forked from OSchip/llvm-project
664 lines
24 KiB
C++
664 lines
24 KiB
C++
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass the isl to calculate a schedule that is optimized for parallelism
|
||
// and tileablility. The algorithm used in isl is an optimized version of the
|
||
// algorithm described in following paper:
|
||
//
|
||
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
|
||
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
|
||
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
|
||
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "polly/ScheduleOptimizer.h"
|
||
#include "isl/aff.h"
|
||
#include "isl/band.h"
|
||
#include "isl/constraint.h"
|
||
#include "isl/map.h"
|
||
#include "isl/options.h"
|
||
#include "isl/schedule.h"
|
||
#include "isl/space.h"
|
||
#include "polly/CodeGen/CodeGeneration.h"
|
||
#include "polly/DependenceInfo.h"
|
||
#include "polly/LinkAllPasses.h"
|
||
#include "polly/Options.h"
|
||
#include "polly/ScopInfo.h"
|
||
#include "polly/Support/GICHelper.h"
|
||
#include "llvm/Support/Debug.h"
|
||
|
||
using namespace llvm;
|
||
using namespace polly;
|
||
|
||
#define DEBUG_TYPE "polly-opt-isl"
|
||
|
||
namespace polly {
|
||
bool DisablePollyTiling;
|
||
}
|
||
static cl::opt<bool, true>
|
||
DisableTiling("polly-no-tiling",
|
||
cl::desc("Disable tiling in the scheduler"),
|
||
cl::location(polly::DisablePollyTiling), cl::init(false),
|
||
cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
OptimizeDeps("polly-opt-optimize-only",
|
||
cl::desc("Only a certain kind of dependences (all/raw)"),
|
||
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
SimplifyDeps("polly-opt-simplify-deps",
|
||
cl::desc("Dependences should be simplified (yes/no)"),
|
||
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxConstantTerm(
|
||
"polly-opt-max-constant-term",
|
||
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxCoefficient(
|
||
"polly-opt-max-coefficient",
|
||
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> FusionStrategy(
|
||
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
|
||
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
MaximizeBandDepth("polly-opt-maximize-bands",
|
||
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
|
||
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> DefaultTileSize(
|
||
"polly-default-tile-size",
|
||
cl::desc("The default tile size (if not enough were provided by"
|
||
" --polly-tile-sizes)"),
|
||
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int> TileSizes("polly-tile-sizes",
|
||
cl::desc("A tile size"
|
||
" for each loop dimension, filled with"
|
||
" --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
namespace {
|
||
|
||
class IslScheduleOptimizer : public ScopPass {
|
||
public:
|
||
static char ID;
|
||
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
|
||
|
||
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
|
||
|
||
bool runOnScop(Scop &S) override;
|
||
void printScop(raw_ostream &OS, Scop &S) const override;
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
||
private:
|
||
isl_schedule *LastSchedule;
|
||
|
||
/// @brief Decide if the @p NewSchedule is profitable for @p S.
|
||
///
|
||
/// @param S The SCoP we optimize.
|
||
/// @param NewSchedule The new schedule we computed.
|
||
///
|
||
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
|
||
bool isProfitableSchedule(Scop &S, __isl_keep isl_union_map *NewSchedule);
|
||
|
||
static void extendScattering(Scop &S, unsigned NewDimensions);
|
||
|
||
/// @brief Create a map that describes a n-dimensonal tiling.
|
||
///
|
||
/// getTileMap creates a map from a n-dimensional scattering space into an
|
||
/// 2*n-dimensional scattering space. The map describes a rectangular
|
||
/// tiling.
|
||
///
|
||
/// Example:
|
||
/// scheduleDimensions = 2, parameterDimensions = 1, TileSizes = <32, 64>
|
||
///
|
||
/// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
|
||
/// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
|
||
/// t1 % 64 = 0 and t1 <= s1 < t1 + 64}
|
||
///
|
||
/// Before tiling:
|
||
///
|
||
/// for (i = 0; i < N; i++)
|
||
/// for (j = 0; j < M; j++)
|
||
/// S(i,j)
|
||
///
|
||
/// After tiling:
|
||
///
|
||
/// for (t_i = 0; t_i < N; i+=32)
|
||
/// for (t_j = 0; t_j < M; j+=64)
|
||
/// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0
|
||
/// for (j = t_j; j < t_j + 64; j++) | Known that M % 64 = 0
|
||
/// S(i,j)
|
||
///
|
||
static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions);
|
||
|
||
/// @brief Get the schedule for this band.
|
||
///
|
||
/// Polly applies transformations like tiling on top of the isl calculated
|
||
/// value. This can influence the number of scheduling dimension. The
|
||
/// number of schedule dimensions is returned in the parameter 'Dimension'.
|
||
static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
|
||
|
||
/// @brief Create a map that pre-vectorizes one scheduling dimension.
|
||
///
|
||
/// getPrevectorMap creates a map that maps each input dimension to the same
|
||
/// output dimension, except for the dimension DimToVectorize.
|
||
/// DimToVectorize is strip mined by 'VectorWidth' and the newly created
|
||
/// point loop of DimToVectorize is moved to the innermost level.
|
||
///
|
||
/// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
|
||
///
|
||
/// | Before transformation
|
||
/// |
|
||
/// | A[i,j] -> [i,j]
|
||
/// |
|
||
/// | for (i = 0; i < 128; i++)
|
||
/// | for (j = 0; j < 128; j++)
|
||
/// | A(i,j);
|
||
///
|
||
/// Prevector map:
|
||
/// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
|
||
///
|
||
/// | After transformation:
|
||
/// |
|
||
/// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
|
||
/// |
|
||
/// | for (it = 0; it < 128; it+=4)
|
||
/// | for (j = 0; j < 128; j++)
|
||
/// | for (ip = max(0,it); ip < min(128, it + 3); ip++)
|
||
/// | A(ip,j);
|
||
///
|
||
/// The goal of this transformation is to create a trivially vectorizable
|
||
/// loop. This means a parallel loop at the innermost level that has a
|
||
/// constant number of iterations corresponding to the target vector width.
|
||
///
|
||
/// This transformation creates a loop at the innermost level. The loop has
|
||
/// a constant number of iterations, if the number of loop iterations at
|
||
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
|
||
/// currently constant and not yet target specific. This function does not
|
||
/// reason about parallelism.
|
||
static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
|
||
int ScheduleDimensions, int VectorWidth = 4);
|
||
|
||
/// @brief Get the scheduling map for a list of bands.
|
||
///
|
||
/// Walk recursively the forest of bands to combine the schedules of the
|
||
/// individual bands to the overall schedule. In case tiling is requested,
|
||
/// the individual bands are tiled.
|
||
static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
|
||
|
||
static isl_union_map *getScheduleMap(isl_schedule *Schedule);
|
||
|
||
using llvm::Pass::doFinalization;
|
||
|
||
virtual bool doFinalization() override {
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
return true;
|
||
}
|
||
};
|
||
}
|
||
|
||
char IslScheduleOptimizer::ID = 0;
|
||
|
||
void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) {
|
||
for (ScopStmt *Stmt : S) {
|
||
unsigned OldDimensions = Stmt->getNumScattering();
|
||
isl_space *Space;
|
||
isl_map *Map, *New;
|
||
|
||
Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions);
|
||
Map = isl_map_universe(Space);
|
||
|
||
for (unsigned i = 0; i < OldDimensions; i++)
|
||
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
|
||
|
||
for (unsigned i = OldDimensions; i < NewDimensions; i++)
|
||
Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
|
||
|
||
Map = isl_map_align_params(Map, S.getParamSpace());
|
||
New = isl_map_apply_range(Stmt->getScattering(), Map);
|
||
Stmt->setScattering(New);
|
||
}
|
||
}
|
||
|
||
isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx,
|
||
int scheduleDimensions) {
|
||
// We construct
|
||
//
|
||
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
|
||
// s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 64 and
|
||
// s1 = a1 * 64 and s1 = p1 and t1 <= p1 < t1 + 64}
|
||
//
|
||
// and project out the auxilary dimensions a0 and a1.
|
||
isl_space *Space =
|
||
isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3);
|
||
isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
|
||
|
||
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
|
||
|
||
for (int x = 0; x < scheduleDimensions; x++) {
|
||
int sX = x;
|
||
int tX = x;
|
||
int pX = scheduleDimensions + x;
|
||
int aX = 2 * scheduleDimensions + x;
|
||
int tileSize = (int)TileSizes.size() > x ? TileSizes[x] : DefaultTileSize;
|
||
assert(tileSize > 0 && "Invalid tile size");
|
||
|
||
isl_constraint *c;
|
||
|
||
// sX = aX * tileSize;
|
||
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
|
||
tileMap = isl_basic_map_add_constraint(tileMap, c);
|
||
|
||
// pX = sX;
|
||
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
|
||
tileMap = isl_basic_map_add_constraint(tileMap, c);
|
||
|
||
// tX <= pX
|
||
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
|
||
tileMap = isl_basic_map_add_constraint(tileMap, c);
|
||
|
||
// pX <= tX + (tileSize - 1)
|
||
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
|
||
isl_constraint_set_constant_si(c, tileSize - 1);
|
||
tileMap = isl_basic_map_add_constraint(tileMap, c);
|
||
}
|
||
|
||
// Project out auxilary dimensions.
|
||
//
|
||
// The auxilary dimensions are transformed into existentially quantified ones.
|
||
// This reduces the number of visible scattering dimensions and allows Cloog
|
||
// to produces better code.
|
||
tileMap = isl_basic_map_project_out(
|
||
tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions);
|
||
isl_local_space_free(LocalSpace);
|
||
return tileMap;
|
||
}
|
||
|
||
isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band,
|
||
int *Dimensions) {
|
||
isl_union_map *PartialSchedule;
|
||
isl_ctx *ctx;
|
||
isl_space *Space;
|
||
isl_basic_map *TileMap;
|
||
isl_union_map *TileUMap;
|
||
|
||
PartialSchedule = isl_band_get_partial_schedule(Band);
|
||
*Dimensions = isl_band_n_member(Band);
|
||
|
||
if (DisableTiling)
|
||
return PartialSchedule;
|
||
|
||
// It does not make any sense to tile a band with just one dimension.
|
||
if (*Dimensions == 1)
|
||
return PartialSchedule;
|
||
|
||
ctx = isl_union_map_get_ctx(PartialSchedule);
|
||
Space = isl_union_map_get_space(PartialSchedule);
|
||
|
||
TileMap = getTileMap(ctx, *Dimensions);
|
||
TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap));
|
||
TileUMap = isl_union_map_align_params(TileUMap, Space);
|
||
*Dimensions = 2 * *Dimensions;
|
||
|
||
return isl_union_map_apply_range(PartialSchedule, TileUMap);
|
||
}
|
||
|
||
isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
|
||
int ScheduleDimensions,
|
||
int VectorWidth) {
|
||
isl_space *Space;
|
||
isl_local_space *LocalSpace, *LocalSpaceRange;
|
||
isl_set *Modulo;
|
||
isl_map *TilingMap;
|
||
isl_constraint *c;
|
||
isl_aff *Aff;
|
||
int PointDimension; /* ip */
|
||
int TileDimension; /* it */
|
||
isl_val *VectorWidthMP;
|
||
|
||
assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
|
||
|
||
Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
|
||
TilingMap = isl_map_universe(isl_space_copy(Space));
|
||
LocalSpace = isl_local_space_from_space(Space);
|
||
PointDimension = ScheduleDimensions;
|
||
TileDimension = DimToVectorize;
|
||
|
||
// Create an identity map for everything except DimToVectorize and map
|
||
// DimToVectorize to the point loop at the innermost dimension.
|
||
for (int i = 0; i < ScheduleDimensions; i++) {
|
||
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
|
||
c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
|
||
|
||
if (i == DimToVectorize)
|
||
c = isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
|
||
else
|
||
c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
|
||
|
||
TilingMap = isl_map_add_constraint(TilingMap, c);
|
||
}
|
||
|
||
// it % 'VectorWidth' = 0
|
||
LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
|
||
Aff = isl_aff_zero_on_domain(LocalSpaceRange);
|
||
Aff = isl_aff_set_constant_si(Aff, VectorWidth);
|
||
Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
|
||
VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
|
||
Aff = isl_aff_mod_val(Aff, VectorWidthMP);
|
||
Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
|
||
TilingMap = isl_map_intersect_range(TilingMap, Modulo);
|
||
|
||
// it <= ip
|
||
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
|
||
TilingMap = isl_map_add_constraint(TilingMap, c);
|
||
|
||
// ip <= it + ('VectorWidth' - 1)
|
||
c = isl_inequality_alloc(LocalSpace);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
|
||
isl_constraint_set_constant_si(c, VectorWidth - 1);
|
||
TilingMap = isl_map_add_constraint(TilingMap, c);
|
||
|
||
return TilingMap;
|
||
}
|
||
|
||
isl_union_map *
|
||
IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) {
|
||
int NumBands;
|
||
isl_union_map *Schedule;
|
||
isl_ctx *ctx;
|
||
|
||
ctx = isl_band_list_get_ctx(BandList);
|
||
NumBands = isl_band_list_n_band(BandList);
|
||
Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0));
|
||
|
||
for (int i = 0; i < NumBands; i++) {
|
||
isl_band *Band;
|
||
isl_union_map *PartialSchedule;
|
||
int ScheduleDimensions;
|
||
isl_space *Space;
|
||
|
||
Band = isl_band_list_get_band(BandList, i);
|
||
PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions);
|
||
Space = isl_union_map_get_space(PartialSchedule);
|
||
|
||
if (isl_band_has_children(Band)) {
|
||
isl_band_list *Children;
|
||
isl_union_map *SuffixSchedule;
|
||
|
||
Children = isl_band_get_children(Band);
|
||
SuffixSchedule = getScheduleForBandList(Children);
|
||
PartialSchedule =
|
||
isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule);
|
||
isl_band_list_free(Children);
|
||
} else if (PollyVectorizerChoice != VECTORIZER_NONE) {
|
||
// In case we are at the innermost band, we try to prepare for
|
||
// vectorization. This means, we look for the innermost parallel loop
|
||
// and strip mine this loop to the innermost level using a strip-mine
|
||
// factor corresponding to the number of vector iterations.
|
||
int NumDims = isl_band_n_member(Band);
|
||
for (int j = NumDims - 1; j >= 0; j--) {
|
||
if (isl_band_member_is_coincident(Band, j)) {
|
||
isl_map *TileMap;
|
||
isl_union_map *TileUMap;
|
||
|
||
TileMap = getPrevectorMap(ctx, ScheduleDimensions - NumDims + j,
|
||
ScheduleDimensions);
|
||
TileUMap = isl_union_map_from_map(TileMap);
|
||
TileUMap =
|
||
isl_union_map_align_params(TileUMap, isl_space_copy(Space));
|
||
PartialSchedule =
|
||
isl_union_map_apply_range(PartialSchedule, TileUMap);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
Schedule = isl_union_map_union(Schedule, PartialSchedule);
|
||
|
||
isl_band_free(Band);
|
||
isl_space_free(Space);
|
||
}
|
||
|
||
return Schedule;
|
||
}
|
||
|
||
isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) {
|
||
isl_band_list *BandList = isl_schedule_get_band_forest(Schedule);
|
||
isl_union_map *ScheduleMap = getScheduleForBandList(BandList);
|
||
isl_band_list_free(BandList);
|
||
return ScheduleMap;
|
||
}
|
||
|
||
bool IslScheduleOptimizer::isProfitableSchedule(
|
||
Scop &S, __isl_keep isl_union_map *NewSchedule) {
|
||
// To understand if the schedule has been optimized we check if the schedule
|
||
// has changed at all.
|
||
// TODO: We can improve this by tracking if any necessarily beneficial
|
||
// transformations have been performed. This can e.g. be tiling, loop
|
||
// interchange, or ...) We can track this either at the place where the
|
||
// transformation has been performed or, in case of automatic ILP based
|
||
// optimizations, by comparing (yet to be defined) performance metrics
|
||
// before/after the scheduling optimizer
|
||
// (e.g., #stride-one accesses)
|
||
isl_union_map *OldSchedule = S.getSchedule();
|
||
bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
|
||
isl_union_map_free(OldSchedule);
|
||
return changed;
|
||
}
|
||
|
||
bool IslScheduleOptimizer::runOnScop(Scop &S) {
|
||
|
||
// Skip empty SCoPs but still allow code generation as it will delete the
|
||
// loops present but not needed.
|
||
if (S.getSize() == 0) {
|
||
S.markAsOptimized();
|
||
return false;
|
||
}
|
||
|
||
const Dependences &D = getAnalysis<DependenceInfo>().getDependences();
|
||
|
||
if (!D.hasValidDependences())
|
||
return false;
|
||
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
|
||
// Build input data.
|
||
int ValidityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
int ProximityKinds;
|
||
|
||
if (OptimizeDeps == "all")
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
else if (OptimizeDeps == "raw")
|
||
ProximityKinds = Dependences::TYPE_RAW;
|
||
else {
|
||
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
|
||
<< " Falling back to optimizing all dependences.\n";
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
}
|
||
|
||
isl_union_set *Domain = S.getDomains();
|
||
|
||
if (!Domain)
|
||
return false;
|
||
|
||
isl_union_map *Validity = D.getDependences(ValidityKinds);
|
||
isl_union_map *Proximity = D.getDependences(ProximityKinds);
|
||
|
||
// Simplify the dependences by removing the constraints introduced by the
|
||
// domains. This can speed up the scheduling time significantly, as large
|
||
// constant coefficients will be removed from the dependences. The
|
||
// introduction of some additional dependences reduces the possible
|
||
// transformations, but in most cases, such transformation do not seem to be
|
||
// interesting anyway. In some cases this option may stop the scheduler to
|
||
// find any schedule.
|
||
if (SimplifyDeps == "yes") {
|
||
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
|
||
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
|
||
Proximity =
|
||
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
|
||
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
|
||
} else if (SimplifyDeps != "no") {
|
||
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
|
||
"or 'no'. Falling back to default: 'yes'\n";
|
||
}
|
||
|
||
DEBUG(dbgs() << "\n\nCompute schedule from: ");
|
||
DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
|
||
DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
|
||
DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
|
||
|
||
int IslFusionStrategy;
|
||
|
||
if (FusionStrategy == "max") {
|
||
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
|
||
} else if (FusionStrategy == "min") {
|
||
IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN;
|
||
} else {
|
||
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
|
||
"fusion.\n";
|
||
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
|
||
}
|
||
|
||
int IslMaximizeBands;
|
||
|
||
if (MaximizeBandDepth == "yes") {
|
||
IslMaximizeBands = 1;
|
||
} else if (MaximizeBandDepth == "no") {
|
||
IslMaximizeBands = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
|
||
" or 'no'. Falling back to default: 'yes'\n";
|
||
IslMaximizeBands = 1;
|
||
}
|
||
|
||
isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy);
|
||
isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
|
||
isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
|
||
isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
|
||
|
||
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
|
||
|
||
isl_schedule_constraints *ScheduleConstraints;
|
||
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
|
||
ScheduleConstraints = isl_schedule_constraints_set_validity(
|
||
ScheduleConstraints, isl_union_map_copy(Validity));
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
|
||
isl_schedule *Schedule;
|
||
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
|
||
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
|
||
|
||
// In cases the scheduler is not able to optimize the code, we just do not
|
||
// touch the schedule.
|
||
if (!Schedule)
|
||
return false;
|
||
|
||
DEBUG(dbgs() << "Schedule := " << stringFromIslObj(Schedule) << ";\n");
|
||
|
||
isl_union_map *NewSchedule = getScheduleMap(Schedule);
|
||
|
||
// Check if the optimizations performed were profitable, otherwise exit early.
|
||
if (!isProfitableSchedule(S, NewSchedule)) {
|
||
isl_schedule_free(Schedule);
|
||
isl_union_map_free(NewSchedule);
|
||
return false;
|
||
}
|
||
|
||
S.markAsOptimized();
|
||
|
||
for (ScopStmt *Stmt : S) {
|
||
isl_map *StmtSchedule;
|
||
isl_set *Domain = Stmt->getDomain();
|
||
isl_union_map *StmtBand;
|
||
StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(NewSchedule),
|
||
isl_union_set_from_set(Domain));
|
||
if (isl_union_map_is_empty(StmtBand)) {
|
||
StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace()));
|
||
isl_union_map_free(StmtBand);
|
||
} else {
|
||
assert(isl_union_map_n_map(StmtBand) == 1);
|
||
StmtSchedule = isl_map_from_union_map(StmtBand);
|
||
}
|
||
|
||
Stmt->setScattering(StmtSchedule);
|
||
}
|
||
|
||
isl_union_map_free(NewSchedule);
|
||
LastSchedule = Schedule;
|
||
|
||
unsigned MaxScatDims = 0;
|
||
|
||
for (ScopStmt *Stmt : S)
|
||
MaxScatDims = std::max(Stmt->getNumScattering(), MaxScatDims);
|
||
|
||
extendScattering(S, MaxScatDims);
|
||
return false;
|
||
}
|
||
|
||
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
|
||
isl_printer *p;
|
||
char *ScheduleStr;
|
||
|
||
OS << "Calculated schedule:\n";
|
||
|
||
if (!LastSchedule) {
|
||
OS << "n/a\n";
|
||
return;
|
||
}
|
||
|
||
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
|
||
p = isl_printer_print_schedule(p, LastSchedule);
|
||
ScheduleStr = isl_printer_get_str(p);
|
||
isl_printer_free(p);
|
||
|
||
OS << ScheduleStr << "\n";
|
||
}
|
||
|
||
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
ScopPass::getAnalysisUsage(AU);
|
||
AU.addRequired<DependenceInfo>();
|
||
}
|
||
|
||
Pass *polly::createIslScheduleOptimizerPass() {
|
||
return new IslScheduleOptimizer();
|
||
}
|
||
|
||
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false);
|
||
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
|
||
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
|
||
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false)
|