrToInstrs UsesToReachingDefs;
|
|
reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
|
|
|
|
// Compute other than AdrpAdrp LOH.
|
|
computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *ARM64FI, RegToId,
|
|
MDT);
|
|
delete[] ColorOpToReachedUses;
|
|
|
|
if (BasicBlockScopeOnly)
|
|
MF.DeleteMachineInstr(DummyOp);
|
|
|
|
return Modified;
|
|
}
|
|
|
|
/// createARM64CollectLOHPass - returns an instance of the Statistic for
|
|
/// linker optimization pass.
|
|
FunctionPass *llvm::createARM64CollectLOHPass() {
|
|
return new ARM64CollectLOH();
|
|
}
|