llvm-project/clang/lib/CodeGen/CGExprCXX.cpp

528 lines
19 KiB
C++

//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with code generation of C++ expressions
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
using namespace clang;
using namespace CodeGen;
static uint64_t CalculateCookiePadding(ASTContext &Ctx, const CXXNewExpr *E) {
if (!E->isArray())
return 0;
QualType T = E->getAllocatedType();
const RecordType *RT = T->getAs<RecordType>();
if (!RT)
return 0;
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!RD)
return 0;
// Check if the class has a trivial destructor.
if (RD->hasTrivialDestructor()) {
// FIXME: Check for a two-argument delete.
return 0;
}
// Padding is the maximum of sizeof(size_t) and alignof(T)
return std::max(Ctx.getTypeSize(Ctx.getSizeType()),
static_cast<uint64_t>(Ctx.getTypeAlign(T))) / 8;
}
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
const CXXNewExpr *E,
llvm::Value *& NumElements) {
QualType Type = E->getAllocatedType();
uint64_t TypeSizeInBytes = CGF.getContext().getTypeSize(Type) / 8;
const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
if (!E->isArray())
return llvm::ConstantInt::get(SizeTy, TypeSizeInBytes);
uint64_t CookiePadding = CalculateCookiePadding(CGF.getContext(), E);
Expr::EvalResult Result;
if (E->getArraySize()->Evaluate(Result, CGF.getContext()) &&
!Result.HasSideEffects && Result.Val.isInt()) {
uint64_t AllocSize =
Result.Val.getInt().getZExtValue() * TypeSizeInBytes + CookiePadding;
NumElements =
llvm::ConstantInt::get(SizeTy, Result.Val.getInt().getZExtValue());
return llvm::ConstantInt::get(SizeTy, AllocSize);
}
// Emit the array size expression.
NumElements = CGF.EmitScalarExpr(E->getArraySize());
// Multiply with the type size.
llvm::Value *V =
CGF.Builder.CreateMul(NumElements,
llvm::ConstantInt::get(SizeTy, TypeSizeInBytes));
// And add the cookie padding if necessary.
if (CookiePadding)
V = CGF.Builder.CreateAdd(V, llvm::ConstantInt::get(SizeTy, CookiePadding));
return V;
}
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
llvm::Value *NewPtr,
llvm::Value *NumElements) {
if (E->isArray()) {
if (CXXConstructorDecl *Ctor = E->getConstructor())
CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
E->constructor_arg_begin(),
E->constructor_arg_end());
return;
}
QualType AllocType = E->getAllocatedType();
if (CXXConstructorDecl *Ctor = E->getConstructor()) {
CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, NewPtr,
E->constructor_arg_begin(),
E->constructor_arg_end());
return;
}
// We have a POD type.
if (E->getNumConstructorArgs() == 0)
return;
assert(E->getNumConstructorArgs() == 1 &&
"Can only have one argument to initializer of POD type.");
const Expr *Init = E->getConstructorArg(0);
if (!CGF.hasAggregateLLVMType(AllocType))
CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr,
AllocType.isVolatileQualified(), AllocType);
else if (AllocType->isAnyComplexType())
CGF.EmitComplexExprIntoAddr(Init, NewPtr,
AllocType.isVolatileQualified());
else
CGF.EmitAggExpr(Init, NewPtr, AllocType.isVolatileQualified());
}
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
QualType AllocType = E->getAllocatedType();
FunctionDecl *NewFD = E->getOperatorNew();
const FunctionProtoType *NewFTy = NewFD->getType()->getAs<FunctionProtoType>();
CallArgList NewArgs;
// The allocation size is the first argument.
QualType SizeTy = getContext().getSizeType();
llvm::Value *NumElements = 0;
llvm::Value *AllocSize = EmitCXXNewAllocSize(*this, E, NumElements);
NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy));
// Emit the rest of the arguments.
// FIXME: Ideally, this should just use EmitCallArgs.
CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin();
// First, use the types from the function type.
// We start at 1 here because the first argument (the allocation size)
// has already been emitted.
for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) {
QualType ArgType = NewFTy->getArgType(i);
assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
getTypePtr() ==
getContext().getCanonicalType(NewArg->getType()).getTypePtr() &&
"type mismatch in call argument!");
NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
ArgType));
}
// Either we've emitted all the call args, or we have a call to a
// variadic function.
assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) &&
"Extra arguments in non-variadic function!");
// If we still have any arguments, emit them using the type of the argument.
for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end();
NewArg != NewArgEnd; ++NewArg) {
QualType ArgType = NewArg->getType();
NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
ArgType));
}
// Emit the call to new.
RValue RV =
EmitCall(CGM.getTypes().getFunctionInfo(NewFTy->getResultType(), NewArgs),
CGM.GetAddrOfFunction(NewFD), NewArgs, NewFD);
// If an allocation function is declared with an empty exception specification
// it returns null to indicate failure to allocate storage. [expr.new]p13.
// (We don't need to check for null when there's no new initializer and
// we're allocating a POD type).
bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() &&
!(AllocType->isPODType() && !E->hasInitializer());
llvm::BasicBlock *NewNull = 0;
llvm::BasicBlock *NewNotNull = 0;
llvm::BasicBlock *NewEnd = 0;
llvm::Value *NewPtr = RV.getScalarVal();
if (NullCheckResult) {
NewNull = createBasicBlock("new.null");
NewNotNull = createBasicBlock("new.notnull");
NewEnd = createBasicBlock("new.end");
llvm::Value *IsNull =
Builder.CreateICmpEQ(NewPtr,
llvm::Constant::getNullValue(NewPtr->getType()),
"isnull");
Builder.CreateCondBr(IsNull, NewNull, NewNotNull);
EmitBlock(NewNotNull);
}
if (uint64_t CookiePadding = CalculateCookiePadding(getContext(), E)) {
uint64_t CookieOffset =
CookiePadding - getContext().getTypeSize(SizeTy) / 8;
llvm::Value *NumElementsPtr =
Builder.CreateConstInBoundsGEP1_64(NewPtr, CookieOffset);
NumElementsPtr = Builder.CreateBitCast(NumElementsPtr,
ConvertType(SizeTy)->getPointerTo());
Builder.CreateStore(NumElements, NumElementsPtr);
// Now add the padding to the new ptr.
NewPtr = Builder.CreateConstInBoundsGEP1_64(NewPtr, CookiePadding);
}
NewPtr = Builder.CreateBitCast(NewPtr, ConvertType(E->getType()));
EmitNewInitializer(*this, E, NewPtr, NumElements);
if (NullCheckResult) {
Builder.CreateBr(NewEnd);
NewNotNull = Builder.GetInsertBlock();
EmitBlock(NewNull);
Builder.CreateBr(NewEnd);
EmitBlock(NewEnd);
llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType());
PHI->reserveOperandSpace(2);
PHI->addIncoming(NewPtr, NewNotNull);
PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()), NewNull);
NewPtr = PHI;
}
return NewPtr;
}
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
llvm::Value *Ptr,
QualType DeleteTy) {
const FunctionProtoType *DeleteFTy =
DeleteFD->getType()->getAs<FunctionProtoType>();
CallArgList DeleteArgs;
QualType ArgTy = DeleteFTy->getArgType(0);
llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy));
if (DeleteFTy->getNumArgs() == 2) {
QualType SizeTy = DeleteFTy->getArgType(1);
uint64_t SizeVal = getContext().getTypeSize(DeleteTy) / 8;
llvm::Constant *Size = llvm::ConstantInt::get(ConvertType(SizeTy),
SizeVal);
DeleteArgs.push_back(std::make_pair(RValue::get(Size), SizeTy));
}
// Emit the call to delete.
EmitCall(CGM.getTypes().getFunctionInfo(DeleteFTy->getResultType(),
DeleteArgs),
CGM.GetAddrOfFunction(DeleteFD),
DeleteArgs, DeleteFD);
}
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
// Get at the argument before we performed the implicit conversion
// to void*.
const Expr *Arg = E->getArgument();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
if (ICE->getCastKind() != CastExpr::CK_UserDefinedConversion &&
ICE->getType()->isVoidPointerType())
Arg = ICE->getSubExpr();
else
break;
}
QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
llvm::Value *Ptr = EmitScalarExpr(Arg);
// Null check the pointer.
llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
llvm::Value *IsNull =
Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()),
"isnull");
Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
EmitBlock(DeleteNotNull);
bool ShouldCallDelete = true;
// Call the destructor if necessary.
if (const RecordType *RT = DeleteTy->getAs<RecordType>()) {
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
if (!RD->hasTrivialDestructor()) {
const CXXDestructorDecl *Dtor = RD->getDestructor(getContext());
if (E->isArrayForm()) {
QualType SizeTy = getContext().getSizeType();
uint64_t CookiePadding = std::max(getContext().getTypeSize(SizeTy),
static_cast<uint64_t>(getContext().getTypeAlign(DeleteTy))) / 8;
if (CookiePadding) {
llvm::Type *Ptr8Ty =
llvm::PointerType::get(llvm::Type::getInt8Ty(VMContext), 0);
uint64_t CookieOffset =
CookiePadding - getContext().getTypeSize(SizeTy) / 8;
llvm::Value *AllocatedObjectPtr =
Builder.CreateConstInBoundsGEP1_64(
Builder.CreateBitCast(Ptr, Ptr8Ty), -CookiePadding);
llvm::Value *NumElementsPtr =
Builder.CreateConstInBoundsGEP1_64(AllocatedObjectPtr,
CookieOffset);
NumElementsPtr = Builder.CreateBitCast(NumElementsPtr,
ConvertType(SizeTy)->getPointerTo());
llvm::Value *NumElements =
Builder.CreateLoad(NumElementsPtr);
NumElements =
Builder.CreateIntCast(NumElements,
llvm::Type::getInt64Ty(VMContext), false,
"count.tmp");
EmitCXXAggrDestructorCall(Dtor, NumElements, Ptr);
Ptr = AllocatedObjectPtr;
}
}
else if (Dtor->isVirtual()) {
const llvm::Type *Ty =
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(Dtor),
/*isVariadic=*/false);
llvm::Value *Callee = BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty);
EmitCXXMemberCall(Dtor, Callee, Ptr, 0, 0);
// The dtor took care of deleting the object.
ShouldCallDelete = false;
} else
EmitCXXDestructorCall(Dtor, Dtor_Complete, Ptr);
}
}
}
if (ShouldCallDelete)
EmitDeleteCall(E->getOperatorDelete(), Ptr, DeleteTy);
EmitBlock(DeleteEnd);
}
llvm::Value * CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
QualType Ty = E->getType();
const llvm::Type *LTy = ConvertType(Ty)->getPointerTo();
if (E->isTypeOperand()) {
Ty = E->getTypeOperand();
CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
Ty = CanTy.getUnqualifiedType().getNonReferenceType();
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->isPolymorphic())
return Builder.CreateBitCast(CGM.GenerateRttiRef(RD), LTy);
return Builder.CreateBitCast(CGM.GenerateRtti(RD), LTy);
}
return Builder.CreateBitCast(CGM.GenerateRtti(Ty), LTy);
}
Expr *subE = E->getExprOperand();
Ty = subE->getType();
CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
Ty = CanTy.getUnqualifiedType().getNonReferenceType();
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->isPolymorphic()) {
// FIXME: if subE is an lvalue do
LValue Obj = EmitLValue(subE);
llvm::Value *This = Obj.getAddress();
LTy = LTy->getPointerTo()->getPointerTo();
llvm::Value *V = Builder.CreateBitCast(This, LTy);
// We need to do a zero check for *p, unless it has NonNullAttr.
// FIXME: PointerType->hasAttr<NonNullAttr>()
bool CanBeZero = false;
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(subE->IgnoreParens()))
if (UO->getOpcode() == UnaryOperator::Deref)
CanBeZero = true;
if (CanBeZero) {
llvm::BasicBlock *NonZeroBlock = createBasicBlock();
llvm::BasicBlock *ZeroBlock = createBasicBlock();
llvm::Value *Zero = llvm::Constant::getNullValue(LTy);
Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero),
NonZeroBlock, ZeroBlock);
EmitBlock(ZeroBlock);
/// Call __cxa_bad_typeid
const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
const llvm::FunctionType *FTy;
FTy = llvm::FunctionType::get(ResultType, false);
llvm::Value *F = CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
Builder.CreateCall(F)->setDoesNotReturn();
Builder.CreateUnreachable();
EmitBlock(NonZeroBlock);
}
V = Builder.CreateLoad(V, "vtable");
V = Builder.CreateConstInBoundsGEP1_64(V, -1ULL);
V = Builder.CreateLoad(V);
return V;
}
return Builder.CreateBitCast(CGM.GenerateRtti(RD), LTy);
}
return Builder.CreateBitCast(CGM.GenerateRtti(Ty), LTy);
}
llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V,
const CXXDynamicCastExpr *DCE) {
QualType CastTy = DCE->getTypeAsWritten();
QualType InnerType = CastTy->getPointeeType();
QualType ArgTy = DCE->getSubExpr()->getType();
const llvm::Type *LArgTy = ConvertType(ArgTy);
const llvm::Type *LTy = ConvertType(DCE->getType());
bool CanBeZero = false;
bool ToVoid = false;
bool ThrowOnBad = false;
if (CastTy->isPointerType()) {
// FIXME: if PointerType->hasAttr<NonNullAttr>(), we don't set this
CanBeZero = true;
if (InnerType->isVoidType())
ToVoid = true;
} else {
LTy = LTy->getPointerTo();
ThrowOnBad = true;
}
CXXRecordDecl *SrcTy;
QualType Ty = ArgTy;
if (ArgTy.getTypePtr()->isPointerType()
|| ArgTy.getTypePtr()->isReferenceType())
Ty = Ty.getTypePtr()->getPointeeType();
CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
Ty = CanTy.getUnqualifiedType();
SrcTy = cast<CXXRecordDecl>(Ty->getAs<RecordType>()->getDecl());
llvm::BasicBlock *ContBlock = createBasicBlock();
llvm::BasicBlock *NullBlock = 0;
llvm::BasicBlock *NonZeroBlock = 0;
if (CanBeZero) {
NonZeroBlock = createBasicBlock();
NullBlock = createBasicBlock();
llvm::Value *Zero = llvm::Constant::getNullValue(LArgTy);
Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero),
NonZeroBlock, NullBlock);
EmitBlock(NonZeroBlock);
}
llvm::BasicBlock *BadCastBlock = 0;
const llvm::Type *PtrDiffTy = ConvertType(getContext().getSizeType());
// See if this is a dynamic_cast(void*)
if (ToVoid) {
llvm::Value *This = V;
V = Builder.CreateBitCast(This, PtrDiffTy->getPointerTo()->getPointerTo());
V = Builder.CreateLoad(V, "vtable");
V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL);
V = Builder.CreateLoad(V, "offset to top");
This = Builder.CreateBitCast(This, llvm::Type::getInt8PtrTy(VMContext));
V = Builder.CreateInBoundsGEP(This, V);
V = Builder.CreateBitCast(V, LTy);
} else {
/// Call __dynamic_cast
const llvm::Type *ResultType = llvm::Type::getInt8PtrTy(VMContext);
const llvm::FunctionType *FTy;
std::vector<const llvm::Type*> ArgTys;
const llvm::Type *PtrToInt8Ty
= llvm::Type::getInt8Ty(VMContext)->getPointerTo();
ArgTys.push_back(PtrToInt8Ty);
ArgTys.push_back(PtrToInt8Ty);
ArgTys.push_back(PtrToInt8Ty);
ArgTys.push_back(PtrDiffTy);
FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
CXXRecordDecl *DstTy;
Ty = CastTy.getTypePtr()->getPointeeType();
CanTy = CGM.getContext().getCanonicalType(Ty);
Ty = CanTy.getUnqualifiedType();
DstTy = cast<CXXRecordDecl>(Ty->getAs<RecordType>()->getDecl());
// FIXME: Calculate better hint.
llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL);
llvm::Value *SrcArg = CGM.GenerateRttiRef(SrcTy);
llvm::Value *DstArg = CGM.GenerateRttiRef(DstTy);
V = Builder.CreateBitCast(V, PtrToInt8Ty);
V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"),
V, SrcArg, DstArg, hint);
V = Builder.CreateBitCast(V, LTy);
if (ThrowOnBad) {
BadCastBlock = createBasicBlock();
llvm::Value *Zero = llvm::Constant::getNullValue(LTy);
Builder.CreateCondBr(Builder.CreateICmpNE(V, Zero),
ContBlock, BadCastBlock);
EmitBlock(BadCastBlock);
/// Call __cxa_bad_cast
ResultType = llvm::Type::getVoidTy(VMContext);
const llvm::FunctionType *FBadTy;
FBadTy = llvm::FunctionType::get(ResultType, false);
llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast");
Builder.CreateCall(F)->setDoesNotReturn();
Builder.CreateUnreachable();
}
}
if (CanBeZero) {
Builder.CreateBr(ContBlock);
EmitBlock(NullBlock);
Builder.CreateBr(ContBlock);
}
EmitBlock(ContBlock);
if (CanBeZero) {
llvm::PHINode *PHI = Builder.CreatePHI(LTy);
PHI->reserveOperandSpace(2);
PHI->addIncoming(V, NonZeroBlock);
PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock);
V = PHI;
}
return V;
}