forked from OSchip/llvm-project
2832 lines
102 KiB
C++
2832 lines
102 KiB
C++
//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements name lookup for C, C++, Objective-C, and
|
||
// Objective-C++.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
#include "Sema.h"
|
||
#include "Lookup.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/CXXInheritance.h"
|
||
#include "clang/AST/Decl.h"
|
||
#include "clang/AST/DeclCXX.h"
|
||
#include "clang/AST/DeclObjC.h"
|
||
#include "clang/AST/DeclTemplate.h"
|
||
#include "clang/AST/Expr.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/Parse/DeclSpec.h"
|
||
#include "clang/Basic/Builtins.h"
|
||
#include "clang/Basic/LangOptions.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/SmallPtrSet.h"
|
||
#include "llvm/Support/ErrorHandling.h"
|
||
#include <list>
|
||
#include <set>
|
||
#include <vector>
|
||
#include <iterator>
|
||
#include <utility>
|
||
#include <algorithm>
|
||
|
||
using namespace clang;
|
||
|
||
namespace {
|
||
class UnqualUsingEntry {
|
||
const DeclContext *Nominated;
|
||
const DeclContext *CommonAncestor;
|
||
|
||
public:
|
||
UnqualUsingEntry(const DeclContext *Nominated,
|
||
const DeclContext *CommonAncestor)
|
||
: Nominated(Nominated), CommonAncestor(CommonAncestor) {
|
||
}
|
||
|
||
const DeclContext *getCommonAncestor() const {
|
||
return CommonAncestor;
|
||
}
|
||
|
||
const DeclContext *getNominatedNamespace() const {
|
||
return Nominated;
|
||
}
|
||
|
||
// Sort by the pointer value of the common ancestor.
|
||
struct Comparator {
|
||
bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
|
||
return L.getCommonAncestor() < R.getCommonAncestor();
|
||
}
|
||
|
||
bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
|
||
return E.getCommonAncestor() < DC;
|
||
}
|
||
|
||
bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
|
||
return DC < E.getCommonAncestor();
|
||
}
|
||
};
|
||
};
|
||
|
||
/// A collection of using directives, as used by C++ unqualified
|
||
/// lookup.
|
||
class UnqualUsingDirectiveSet {
|
||
typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
|
||
|
||
ListTy list;
|
||
llvm::SmallPtrSet<DeclContext*, 8> visited;
|
||
|
||
public:
|
||
UnqualUsingDirectiveSet() {}
|
||
|
||
void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
|
||
// C++ [namespace.udir]p1:
|
||
// During unqualified name lookup, the names appear as if they
|
||
// were declared in the nearest enclosing namespace which contains
|
||
// both the using-directive and the nominated namespace.
|
||
DeclContext *InnermostFileDC
|
||
= static_cast<DeclContext*>(InnermostFileScope->getEntity());
|
||
assert(InnermostFileDC && InnermostFileDC->isFileContext());
|
||
|
||
for (; S; S = S->getParent()) {
|
||
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
|
||
DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
|
||
visit(Ctx, EffectiveDC);
|
||
} else {
|
||
Scope::udir_iterator I = S->using_directives_begin(),
|
||
End = S->using_directives_end();
|
||
|
||
for (; I != End; ++I)
|
||
visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Visits a context and collect all of its using directives
|
||
// recursively. Treats all using directives as if they were
|
||
// declared in the context.
|
||
//
|
||
// A given context is only every visited once, so it is important
|
||
// that contexts be visited from the inside out in order to get
|
||
// the effective DCs right.
|
||
void visit(DeclContext *DC, DeclContext *EffectiveDC) {
|
||
if (!visited.insert(DC))
|
||
return;
|
||
|
||
addUsingDirectives(DC, EffectiveDC);
|
||
}
|
||
|
||
// Visits a using directive and collects all of its using
|
||
// directives recursively. Treats all using directives as if they
|
||
// were declared in the effective DC.
|
||
void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
|
||
DeclContext *NS = UD->getNominatedNamespace();
|
||
if (!visited.insert(NS))
|
||
return;
|
||
|
||
addUsingDirective(UD, EffectiveDC);
|
||
addUsingDirectives(NS, EffectiveDC);
|
||
}
|
||
|
||
// Adds all the using directives in a context (and those nominated
|
||
// by its using directives, transitively) as if they appeared in
|
||
// the given effective context.
|
||
void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
|
||
llvm::SmallVector<DeclContext*,4> queue;
|
||
while (true) {
|
||
DeclContext::udir_iterator I, End;
|
||
for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
|
||
UsingDirectiveDecl *UD = *I;
|
||
DeclContext *NS = UD->getNominatedNamespace();
|
||
if (visited.insert(NS)) {
|
||
addUsingDirective(UD, EffectiveDC);
|
||
queue.push_back(NS);
|
||
}
|
||
}
|
||
|
||
if (queue.empty())
|
||
return;
|
||
|
||
DC = queue.back();
|
||
queue.pop_back();
|
||
}
|
||
}
|
||
|
||
// Add a using directive as if it had been declared in the given
|
||
// context. This helps implement C++ [namespace.udir]p3:
|
||
// The using-directive is transitive: if a scope contains a
|
||
// using-directive that nominates a second namespace that itself
|
||
// contains using-directives, the effect is as if the
|
||
// using-directives from the second namespace also appeared in
|
||
// the first.
|
||
void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
|
||
// Find the common ancestor between the effective context and
|
||
// the nominated namespace.
|
||
DeclContext *Common = UD->getNominatedNamespace();
|
||
while (!Common->Encloses(EffectiveDC))
|
||
Common = Common->getParent();
|
||
Common = Common->getPrimaryContext();
|
||
|
||
list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
|
||
}
|
||
|
||
void done() {
|
||
std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
|
||
}
|
||
|
||
typedef ListTy::iterator iterator;
|
||
typedef ListTy::const_iterator const_iterator;
|
||
|
||
iterator begin() { return list.begin(); }
|
||
iterator end() { return list.end(); }
|
||
const_iterator begin() const { return list.begin(); }
|
||
const_iterator end() const { return list.end(); }
|
||
|
||
std::pair<const_iterator,const_iterator>
|
||
getNamespacesFor(DeclContext *DC) const {
|
||
return std::equal_range(begin(), end(), DC->getPrimaryContext(),
|
||
UnqualUsingEntry::Comparator());
|
||
}
|
||
};
|
||
}
|
||
|
||
// Retrieve the set of identifier namespaces that correspond to a
|
||
// specific kind of name lookup.
|
||
static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
|
||
bool CPlusPlus,
|
||
bool Redeclaration) {
|
||
unsigned IDNS = 0;
|
||
switch (NameKind) {
|
||
case Sema::LookupOrdinaryName:
|
||
case Sema::LookupRedeclarationWithLinkage:
|
||
IDNS = Decl::IDNS_Ordinary;
|
||
if (CPlusPlus) {
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
|
||
if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
|
||
}
|
||
break;
|
||
|
||
case Sema::LookupOperatorName:
|
||
// Operator lookup is its own crazy thing; it is not the same
|
||
// as (e.g.) looking up an operator name for redeclaration.
|
||
assert(!Redeclaration && "cannot do redeclaration operator lookup");
|
||
IDNS = Decl::IDNS_NonMemberOperator;
|
||
break;
|
||
|
||
case Sema::LookupTagName:
|
||
if (CPlusPlus) {
|
||
IDNS = Decl::IDNS_Type;
|
||
|
||
// When looking for a redeclaration of a tag name, we add:
|
||
// 1) TagFriend to find undeclared friend decls
|
||
// 2) Namespace because they can't "overload" with tag decls.
|
||
// 3) Tag because it includes class templates, which can't
|
||
// "overload" with tag decls.
|
||
if (Redeclaration)
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
|
||
} else {
|
||
IDNS = Decl::IDNS_Tag;
|
||
}
|
||
break;
|
||
|
||
case Sema::LookupMemberName:
|
||
IDNS = Decl::IDNS_Member;
|
||
if (CPlusPlus)
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
|
||
break;
|
||
|
||
case Sema::LookupNestedNameSpecifierName:
|
||
IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
|
||
break;
|
||
|
||
case Sema::LookupNamespaceName:
|
||
IDNS = Decl::IDNS_Namespace;
|
||
break;
|
||
|
||
case Sema::LookupUsingDeclName:
|
||
IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
|
||
| Decl::IDNS_Member | Decl::IDNS_Using;
|
||
break;
|
||
|
||
case Sema::LookupObjCProtocolName:
|
||
IDNS = Decl::IDNS_ObjCProtocol;
|
||
break;
|
||
}
|
||
return IDNS;
|
||
}
|
||
|
||
void LookupResult::configure() {
|
||
IDNS = getIDNS(LookupKind,
|
||
SemaRef.getLangOptions().CPlusPlus,
|
||
isForRedeclaration());
|
||
|
||
// If we're looking for one of the allocation or deallocation
|
||
// operators, make sure that the implicitly-declared new and delete
|
||
// operators can be found.
|
||
if (!isForRedeclaration()) {
|
||
switch (Name.getCXXOverloadedOperator()) {
|
||
case OO_New:
|
||
case OO_Delete:
|
||
case OO_Array_New:
|
||
case OO_Array_Delete:
|
||
SemaRef.DeclareGlobalNewDelete();
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Necessary because CXXBasePaths is not complete in Sema.h
|
||
void LookupResult::deletePaths(CXXBasePaths *Paths) {
|
||
delete Paths;
|
||
}
|
||
|
||
/// Resolves the result kind of this lookup.
|
||
void LookupResult::resolveKind() {
|
||
unsigned N = Decls.size();
|
||
|
||
// Fast case: no possible ambiguity.
|
||
if (N == 0) {
|
||
assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
|
||
return;
|
||
}
|
||
|
||
// If there's a single decl, we need to examine it to decide what
|
||
// kind of lookup this is.
|
||
if (N == 1) {
|
||
NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
|
||
if (isa<FunctionTemplateDecl>(D))
|
||
ResultKind = FoundOverloaded;
|
||
else if (isa<UnresolvedUsingValueDecl>(D))
|
||
ResultKind = FoundUnresolvedValue;
|
||
return;
|
||
}
|
||
|
||
// Don't do any extra resolution if we've already resolved as ambiguous.
|
||
if (ResultKind == Ambiguous) return;
|
||
|
||
llvm::SmallPtrSet<NamedDecl*, 16> Unique;
|
||
|
||
bool Ambiguous = false;
|
||
bool HasTag = false, HasFunction = false, HasNonFunction = false;
|
||
bool HasFunctionTemplate = false, HasUnresolved = false;
|
||
|
||
unsigned UniqueTagIndex = 0;
|
||
|
||
unsigned I = 0;
|
||
while (I < N) {
|
||
NamedDecl *D = Decls[I]->getUnderlyingDecl();
|
||
D = cast<NamedDecl>(D->getCanonicalDecl());
|
||
|
||
if (!Unique.insert(D)) {
|
||
// If it's not unique, pull something off the back (and
|
||
// continue at this index).
|
||
Decls[I] = Decls[--N];
|
||
} else {
|
||
// Otherwise, do some decl type analysis and then continue.
|
||
|
||
if (isa<UnresolvedUsingValueDecl>(D)) {
|
||
HasUnresolved = true;
|
||
} else if (isa<TagDecl>(D)) {
|
||
if (HasTag)
|
||
Ambiguous = true;
|
||
UniqueTagIndex = I;
|
||
HasTag = true;
|
||
} else if (isa<FunctionTemplateDecl>(D)) {
|
||
HasFunction = true;
|
||
HasFunctionTemplate = true;
|
||
} else if (isa<FunctionDecl>(D)) {
|
||
HasFunction = true;
|
||
} else {
|
||
if (HasNonFunction)
|
||
Ambiguous = true;
|
||
HasNonFunction = true;
|
||
}
|
||
I++;
|
||
}
|
||
}
|
||
|
||
// C++ [basic.scope.hiding]p2:
|
||
// A class name or enumeration name can be hidden by the name of
|
||
// an object, function, or enumerator declared in the same
|
||
// scope. If a class or enumeration name and an object, function,
|
||
// or enumerator are declared in the same scope (in any order)
|
||
// with the same name, the class or enumeration name is hidden
|
||
// wherever the object, function, or enumerator name is visible.
|
||
// But it's still an error if there are distinct tag types found,
|
||
// even if they're not visible. (ref?)
|
||
if (HideTags && HasTag && !Ambiguous &&
|
||
(HasFunction || HasNonFunction || HasUnresolved))
|
||
Decls[UniqueTagIndex] = Decls[--N];
|
||
|
||
Decls.set_size(N);
|
||
|
||
if (HasNonFunction && (HasFunction || HasUnresolved))
|
||
Ambiguous = true;
|
||
|
||
if (Ambiguous)
|
||
setAmbiguous(LookupResult::AmbiguousReference);
|
||
else if (HasUnresolved)
|
||
ResultKind = LookupResult::FoundUnresolvedValue;
|
||
else if (N > 1 || HasFunctionTemplate)
|
||
ResultKind = LookupResult::FoundOverloaded;
|
||
else
|
||
ResultKind = LookupResult::Found;
|
||
}
|
||
|
||
void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
|
||
CXXBasePaths::const_paths_iterator I, E;
|
||
DeclContext::lookup_iterator DI, DE;
|
||
for (I = P.begin(), E = P.end(); I != E; ++I)
|
||
for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
|
||
addDecl(*DI);
|
||
}
|
||
|
||
void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
|
||
Paths = new CXXBasePaths;
|
||
Paths->swap(P);
|
||
addDeclsFromBasePaths(*Paths);
|
||
resolveKind();
|
||
setAmbiguous(AmbiguousBaseSubobjects);
|
||
}
|
||
|
||
void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
|
||
Paths = new CXXBasePaths;
|
||
Paths->swap(P);
|
||
addDeclsFromBasePaths(*Paths);
|
||
resolveKind();
|
||
setAmbiguous(AmbiguousBaseSubobjectTypes);
|
||
}
|
||
|
||
void LookupResult::print(llvm::raw_ostream &Out) {
|
||
Out << Decls.size() << " result(s)";
|
||
if (isAmbiguous()) Out << ", ambiguous";
|
||
if (Paths) Out << ", base paths present";
|
||
|
||
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||
Out << "\n";
|
||
(*I)->print(Out, 2);
|
||
}
|
||
}
|
||
|
||
/// \brief Lookup a builtin function, when name lookup would otherwise
|
||
/// fail.
|
||
static bool LookupBuiltin(Sema &S, LookupResult &R) {
|
||
Sema::LookupNameKind NameKind = R.getLookupKind();
|
||
|
||
// If we didn't find a use of this identifier, and if the identifier
|
||
// corresponds to a compiler builtin, create the decl object for the builtin
|
||
// now, injecting it into translation unit scope, and return it.
|
||
if (NameKind == Sema::LookupOrdinaryName ||
|
||
NameKind == Sema::LookupRedeclarationWithLinkage) {
|
||
IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
|
||
if (II) {
|
||
// If this is a builtin on this (or all) targets, create the decl.
|
||
if (unsigned BuiltinID = II->getBuiltinID()) {
|
||
// In C++, we don't have any predefined library functions like
|
||
// 'malloc'. Instead, we'll just error.
|
||
if (S.getLangOptions().CPlusPlus &&
|
||
S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
||
return false;
|
||
|
||
NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
|
||
S.TUScope, R.isForRedeclaration(),
|
||
R.getNameLoc());
|
||
if (D)
|
||
R.addDecl(D);
|
||
return (D != NULL);
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Adds all qualifying matches for a name within a decl context to the
|
||
// given lookup result. Returns true if any matches were found.
|
||
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
|
||
bool Found = false;
|
||
|
||
DeclContext::lookup_const_iterator I, E;
|
||
for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
|
||
NamedDecl *D = *I;
|
||
if (R.isAcceptableDecl(D)) {
|
||
R.addDecl(D);
|
||
Found = true;
|
||
}
|
||
}
|
||
|
||
if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
|
||
return true;
|
||
|
||
if (R.getLookupName().getNameKind()
|
||
!= DeclarationName::CXXConversionFunctionName ||
|
||
R.getLookupName().getCXXNameType()->isDependentType() ||
|
||
!isa<CXXRecordDecl>(DC))
|
||
return Found;
|
||
|
||
// C++ [temp.mem]p6:
|
||
// A specialization of a conversion function template is not found by
|
||
// name lookup. Instead, any conversion function templates visible in the
|
||
// context of the use are considered. [...]
|
||
const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
|
||
if (!Record->isDefinition())
|
||
return Found;
|
||
|
||
const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
|
||
for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
|
||
UEnd = Unresolved->end(); U != UEnd; ++U) {
|
||
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
|
||
if (!ConvTemplate)
|
||
continue;
|
||
|
||
// When we're performing lookup for the purposes of redeclaration, just
|
||
// add the conversion function template. When we deduce template
|
||
// arguments for specializations, we'll end up unifying the return
|
||
// type of the new declaration with the type of the function template.
|
||
if (R.isForRedeclaration()) {
|
||
R.addDecl(ConvTemplate);
|
||
Found = true;
|
||
continue;
|
||
}
|
||
|
||
// C++ [temp.mem]p6:
|
||
// [...] For each such operator, if argument deduction succeeds
|
||
// (14.9.2.3), the resulting specialization is used as if found by
|
||
// name lookup.
|
||
//
|
||
// When referencing a conversion function for any purpose other than
|
||
// a redeclaration (such that we'll be building an expression with the
|
||
// result), perform template argument deduction and place the
|
||
// specialization into the result set. We do this to avoid forcing all
|
||
// callers to perform special deduction for conversion functions.
|
||
Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
|
||
FunctionDecl *Specialization = 0;
|
||
|
||
const FunctionProtoType *ConvProto
|
||
= ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
|
||
assert(ConvProto && "Nonsensical conversion function template type");
|
||
|
||
// Compute the type of the function that we would expect the conversion
|
||
// function to have, if it were to match the name given.
|
||
// FIXME: Calling convention!
|
||
FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
|
||
QualType ExpectedType
|
||
= R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
|
||
0, 0, ConvProto->isVariadic(),
|
||
ConvProto->getTypeQuals(),
|
||
false, false, 0, 0,
|
||
ConvProtoInfo.withCallingConv(CC_Default));
|
||
|
||
// Perform template argument deduction against the type that we would
|
||
// expect the function to have.
|
||
if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
|
||
Specialization, Info)
|
||
== Sema::TDK_Success) {
|
||
R.addDecl(Specialization);
|
||
Found = true;
|
||
}
|
||
}
|
||
|
||
return Found;
|
||
}
|
||
|
||
// Performs C++ unqualified lookup into the given file context.
|
||
static bool
|
||
CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
|
||
DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
|
||
|
||
assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
|
||
|
||
// Perform direct name lookup into the LookupCtx.
|
||
bool Found = LookupDirect(S, R, NS);
|
||
|
||
// Perform direct name lookup into the namespaces nominated by the
|
||
// using directives whose common ancestor is this namespace.
|
||
UnqualUsingDirectiveSet::const_iterator UI, UEnd;
|
||
llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
|
||
|
||
for (; UI != UEnd; ++UI)
|
||
if (LookupDirect(S, R, UI->getNominatedNamespace()))
|
||
Found = true;
|
||
|
||
R.resolveKind();
|
||
|
||
return Found;
|
||
}
|
||
|
||
static bool isNamespaceOrTranslationUnitScope(Scope *S) {
|
||
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
|
||
return Ctx->isFileContext();
|
||
return false;
|
||
}
|
||
|
||
// Find the next outer declaration context from this scope. This
|
||
// routine actually returns the semantic outer context, which may
|
||
// differ from the lexical context (encoded directly in the Scope
|
||
// stack) when we are parsing a member of a class template. In this
|
||
// case, the second element of the pair will be true, to indicate that
|
||
// name lookup should continue searching in this semantic context when
|
||
// it leaves the current template parameter scope.
|
||
static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
|
||
DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
|
||
DeclContext *Lexical = 0;
|
||
for (Scope *OuterS = S->getParent(); OuterS;
|
||
OuterS = OuterS->getParent()) {
|
||
if (OuterS->getEntity()) {
|
||
Lexical = static_cast<DeclContext *>(OuterS->getEntity());
|
||
break;
|
||
}
|
||
}
|
||
|
||
// C++ [temp.local]p8:
|
||
// In the definition of a member of a class template that appears
|
||
// outside of the namespace containing the class template
|
||
// definition, the name of a template-parameter hides the name of
|
||
// a member of this namespace.
|
||
//
|
||
// Example:
|
||
//
|
||
// namespace N {
|
||
// class C { };
|
||
//
|
||
// template<class T> class B {
|
||
// void f(T);
|
||
// };
|
||
// }
|
||
//
|
||
// template<class C> void N::B<C>::f(C) {
|
||
// C b; // C is the template parameter, not N::C
|
||
// }
|
||
//
|
||
// In this example, the lexical context we return is the
|
||
// TranslationUnit, while the semantic context is the namespace N.
|
||
if (!Lexical || !DC || !S->getParent() ||
|
||
!S->getParent()->isTemplateParamScope())
|
||
return std::make_pair(Lexical, false);
|
||
|
||
// Find the outermost template parameter scope.
|
||
// For the example, this is the scope for the template parameters of
|
||
// template<class C>.
|
||
Scope *OutermostTemplateScope = S->getParent();
|
||
while (OutermostTemplateScope->getParent() &&
|
||
OutermostTemplateScope->getParent()->isTemplateParamScope())
|
||
OutermostTemplateScope = OutermostTemplateScope->getParent();
|
||
|
||
// Find the namespace context in which the original scope occurs. In
|
||
// the example, this is namespace N.
|
||
DeclContext *Semantic = DC;
|
||
while (!Semantic->isFileContext())
|
||
Semantic = Semantic->getParent();
|
||
|
||
// Find the declaration context just outside of the template
|
||
// parameter scope. This is the context in which the template is
|
||
// being lexically declaration (a namespace context). In the
|
||
// example, this is the global scope.
|
||
if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
|
||
Lexical->Encloses(Semantic))
|
||
return std::make_pair(Semantic, true);
|
||
|
||
return std::make_pair(Lexical, false);
|
||
}
|
||
|
||
bool Sema::CppLookupName(LookupResult &R, Scope *S) {
|
||
assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
|
||
|
||
DeclarationName Name = R.getLookupName();
|
||
|
||
Scope *Initial = S;
|
||
IdentifierResolver::iterator
|
||
I = IdResolver.begin(Name),
|
||
IEnd = IdResolver.end();
|
||
|
||
// First we lookup local scope.
|
||
// We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
|
||
// ...During unqualified name lookup (3.4.1), the names appear as if
|
||
// they were declared in the nearest enclosing namespace which contains
|
||
// both the using-directive and the nominated namespace.
|
||
// [Note: in this context, "contains" means "contains directly or
|
||
// indirectly".
|
||
//
|
||
// For example:
|
||
// namespace A { int i; }
|
||
// void foo() {
|
||
// int i;
|
||
// {
|
||
// using namespace A;
|
||
// ++i; // finds local 'i', A::i appears at global scope
|
||
// }
|
||
// }
|
||
//
|
||
DeclContext *OutsideOfTemplateParamDC = 0;
|
||
for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
|
||
// Check whether the IdResolver has anything in this scope.
|
||
bool Found = false;
|
||
for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
|
||
if (R.isAcceptableDecl(*I)) {
|
||
Found = true;
|
||
R.addDecl(*I);
|
||
}
|
||
}
|
||
if (Found) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
|
||
if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
|
||
S->getParent() && !S->getParent()->isTemplateParamScope()) {
|
||
// We've just searched the last template parameter scope and
|
||
// found nothing, so look into the the contexts between the
|
||
// lexical and semantic declaration contexts returned by
|
||
// findOuterContext(). This implements the name lookup behavior
|
||
// of C++ [temp.local]p8.
|
||
Ctx = OutsideOfTemplateParamDC;
|
||
OutsideOfTemplateParamDC = 0;
|
||
}
|
||
|
||
if (Ctx) {
|
||
DeclContext *OuterCtx;
|
||
bool SearchAfterTemplateScope;
|
||
llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
|
||
if (SearchAfterTemplateScope)
|
||
OutsideOfTemplateParamDC = OuterCtx;
|
||
|
||
for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
|
||
// We do not directly look into transparent contexts, since
|
||
// those entities will be found in the nearest enclosing
|
||
// non-transparent context.
|
||
if (Ctx->isTransparentContext())
|
||
continue;
|
||
|
||
// We do not look directly into function or method contexts,
|
||
// since all of the local variables and parameters of the
|
||
// function/method are present within the Scope.
|
||
if (Ctx->isFunctionOrMethod()) {
|
||
// If we have an Objective-C instance method, look for ivars
|
||
// in the corresponding interface.
|
||
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
|
||
if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
|
||
if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
|
||
ObjCInterfaceDecl *ClassDeclared;
|
||
if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
|
||
Name.getAsIdentifierInfo(),
|
||
ClassDeclared)) {
|
||
if (R.isAcceptableDecl(Ivar)) {
|
||
R.addDecl(Ivar);
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
// Perform qualified name lookup into this context.
|
||
// FIXME: In some cases, we know that every name that could be found by
|
||
// this qualified name lookup will also be on the identifier chain. For
|
||
// example, inside a class without any base classes, we never need to
|
||
// perform qualified lookup because all of the members are on top of the
|
||
// identifier chain.
|
||
if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Stop if we ran out of scopes.
|
||
// FIXME: This really, really shouldn't be happening.
|
||
if (!S) return false;
|
||
|
||
// Collect UsingDirectiveDecls in all scopes, and recursively all
|
||
// nominated namespaces by those using-directives.
|
||
//
|
||
// FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
|
||
// don't build it for each lookup!
|
||
|
||
UnqualUsingDirectiveSet UDirs;
|
||
UDirs.visitScopeChain(Initial, S);
|
||
UDirs.done();
|
||
|
||
// Lookup namespace scope, and global scope.
|
||
// Unqualified name lookup in C++ requires looking into scopes
|
||
// that aren't strictly lexical, and therefore we walk through the
|
||
// context as well as walking through the scopes.
|
||
|
||
for (; S; S = S->getParent()) {
|
||
DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
|
||
if (Ctx && Ctx->isTransparentContext())
|
||
continue;
|
||
|
||
// Check whether the IdResolver has anything in this scope.
|
||
bool Found = false;
|
||
for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
|
||
if (R.isAcceptableDecl(*I)) {
|
||
// We found something. Look for anything else in our scope
|
||
// with this same name and in an acceptable identifier
|
||
// namespace, so that we can construct an overload set if we
|
||
// need to.
|
||
Found = true;
|
||
R.addDecl(*I);
|
||
}
|
||
}
|
||
|
||
// If we have a context, and it's not a context stashed in the
|
||
// template parameter scope for an out-of-line definition, also
|
||
// look into that context.
|
||
if (Ctx && !(Found && S && S->isTemplateParamScope())) {
|
||
assert(Ctx->isFileContext() &&
|
||
"We should have been looking only at file context here already.");
|
||
|
||
// Look into context considering using-directives.
|
||
if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
|
||
Found = true;
|
||
}
|
||
|
||
if (Found) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
|
||
return false;
|
||
}
|
||
|
||
return !R.empty();
|
||
}
|
||
|
||
/// @brief Perform unqualified name lookup starting from a given
|
||
/// scope.
|
||
///
|
||
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
|
||
/// used to find names within the current scope. For example, 'x' in
|
||
/// @code
|
||
/// int x;
|
||
/// int f() {
|
||
/// return x; // unqualified name look finds 'x' in the global scope
|
||
/// }
|
||
/// @endcode
|
||
///
|
||
/// Different lookup criteria can find different names. For example, a
|
||
/// particular scope can have both a struct and a function of the same
|
||
/// name, and each can be found by certain lookup criteria. For more
|
||
/// information about lookup criteria, see the documentation for the
|
||
/// class LookupCriteria.
|
||
///
|
||
/// @param S The scope from which unqualified name lookup will
|
||
/// begin. If the lookup criteria permits, name lookup may also search
|
||
/// in the parent scopes.
|
||
///
|
||
/// @param Name The name of the entity that we are searching for.
|
||
///
|
||
/// @param Loc If provided, the source location where we're performing
|
||
/// name lookup. At present, this is only used to produce diagnostics when
|
||
/// C library functions (like "malloc") are implicitly declared.
|
||
///
|
||
/// @returns The result of name lookup, which includes zero or more
|
||
/// declarations and possibly additional information used to diagnose
|
||
/// ambiguities.
|
||
bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
|
||
DeclarationName Name = R.getLookupName();
|
||
if (!Name) return false;
|
||
|
||
LookupNameKind NameKind = R.getLookupKind();
|
||
|
||
if (!getLangOptions().CPlusPlus) {
|
||
// Unqualified name lookup in C/Objective-C is purely lexical, so
|
||
// search in the declarations attached to the name.
|
||
|
||
if (NameKind == Sema::LookupRedeclarationWithLinkage) {
|
||
// Find the nearest non-transparent declaration scope.
|
||
while (!(S->getFlags() & Scope::DeclScope) ||
|
||
(S->getEntity() &&
|
||
static_cast<DeclContext *>(S->getEntity())
|
||
->isTransparentContext()))
|
||
S = S->getParent();
|
||
}
|
||
|
||
unsigned IDNS = R.getIdentifierNamespace();
|
||
|
||
// Scan up the scope chain looking for a decl that matches this
|
||
// identifier that is in the appropriate namespace. This search
|
||
// should not take long, as shadowing of names is uncommon, and
|
||
// deep shadowing is extremely uncommon.
|
||
bool LeftStartingScope = false;
|
||
|
||
for (IdentifierResolver::iterator I = IdResolver.begin(Name),
|
||
IEnd = IdResolver.end();
|
||
I != IEnd; ++I)
|
||
if ((*I)->isInIdentifierNamespace(IDNS)) {
|
||
if (NameKind == LookupRedeclarationWithLinkage) {
|
||
// Determine whether this (or a previous) declaration is
|
||
// out-of-scope.
|
||
if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
|
||
LeftStartingScope = true;
|
||
|
||
// If we found something outside of our starting scope that
|
||
// does not have linkage, skip it.
|
||
if (LeftStartingScope && !((*I)->hasLinkage()))
|
||
continue;
|
||
}
|
||
|
||
R.addDecl(*I);
|
||
|
||
if ((*I)->getAttr<OverloadableAttr>()) {
|
||
// If this declaration has the "overloadable" attribute, we
|
||
// might have a set of overloaded functions.
|
||
|
||
// Figure out what scope the identifier is in.
|
||
while (!(S->getFlags() & Scope::DeclScope) ||
|
||
!S->isDeclScope(DeclPtrTy::make(*I)))
|
||
S = S->getParent();
|
||
|
||
// Find the last declaration in this scope (with the same
|
||
// name, naturally).
|
||
IdentifierResolver::iterator LastI = I;
|
||
for (++LastI; LastI != IEnd; ++LastI) {
|
||
if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
|
||
break;
|
||
R.addDecl(*LastI);
|
||
}
|
||
}
|
||
|
||
R.resolveKind();
|
||
|
||
return true;
|
||
}
|
||
} else {
|
||
// Perform C++ unqualified name lookup.
|
||
if (CppLookupName(R, S))
|
||
return true;
|
||
}
|
||
|
||
// If we didn't find a use of this identifier, and if the identifier
|
||
// corresponds to a compiler builtin, create the decl object for the builtin
|
||
// now, injecting it into translation unit scope, and return it.
|
||
if (AllowBuiltinCreation)
|
||
return LookupBuiltin(*this, R);
|
||
|
||
return false;
|
||
}
|
||
|
||
/// @brief Perform qualified name lookup in the namespaces nominated by
|
||
/// using directives by the given context.
|
||
///
|
||
/// C++98 [namespace.qual]p2:
|
||
/// Given X::m (where X is a user-declared namespace), or given ::m
|
||
/// (where X is the global namespace), let S be the set of all
|
||
/// declarations of m in X and in the transitive closure of all
|
||
/// namespaces nominated by using-directives in X and its used
|
||
/// namespaces, except that using-directives are ignored in any
|
||
/// namespace, including X, directly containing one or more
|
||
/// declarations of m. No namespace is searched more than once in
|
||
/// the lookup of a name. If S is the empty set, the program is
|
||
/// ill-formed. Otherwise, if S has exactly one member, or if the
|
||
/// context of the reference is a using-declaration
|
||
/// (namespace.udecl), S is the required set of declarations of
|
||
/// m. Otherwise if the use of m is not one that allows a unique
|
||
/// declaration to be chosen from S, the program is ill-formed.
|
||
/// C++98 [namespace.qual]p5:
|
||
/// During the lookup of a qualified namespace member name, if the
|
||
/// lookup finds more than one declaration of the member, and if one
|
||
/// declaration introduces a class name or enumeration name and the
|
||
/// other declarations either introduce the same object, the same
|
||
/// enumerator or a set of functions, the non-type name hides the
|
||
/// class or enumeration name if and only if the declarations are
|
||
/// from the same namespace; otherwise (the declarations are from
|
||
/// different namespaces), the program is ill-formed.
|
||
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
|
||
DeclContext *StartDC) {
|
||
assert(StartDC->isFileContext() && "start context is not a file context");
|
||
|
||
DeclContext::udir_iterator I = StartDC->using_directives_begin();
|
||
DeclContext::udir_iterator E = StartDC->using_directives_end();
|
||
|
||
if (I == E) return false;
|
||
|
||
// We have at least added all these contexts to the queue.
|
||
llvm::DenseSet<DeclContext*> Visited;
|
||
Visited.insert(StartDC);
|
||
|
||
// We have not yet looked into these namespaces, much less added
|
||
// their "using-children" to the queue.
|
||
llvm::SmallVector<NamespaceDecl*, 8> Queue;
|
||
|
||
// We have already looked into the initial namespace; seed the queue
|
||
// with its using-children.
|
||
for (; I != E; ++I) {
|
||
NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
|
||
if (Visited.insert(ND).second)
|
||
Queue.push_back(ND);
|
||
}
|
||
|
||
// The easiest way to implement the restriction in [namespace.qual]p5
|
||
// is to check whether any of the individual results found a tag
|
||
// and, if so, to declare an ambiguity if the final result is not
|
||
// a tag.
|
||
bool FoundTag = false;
|
||
bool FoundNonTag = false;
|
||
|
||
LookupResult LocalR(LookupResult::Temporary, R);
|
||
|
||
bool Found = false;
|
||
while (!Queue.empty()) {
|
||
NamespaceDecl *ND = Queue.back();
|
||
Queue.pop_back();
|
||
|
||
// We go through some convolutions here to avoid copying results
|
||
// between LookupResults.
|
||
bool UseLocal = !R.empty();
|
||
LookupResult &DirectR = UseLocal ? LocalR : R;
|
||
bool FoundDirect = LookupDirect(S, DirectR, ND);
|
||
|
||
if (FoundDirect) {
|
||
// First do any local hiding.
|
||
DirectR.resolveKind();
|
||
|
||
// If the local result is a tag, remember that.
|
||
if (DirectR.isSingleTagDecl())
|
||
FoundTag = true;
|
||
else
|
||
FoundNonTag = true;
|
||
|
||
// Append the local results to the total results if necessary.
|
||
if (UseLocal) {
|
||
R.addAllDecls(LocalR);
|
||
LocalR.clear();
|
||
}
|
||
}
|
||
|
||
// If we find names in this namespace, ignore its using directives.
|
||
if (FoundDirect) {
|
||
Found = true;
|
||
continue;
|
||
}
|
||
|
||
for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
|
||
NamespaceDecl *Nom = (*I)->getNominatedNamespace();
|
||
if (Visited.insert(Nom).second)
|
||
Queue.push_back(Nom);
|
||
}
|
||
}
|
||
|
||
if (Found) {
|
||
if (FoundTag && FoundNonTag)
|
||
R.setAmbiguousQualifiedTagHiding();
|
||
else
|
||
R.resolveKind();
|
||
}
|
||
|
||
return Found;
|
||
}
|
||
|
||
/// \brief Perform qualified name lookup into a given context.
|
||
///
|
||
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
|
||
/// names when the context of those names is explicit specified, e.g.,
|
||
/// "std::vector" or "x->member", or as part of unqualified name lookup.
|
||
///
|
||
/// Different lookup criteria can find different names. For example, a
|
||
/// particular scope can have both a struct and a function of the same
|
||
/// name, and each can be found by certain lookup criteria. For more
|
||
/// information about lookup criteria, see the documentation for the
|
||
/// class LookupCriteria.
|
||
///
|
||
/// \param R captures both the lookup criteria and any lookup results found.
|
||
///
|
||
/// \param LookupCtx The context in which qualified name lookup will
|
||
/// search. If the lookup criteria permits, name lookup may also search
|
||
/// in the parent contexts or (for C++ classes) base classes.
|
||
///
|
||
/// \param InUnqualifiedLookup true if this is qualified name lookup that
|
||
/// occurs as part of unqualified name lookup.
|
||
///
|
||
/// \returns true if lookup succeeded, false if it failed.
|
||
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
||
bool InUnqualifiedLookup) {
|
||
assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
|
||
|
||
if (!R.getLookupName())
|
||
return false;
|
||
|
||
// Make sure that the declaration context is complete.
|
||
assert((!isa<TagDecl>(LookupCtx) ||
|
||
LookupCtx->isDependentContext() ||
|
||
cast<TagDecl>(LookupCtx)->isDefinition() ||
|
||
Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
|
||
->isBeingDefined()) &&
|
||
"Declaration context must already be complete!");
|
||
|
||
// Perform qualified name lookup into the LookupCtx.
|
||
if (LookupDirect(*this, R, LookupCtx)) {
|
||
R.resolveKind();
|
||
if (isa<CXXRecordDecl>(LookupCtx))
|
||
R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
|
||
return true;
|
||
}
|
||
|
||
// Don't descend into implied contexts for redeclarations.
|
||
// C++98 [namespace.qual]p6:
|
||
// In a declaration for a namespace member in which the
|
||
// declarator-id is a qualified-id, given that the qualified-id
|
||
// for the namespace member has the form
|
||
// nested-name-specifier unqualified-id
|
||
// the unqualified-id shall name a member of the namespace
|
||
// designated by the nested-name-specifier.
|
||
// See also [class.mfct]p5 and [class.static.data]p2.
|
||
if (R.isForRedeclaration())
|
||
return false;
|
||
|
||
// If this is a namespace, look it up in the implied namespaces.
|
||
if (LookupCtx->isFileContext())
|
||
return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
|
||
|
||
// If this isn't a C++ class, we aren't allowed to look into base
|
||
// classes, we're done.
|
||
CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
|
||
if (!LookupRec)
|
||
return false;
|
||
|
||
// If we're performing qualified name lookup into a dependent class,
|
||
// then we are actually looking into a current instantiation. If we have any
|
||
// dependent base classes, then we either have to delay lookup until
|
||
// template instantiation time (at which point all bases will be available)
|
||
// or we have to fail.
|
||
if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
|
||
LookupRec->hasAnyDependentBases()) {
|
||
R.setNotFoundInCurrentInstantiation();
|
||
return false;
|
||
}
|
||
|
||
// Perform lookup into our base classes.
|
||
CXXBasePaths Paths;
|
||
Paths.setOrigin(LookupRec);
|
||
|
||
// Look for this member in our base classes
|
||
CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
|
||
switch (R.getLookupKind()) {
|
||
case LookupOrdinaryName:
|
||
case LookupMemberName:
|
||
case LookupRedeclarationWithLinkage:
|
||
BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
|
||
break;
|
||
|
||
case LookupTagName:
|
||
BaseCallback = &CXXRecordDecl::FindTagMember;
|
||
break;
|
||
|
||
case LookupUsingDeclName:
|
||
// This lookup is for redeclarations only.
|
||
|
||
case LookupOperatorName:
|
||
case LookupNamespaceName:
|
||
case LookupObjCProtocolName:
|
||
// These lookups will never find a member in a C++ class (or base class).
|
||
return false;
|
||
|
||
case LookupNestedNameSpecifierName:
|
||
BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
|
||
break;
|
||
}
|
||
|
||
if (!LookupRec->lookupInBases(BaseCallback,
|
||
R.getLookupName().getAsOpaquePtr(), Paths))
|
||
return false;
|
||
|
||
R.setNamingClass(LookupRec);
|
||
|
||
// C++ [class.member.lookup]p2:
|
||
// [...] If the resulting set of declarations are not all from
|
||
// sub-objects of the same type, or the set has a nonstatic member
|
||
// and includes members from distinct sub-objects, there is an
|
||
// ambiguity and the program is ill-formed. Otherwise that set is
|
||
// the result of the lookup.
|
||
// FIXME: support using declarations!
|
||
QualType SubobjectType;
|
||
int SubobjectNumber = 0;
|
||
AccessSpecifier SubobjectAccess = AS_none;
|
||
for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
|
||
Path != PathEnd; ++Path) {
|
||
const CXXBasePathElement &PathElement = Path->back();
|
||
|
||
// Pick the best (i.e. most permissive i.e. numerically lowest) access
|
||
// across all paths.
|
||
SubobjectAccess = std::min(SubobjectAccess, Path->Access);
|
||
|
||
// Determine whether we're looking at a distinct sub-object or not.
|
||
if (SubobjectType.isNull()) {
|
||
// This is the first subobject we've looked at. Record its type.
|
||
SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
|
||
SubobjectNumber = PathElement.SubobjectNumber;
|
||
} else if (SubobjectType
|
||
!= Context.getCanonicalType(PathElement.Base->getType())) {
|
||
// We found members of the given name in two subobjects of
|
||
// different types. This lookup is ambiguous.
|
||
R.setAmbiguousBaseSubobjectTypes(Paths);
|
||
return true;
|
||
} else if (SubobjectNumber != PathElement.SubobjectNumber) {
|
||
// We have a different subobject of the same type.
|
||
|
||
// C++ [class.member.lookup]p5:
|
||
// A static member, a nested type or an enumerator defined in
|
||
// a base class T can unambiguously be found even if an object
|
||
// has more than one base class subobject of type T.
|
||
Decl *FirstDecl = *Path->Decls.first;
|
||
if (isa<VarDecl>(FirstDecl) ||
|
||
isa<TypeDecl>(FirstDecl) ||
|
||
isa<EnumConstantDecl>(FirstDecl))
|
||
continue;
|
||
|
||
if (isa<CXXMethodDecl>(FirstDecl)) {
|
||
// Determine whether all of the methods are static.
|
||
bool AllMethodsAreStatic = true;
|
||
for (DeclContext::lookup_iterator Func = Path->Decls.first;
|
||
Func != Path->Decls.second; ++Func) {
|
||
if (!isa<CXXMethodDecl>(*Func)) {
|
||
assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
|
||
break;
|
||
}
|
||
|
||
if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
|
||
AllMethodsAreStatic = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (AllMethodsAreStatic)
|
||
continue;
|
||
}
|
||
|
||
// We have found a nonstatic member name in multiple, distinct
|
||
// subobjects. Name lookup is ambiguous.
|
||
R.setAmbiguousBaseSubobjects(Paths);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Lookup in a base class succeeded; return these results.
|
||
|
||
DeclContext::lookup_iterator I, E;
|
||
for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
|
||
NamedDecl *D = *I;
|
||
AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
|
||
D->getAccess());
|
||
R.addDecl(D, AS);
|
||
}
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
/// @brief Performs name lookup for a name that was parsed in the
|
||
/// source code, and may contain a C++ scope specifier.
|
||
///
|
||
/// This routine is a convenience routine meant to be called from
|
||
/// contexts that receive a name and an optional C++ scope specifier
|
||
/// (e.g., "N::M::x"). It will then perform either qualified or
|
||
/// unqualified name lookup (with LookupQualifiedName or LookupName,
|
||
/// respectively) on the given name and return those results.
|
||
///
|
||
/// @param S The scope from which unqualified name lookup will
|
||
/// begin.
|
||
///
|
||
/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
|
||
///
|
||
/// @param Name The name of the entity that name lookup will
|
||
/// search for.
|
||
///
|
||
/// @param Loc If provided, the source location where we're performing
|
||
/// name lookup. At present, this is only used to produce diagnostics when
|
||
/// C library functions (like "malloc") are implicitly declared.
|
||
///
|
||
/// @param EnteringContext Indicates whether we are going to enter the
|
||
/// context of the scope-specifier SS (if present).
|
||
///
|
||
/// @returns True if any decls were found (but possibly ambiguous)
|
||
bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
|
||
bool AllowBuiltinCreation, bool EnteringContext) {
|
||
if (SS && SS->isInvalid()) {
|
||
// When the scope specifier is invalid, don't even look for
|
||
// anything.
|
||
return false;
|
||
}
|
||
|
||
if (SS && SS->isSet()) {
|
||
if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
|
||
// We have resolved the scope specifier to a particular declaration
|
||
// contex, and will perform name lookup in that context.
|
||
if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
|
||
return false;
|
||
|
||
R.setContextRange(SS->getRange());
|
||
|
||
return LookupQualifiedName(R, DC);
|
||
}
|
||
|
||
// We could not resolve the scope specified to a specific declaration
|
||
// context, which means that SS refers to an unknown specialization.
|
||
// Name lookup can't find anything in this case.
|
||
return false;
|
||
}
|
||
|
||
// Perform unqualified name lookup starting in the given scope.
|
||
return LookupName(R, S, AllowBuiltinCreation);
|
||
}
|
||
|
||
|
||
/// @brief Produce a diagnostic describing the ambiguity that resulted
|
||
/// from name lookup.
|
||
///
|
||
/// @param Result The ambiguous name lookup result.
|
||
///
|
||
/// @param Name The name of the entity that name lookup was
|
||
/// searching for.
|
||
///
|
||
/// @param NameLoc The location of the name within the source code.
|
||
///
|
||
/// @param LookupRange A source range that provides more
|
||
/// source-location information concerning the lookup itself. For
|
||
/// example, this range might highlight a nested-name-specifier that
|
||
/// precedes the name.
|
||
///
|
||
/// @returns true
|
||
bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
|
||
assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
|
||
|
||
DeclarationName Name = Result.getLookupName();
|
||
SourceLocation NameLoc = Result.getNameLoc();
|
||
SourceRange LookupRange = Result.getContextRange();
|
||
|
||
switch (Result.getAmbiguityKind()) {
|
||
case LookupResult::AmbiguousBaseSubobjects: {
|
||
CXXBasePaths *Paths = Result.getBasePaths();
|
||
QualType SubobjectType = Paths->front().back().Base->getType();
|
||
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
|
||
<< Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
|
||
<< LookupRange;
|
||
|
||
DeclContext::lookup_iterator Found = Paths->front().Decls.first;
|
||
while (isa<CXXMethodDecl>(*Found) &&
|
||
cast<CXXMethodDecl>(*Found)->isStatic())
|
||
++Found;
|
||
|
||
Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
|
||
|
||
return true;
|
||
}
|
||
|
||
case LookupResult::AmbiguousBaseSubobjectTypes: {
|
||
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
|
||
<< Name << LookupRange;
|
||
|
||
CXXBasePaths *Paths = Result.getBasePaths();
|
||
std::set<Decl *> DeclsPrinted;
|
||
for (CXXBasePaths::paths_iterator Path = Paths->begin(),
|
||
PathEnd = Paths->end();
|
||
Path != PathEnd; ++Path) {
|
||
Decl *D = *Path->Decls.first;
|
||
if (DeclsPrinted.insert(D).second)
|
||
Diag(D->getLocation(), diag::note_ambiguous_member_found);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
case LookupResult::AmbiguousTagHiding: {
|
||
Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
|
||
|
||
llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
|
||
|
||
LookupResult::iterator DI, DE = Result.end();
|
||
for (DI = Result.begin(); DI != DE; ++DI)
|
||
if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
|
||
TagDecls.insert(TD);
|
||
Diag(TD->getLocation(), diag::note_hidden_tag);
|
||
}
|
||
|
||
for (DI = Result.begin(); DI != DE; ++DI)
|
||
if (!isa<TagDecl>(*DI))
|
||
Diag((*DI)->getLocation(), diag::note_hiding_object);
|
||
|
||
// For recovery purposes, go ahead and implement the hiding.
|
||
LookupResult::Filter F = Result.makeFilter();
|
||
while (F.hasNext()) {
|
||
if (TagDecls.count(F.next()))
|
||
F.erase();
|
||
}
|
||
F.done();
|
||
|
||
return true;
|
||
}
|
||
|
||
case LookupResult::AmbiguousReference: {
|
||
Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
|
||
|
||
LookupResult::iterator DI = Result.begin(), DE = Result.end();
|
||
for (; DI != DE; ++DI)
|
||
Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
|
||
|
||
return true;
|
||
}
|
||
}
|
||
|
||
llvm_unreachable("unknown ambiguity kind");
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
addAssociatedClassesAndNamespaces(QualType T,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses);
|
||
|
||
static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
|
||
DeclContext *Ctx) {
|
||
if (Ctx->isFileContext())
|
||
Namespaces.insert(Ctx);
|
||
}
|
||
|
||
// \brief Add the associated classes and namespaces for argument-dependent
|
||
// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses) {
|
||
// C++ [basic.lookup.koenig]p2, last bullet:
|
||
// -- [...] ;
|
||
switch (Arg.getKind()) {
|
||
case TemplateArgument::Null:
|
||
break;
|
||
|
||
case TemplateArgument::Type:
|
||
// [...] the namespaces and classes associated with the types of the
|
||
// template arguments provided for template type parameters (excluding
|
||
// template template parameters)
|
||
addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
break;
|
||
|
||
case TemplateArgument::Template: {
|
||
// [...] the namespaces in which any template template arguments are
|
||
// defined; and the classes in which any member templates used as
|
||
// template template arguments are defined.
|
||
TemplateName Template = Arg.getAsTemplate();
|
||
if (ClassTemplateDecl *ClassTemplate
|
||
= dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
|
||
DeclContext *Ctx = ClassTemplate->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
}
|
||
break;
|
||
}
|
||
|
||
case TemplateArgument::Declaration:
|
||
case TemplateArgument::Integral:
|
||
case TemplateArgument::Expression:
|
||
// [Note: non-type template arguments do not contribute to the set of
|
||
// associated namespaces. ]
|
||
break;
|
||
|
||
case TemplateArgument::Pack:
|
||
for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
|
||
PEnd = Arg.pack_end();
|
||
P != PEnd; ++P)
|
||
addAssociatedClassesAndNamespaces(*P, Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// \brief Add the associated classes and namespaces for
|
||
// argument-dependent lookup with an argument of class type
|
||
// (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses) {
|
||
// C++ [basic.lookup.koenig]p2:
|
||
// [...]
|
||
// -- If T is a class type (including unions), its associated
|
||
// classes are: the class itself; the class of which it is a
|
||
// member, if any; and its direct and indirect base
|
||
// classes. Its associated namespaces are the namespaces in
|
||
// which its associated classes are defined.
|
||
|
||
// Add the class of which it is a member, if any.
|
||
DeclContext *Ctx = Class->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
// Add the class itself. If we've already seen this class, we don't
|
||
// need to visit base classes.
|
||
if (!AssociatedClasses.insert(Class))
|
||
return;
|
||
|
||
// -- If T is a template-id, its associated namespaces and classes are
|
||
// the namespace in which the template is defined; for member
|
||
// templates, the member template’s class; the namespaces and classes
|
||
// associated with the types of the template arguments provided for
|
||
// template type parameters (excluding template template parameters); the
|
||
// namespaces in which any template template arguments are defined; and
|
||
// the classes in which any member templates used as template template
|
||
// arguments are defined. [Note: non-type template arguments do not
|
||
// contribute to the set of associated namespaces. ]
|
||
if (ClassTemplateSpecializationDecl *Spec
|
||
= dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
|
||
DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
||
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
||
addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
}
|
||
|
||
// Only recurse into base classes for complete types.
|
||
if (!Class->hasDefinition()) {
|
||
// FIXME: we might need to instantiate templates here
|
||
return;
|
||
}
|
||
|
||
// Add direct and indirect base classes along with their associated
|
||
// namespaces.
|
||
llvm::SmallVector<CXXRecordDecl *, 32> Bases;
|
||
Bases.push_back(Class);
|
||
while (!Bases.empty()) {
|
||
// Pop this class off the stack.
|
||
Class = Bases.back();
|
||
Bases.pop_back();
|
||
|
||
// Visit the base classes.
|
||
for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
|
||
BaseEnd = Class->bases_end();
|
||
Base != BaseEnd; ++Base) {
|
||
const RecordType *BaseType = Base->getType()->getAs<RecordType>();
|
||
// In dependent contexts, we do ADL twice, and the first time around,
|
||
// the base type might be a dependent TemplateSpecializationType, or a
|
||
// TemplateTypeParmType. If that happens, simply ignore it.
|
||
// FIXME: If we want to support export, we probably need to add the
|
||
// namespace of the template in a TemplateSpecializationType, or even
|
||
// the classes and namespaces of known non-dependent arguments.
|
||
if (!BaseType)
|
||
continue;
|
||
CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
||
if (AssociatedClasses.insert(BaseDecl)) {
|
||
// Find the associated namespace for this base class.
|
||
DeclContext *BaseCtx = BaseDecl->getDeclContext();
|
||
while (BaseCtx->isRecord())
|
||
BaseCtx = BaseCtx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, BaseCtx);
|
||
|
||
// Make sure we visit the bases of this base class.
|
||
if (BaseDecl->bases_begin() != BaseDecl->bases_end())
|
||
Bases.push_back(BaseDecl);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// \brief Add the associated classes and namespaces for
|
||
// argument-dependent lookup with an argument of type T
|
||
// (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(QualType T,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses) {
|
||
// C++ [basic.lookup.koenig]p2:
|
||
//
|
||
// For each argument type T in the function call, there is a set
|
||
// of zero or more associated namespaces and a set of zero or more
|
||
// associated classes to be considered. The sets of namespaces and
|
||
// classes is determined entirely by the types of the function
|
||
// arguments (and the namespace of any template template
|
||
// argument). Typedef names and using-declarations used to specify
|
||
// the types do not contribute to this set. The sets of namespaces
|
||
// and classes are determined in the following way:
|
||
T = Context.getCanonicalType(T).getUnqualifiedType();
|
||
|
||
// -- If T is a pointer to U or an array of U, its associated
|
||
// namespaces and classes are those associated with U.
|
||
//
|
||
// We handle this by unwrapping pointer and array types immediately,
|
||
// to avoid unnecessary recursion.
|
||
while (true) {
|
||
if (const PointerType *Ptr = T->getAs<PointerType>())
|
||
T = Ptr->getPointeeType();
|
||
else if (const ArrayType *Ptr = Context.getAsArrayType(T))
|
||
T = Ptr->getElementType();
|
||
else
|
||
break;
|
||
}
|
||
|
||
// -- If T is a fundamental type, its associated sets of
|
||
// namespaces and classes are both empty.
|
||
if (T->getAs<BuiltinType>())
|
||
return;
|
||
|
||
// -- If T is a class type (including unions), its associated
|
||
// classes are: the class itself; the class of which it is a
|
||
// member, if any; and its direct and indirect base
|
||
// classes. Its associated namespaces are the namespaces in
|
||
// which its associated classes are defined.
|
||
if (const RecordType *ClassType = T->getAs<RecordType>())
|
||
if (CXXRecordDecl *ClassDecl
|
||
= dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
|
||
addAssociatedClassesAndNamespaces(ClassDecl, Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
return;
|
||
}
|
||
|
||
// -- If T is an enumeration type, its associated namespace is
|
||
// the namespace in which it is defined. If it is class
|
||
// member, its associated class is the member’s class; else
|
||
// it has no associated class.
|
||
if (const EnumType *EnumT = T->getAs<EnumType>()) {
|
||
EnumDecl *Enum = EnumT->getDecl();
|
||
|
||
DeclContext *Ctx = Enum->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
return;
|
||
}
|
||
|
||
// -- If T is a function type, its associated namespaces and
|
||
// classes are those associated with the function parameter
|
||
// types and those associated with the return type.
|
||
if (const FunctionType *FnType = T->getAs<FunctionType>()) {
|
||
// Return type
|
||
addAssociatedClassesAndNamespaces(FnType->getResultType(),
|
||
Context,
|
||
AssociatedNamespaces, AssociatedClasses);
|
||
|
||
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
|
||
if (!Proto)
|
||
return;
|
||
|
||
// Argument types
|
||
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
||
ArgEnd = Proto->arg_type_end();
|
||
Arg != ArgEnd; ++Arg)
|
||
addAssociatedClassesAndNamespaces(*Arg, Context,
|
||
AssociatedNamespaces, AssociatedClasses);
|
||
|
||
return;
|
||
}
|
||
|
||
// -- If T is a pointer to a member function of a class X, its
|
||
// associated namespaces and classes are those associated
|
||
// with the function parameter types and return type,
|
||
// together with those associated with X.
|
||
//
|
||
// -- If T is a pointer to a data member of class X, its
|
||
// associated namespaces and classes are those associated
|
||
// with the member type together with those associated with
|
||
// X.
|
||
if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
|
||
// Handle the type that the pointer to member points to.
|
||
addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
|
||
Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
// Handle the class type into which this points.
|
||
if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
|
||
addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
|
||
Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
return;
|
||
}
|
||
|
||
// FIXME: What about block pointers?
|
||
// FIXME: What about Objective-C message sends?
|
||
}
|
||
|
||
/// \brief Find the associated classes and namespaces for
|
||
/// argument-dependent lookup for a call with the given set of
|
||
/// arguments.
|
||
///
|
||
/// This routine computes the sets of associated classes and associated
|
||
/// namespaces searched by argument-dependent lookup
|
||
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
|
||
void
|
||
Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
|
||
AssociatedNamespaceSet &AssociatedNamespaces,
|
||
AssociatedClassSet &AssociatedClasses) {
|
||
AssociatedNamespaces.clear();
|
||
AssociatedClasses.clear();
|
||
|
||
// C++ [basic.lookup.koenig]p2:
|
||
// For each argument type T in the function call, there is a set
|
||
// of zero or more associated namespaces and a set of zero or more
|
||
// associated classes to be considered. The sets of namespaces and
|
||
// classes is determined entirely by the types of the function
|
||
// arguments (and the namespace of any template template
|
||
// argument).
|
||
for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
|
||
Expr *Arg = Args[ArgIdx];
|
||
|
||
if (Arg->getType() != Context.OverloadTy) {
|
||
addAssociatedClassesAndNamespaces(Arg->getType(), Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
continue;
|
||
}
|
||
|
||
// [...] In addition, if the argument is the name or address of a
|
||
// set of overloaded functions and/or function templates, its
|
||
// associated classes and namespaces are the union of those
|
||
// associated with each of the members of the set: the namespace
|
||
// in which the function or function template is defined and the
|
||
// classes and namespaces associated with its (non-dependent)
|
||
// parameter types and return type.
|
||
Arg = Arg->IgnoreParens();
|
||
if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
|
||
if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
|
||
Arg = unaryOp->getSubExpr();
|
||
|
||
// TODO: avoid the copies. This should be easy when the cases
|
||
// share a storage implementation.
|
||
llvm::SmallVector<NamedDecl*, 8> Functions;
|
||
|
||
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
|
||
Functions.append(ULE->decls_begin(), ULE->decls_end());
|
||
else
|
||
continue;
|
||
|
||
for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
|
||
E = Functions.end(); I != E; ++I) {
|
||
// Look through any using declarations to find the underlying function.
|
||
NamedDecl *Fn = (*I)->getUnderlyingDecl();
|
||
|
||
FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
|
||
if (!FDecl)
|
||
FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
|
||
|
||
// Add the classes and namespaces associated with the parameter
|
||
// types and return type of this function.
|
||
addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
|
||
/// an acceptable non-member overloaded operator for a call whose
|
||
/// arguments have types T1 (and, if non-empty, T2). This routine
|
||
/// implements the check in C++ [over.match.oper]p3b2 concerning
|
||
/// enumeration types.
|
||
static bool
|
||
IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
|
||
QualType T1, QualType T2,
|
||
ASTContext &Context) {
|
||
if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
|
||
return true;
|
||
|
||
if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
|
||
return true;
|
||
|
||
const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
|
||
if (Proto->getNumArgs() < 1)
|
||
return false;
|
||
|
||
if (T1->isEnumeralType()) {
|
||
QualType ArgType = Proto->getArgType(0).getNonReferenceType();
|
||
if (Context.hasSameUnqualifiedType(T1, ArgType))
|
||
return true;
|
||
}
|
||
|
||
if (Proto->getNumArgs() < 2)
|
||
return false;
|
||
|
||
if (!T2.isNull() && T2->isEnumeralType()) {
|
||
QualType ArgType = Proto->getArgType(1).getNonReferenceType();
|
||
if (Context.hasSameUnqualifiedType(T2, ArgType))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
|
||
SourceLocation Loc,
|
||
LookupNameKind NameKind,
|
||
RedeclarationKind Redecl) {
|
||
LookupResult R(*this, Name, Loc, NameKind, Redecl);
|
||
LookupName(R, S);
|
||
return R.getAsSingle<NamedDecl>();
|
||
}
|
||
|
||
/// \brief Find the protocol with the given name, if any.
|
||
ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
|
||
SourceLocation IdLoc) {
|
||
Decl *D = LookupSingleName(TUScope, II, IdLoc,
|
||
LookupObjCProtocolName);
|
||
return cast_or_null<ObjCProtocolDecl>(D);
|
||
}
|
||
|
||
void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
|
||
QualType T1, QualType T2,
|
||
UnresolvedSetImpl &Functions) {
|
||
// C++ [over.match.oper]p3:
|
||
// -- The set of non-member candidates is the result of the
|
||
// unqualified lookup of operator@ in the context of the
|
||
// expression according to the usual rules for name lookup in
|
||
// unqualified function calls (3.4.2) except that all member
|
||
// functions are ignored. However, if no operand has a class
|
||
// type, only those non-member functions in the lookup set
|
||
// that have a first parameter of type T1 or "reference to
|
||
// (possibly cv-qualified) T1", when T1 is an enumeration
|
||
// type, or (if there is a right operand) a second parameter
|
||
// of type T2 or "reference to (possibly cv-qualified) T2",
|
||
// when T2 is an enumeration type, are candidate functions.
|
||
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
||
LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
|
||
LookupName(Operators, S);
|
||
|
||
assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
|
||
|
||
if (Operators.empty())
|
||
return;
|
||
|
||
for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
|
||
Op != OpEnd; ++Op) {
|
||
NamedDecl *Found = (*Op)->getUnderlyingDecl();
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
|
||
if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
|
||
Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
|
||
} else if (FunctionTemplateDecl *FunTmpl
|
||
= dyn_cast<FunctionTemplateDecl>(Found)) {
|
||
// FIXME: friend operators?
|
||
// FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
|
||
// later?
|
||
if (!FunTmpl->getDeclContext()->isRecord())
|
||
Functions.addDecl(*Op, Op.getAccess());
|
||
}
|
||
}
|
||
}
|
||
|
||
void ADLResult::insert(NamedDecl *New) {
|
||
NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
|
||
|
||
// If we haven't yet seen a decl for this key, or the last decl
|
||
// was exactly this one, we're done.
|
||
if (Old == 0 || Old == New) {
|
||
Old = New;
|
||
return;
|
||
}
|
||
|
||
// Otherwise, decide which is a more recent redeclaration.
|
||
FunctionDecl *OldFD, *NewFD;
|
||
if (isa<FunctionTemplateDecl>(New)) {
|
||
OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
|
||
NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
|
||
} else {
|
||
OldFD = cast<FunctionDecl>(Old);
|
||
NewFD = cast<FunctionDecl>(New);
|
||
}
|
||
|
||
FunctionDecl *Cursor = NewFD;
|
||
while (true) {
|
||
Cursor = Cursor->getPreviousDeclaration();
|
||
|
||
// If we got to the end without finding OldFD, OldFD is the newer
|
||
// declaration; leave things as they are.
|
||
if (!Cursor) return;
|
||
|
||
// If we do find OldFD, then NewFD is newer.
|
||
if (Cursor == OldFD) break;
|
||
|
||
// Otherwise, keep looking.
|
||
}
|
||
|
||
Old = New;
|
||
}
|
||
|
||
void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
|
||
Expr **Args, unsigned NumArgs,
|
||
ADLResult &Result) {
|
||
// Find all of the associated namespaces and classes based on the
|
||
// arguments we have.
|
||
AssociatedNamespaceSet AssociatedNamespaces;
|
||
AssociatedClassSet AssociatedClasses;
|
||
FindAssociatedClassesAndNamespaces(Args, NumArgs,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
QualType T1, T2;
|
||
if (Operator) {
|
||
T1 = Args[0]->getType();
|
||
if (NumArgs >= 2)
|
||
T2 = Args[1]->getType();
|
||
}
|
||
|
||
// C++ [basic.lookup.argdep]p3:
|
||
// Let X be the lookup set produced by unqualified lookup (3.4.1)
|
||
// and let Y be the lookup set produced by argument dependent
|
||
// lookup (defined as follows). If X contains [...] then Y is
|
||
// empty. Otherwise Y is the set of declarations found in the
|
||
// namespaces associated with the argument types as described
|
||
// below. The set of declarations found by the lookup of the name
|
||
// is the union of X and Y.
|
||
//
|
||
// Here, we compute Y and add its members to the overloaded
|
||
// candidate set.
|
||
for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
|
||
NSEnd = AssociatedNamespaces.end();
|
||
NS != NSEnd; ++NS) {
|
||
// When considering an associated namespace, the lookup is the
|
||
// same as the lookup performed when the associated namespace is
|
||
// used as a qualifier (3.4.3.2) except that:
|
||
//
|
||
// -- Any using-directives in the associated namespace are
|
||
// ignored.
|
||
//
|
||
// -- Any namespace-scope friend functions declared in
|
||
// associated classes are visible within their respective
|
||
// namespaces even if they are not visible during an ordinary
|
||
// lookup (11.4).
|
||
DeclContext::lookup_iterator I, E;
|
||
for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
|
||
NamedDecl *D = *I;
|
||
// If the only declaration here is an ordinary friend, consider
|
||
// it only if it was declared in an associated classes.
|
||
if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
|
||
DeclContext *LexDC = D->getLexicalDeclContext();
|
||
if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
|
||
continue;
|
||
}
|
||
|
||
if (isa<UsingShadowDecl>(D))
|
||
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
||
|
||
if (isa<FunctionDecl>(D)) {
|
||
if (Operator &&
|
||
!IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
|
||
T1, T2, Context))
|
||
continue;
|
||
} else if (!isa<FunctionTemplateDecl>(D))
|
||
continue;
|
||
|
||
Result.insert(D);
|
||
}
|
||
}
|
||
}
|
||
|
||
//----------------------------------------------------------------------------
|
||
// Search for all visible declarations.
|
||
//----------------------------------------------------------------------------
|
||
VisibleDeclConsumer::~VisibleDeclConsumer() { }
|
||
|
||
namespace {
|
||
|
||
class ShadowContextRAII;
|
||
|
||
class VisibleDeclsRecord {
|
||
public:
|
||
/// \brief An entry in the shadow map, which is optimized to store a
|
||
/// single declaration (the common case) but can also store a list
|
||
/// of declarations.
|
||
class ShadowMapEntry {
|
||
typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
|
||
|
||
/// \brief Contains either the solitary NamedDecl * or a vector
|
||
/// of declarations.
|
||
llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
|
||
|
||
public:
|
||
ShadowMapEntry() : DeclOrVector() { }
|
||
|
||
void Add(NamedDecl *ND);
|
||
void Destroy();
|
||
|
||
// Iteration.
|
||
typedef NamedDecl **iterator;
|
||
iterator begin();
|
||
iterator end();
|
||
};
|
||
|
||
private:
|
||
/// \brief A mapping from declaration names to the declarations that have
|
||
/// this name within a particular scope.
|
||
typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
|
||
|
||
/// \brief A list of shadow maps, which is used to model name hiding.
|
||
std::list<ShadowMap> ShadowMaps;
|
||
|
||
/// \brief The declaration contexts we have already visited.
|
||
llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
|
||
|
||
friend class ShadowContextRAII;
|
||
|
||
public:
|
||
/// \brief Determine whether we have already visited this context
|
||
/// (and, if not, note that we are going to visit that context now).
|
||
bool visitedContext(DeclContext *Ctx) {
|
||
return !VisitedContexts.insert(Ctx);
|
||
}
|
||
|
||
/// \brief Determine whether the given declaration is hidden in the
|
||
/// current scope.
|
||
///
|
||
/// \returns the declaration that hides the given declaration, or
|
||
/// NULL if no such declaration exists.
|
||
NamedDecl *checkHidden(NamedDecl *ND);
|
||
|
||
/// \brief Add a declaration to the current shadow map.
|
||
void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
|
||
};
|
||
|
||
/// \brief RAII object that records when we've entered a shadow context.
|
||
class ShadowContextRAII {
|
||
VisibleDeclsRecord &Visible;
|
||
|
||
typedef VisibleDeclsRecord::ShadowMap ShadowMap;
|
||
|
||
public:
|
||
ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
|
||
Visible.ShadowMaps.push_back(ShadowMap());
|
||
}
|
||
|
||
~ShadowContextRAII() {
|
||
for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
|
||
EEnd = Visible.ShadowMaps.back().end();
|
||
E != EEnd;
|
||
++E)
|
||
E->second.Destroy();
|
||
|
||
Visible.ShadowMaps.pop_back();
|
||
}
|
||
};
|
||
|
||
} // end anonymous namespace
|
||
|
||
void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
|
||
if (DeclOrVector.isNull()) {
|
||
// 0 - > 1 elements: just set the single element information.
|
||
DeclOrVector = ND;
|
||
return;
|
||
}
|
||
|
||
if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
|
||
// 1 -> 2 elements: create the vector of results and push in the
|
||
// existing declaration.
|
||
DeclVector *Vec = new DeclVector;
|
||
Vec->push_back(PrevND);
|
||
DeclOrVector = Vec;
|
||
}
|
||
|
||
// Add the new element to the end of the vector.
|
||
DeclOrVector.get<DeclVector*>()->push_back(ND);
|
||
}
|
||
|
||
void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
|
||
if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
|
||
delete Vec;
|
||
DeclOrVector = ((NamedDecl *)0);
|
||
}
|
||
}
|
||
|
||
VisibleDeclsRecord::ShadowMapEntry::iterator
|
||
VisibleDeclsRecord::ShadowMapEntry::begin() {
|
||
if (DeclOrVector.isNull())
|
||
return 0;
|
||
|
||
if (DeclOrVector.dyn_cast<NamedDecl *>())
|
||
return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
|
||
|
||
return DeclOrVector.get<DeclVector *>()->begin();
|
||
}
|
||
|
||
VisibleDeclsRecord::ShadowMapEntry::iterator
|
||
VisibleDeclsRecord::ShadowMapEntry::end() {
|
||
if (DeclOrVector.isNull())
|
||
return 0;
|
||
|
||
if (DeclOrVector.dyn_cast<NamedDecl *>())
|
||
return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
|
||
|
||
return DeclOrVector.get<DeclVector *>()->end();
|
||
}
|
||
|
||
NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
|
||
// Look through using declarations.
|
||
ND = ND->getUnderlyingDecl();
|
||
|
||
unsigned IDNS = ND->getIdentifierNamespace();
|
||
std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
|
||
for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
|
||
SM != SMEnd; ++SM) {
|
||
ShadowMap::iterator Pos = SM->find(ND->getDeclName());
|
||
if (Pos == SM->end())
|
||
continue;
|
||
|
||
for (ShadowMapEntry::iterator I = Pos->second.begin(),
|
||
IEnd = Pos->second.end();
|
||
I != IEnd; ++I) {
|
||
// A tag declaration does not hide a non-tag declaration.
|
||
if ((*I)->hasTagIdentifierNamespace() &&
|
||
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
|
||
Decl::IDNS_ObjCProtocol)))
|
||
continue;
|
||
|
||
// Protocols are in distinct namespaces from everything else.
|
||
if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|
||
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
|
||
(*I)->getIdentifierNamespace() != IDNS)
|
||
continue;
|
||
|
||
// Functions and function templates in the same scope overload
|
||
// rather than hide. FIXME: Look for hiding based on function
|
||
// signatures!
|
||
if ((*I)->isFunctionOrFunctionTemplate() &&
|
||
ND->isFunctionOrFunctionTemplate() &&
|
||
SM == ShadowMaps.rbegin())
|
||
continue;
|
||
|
||
// We've found a declaration that hides this one.
|
||
return *I;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
|
||
bool QualifiedNameLookup,
|
||
bool InBaseClass,
|
||
VisibleDeclConsumer &Consumer,
|
||
VisibleDeclsRecord &Visited) {
|
||
if (!Ctx)
|
||
return;
|
||
|
||
// Make sure we don't visit the same context twice.
|
||
if (Visited.visitedContext(Ctx->getPrimaryContext()))
|
||
return;
|
||
|
||
// Enumerate all of the results in this context.
|
||
for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
|
||
CurCtx = CurCtx->getNextContext()) {
|
||
for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
|
||
DEnd = CurCtx->decls_end();
|
||
D != DEnd; ++D) {
|
||
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
|
||
if (Result.isAcceptableDecl(ND)) {
|
||
Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
|
||
Visited.add(ND);
|
||
}
|
||
|
||
// Visit transparent contexts inside this context.
|
||
if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
|
||
if (InnerCtx->isTransparentContext())
|
||
LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
|
||
Consumer, Visited);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Traverse using directives for qualified name lookup.
|
||
if (QualifiedNameLookup) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
DeclContext::udir_iterator I, E;
|
||
for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
|
||
LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
|
||
QualifiedNameLookup, InBaseClass, Consumer, Visited);
|
||
}
|
||
}
|
||
|
||
// Traverse the contexts of inherited C++ classes.
|
||
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
|
||
if (!Record->hasDefinition())
|
||
return;
|
||
|
||
for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
|
||
BEnd = Record->bases_end();
|
||
B != BEnd; ++B) {
|
||
QualType BaseType = B->getType();
|
||
|
||
// Don't look into dependent bases, because name lookup can't look
|
||
// there anyway.
|
||
if (BaseType->isDependentType())
|
||
continue;
|
||
|
||
const RecordType *Record = BaseType->getAs<RecordType>();
|
||
if (!Record)
|
||
continue;
|
||
|
||
// FIXME: It would be nice to be able to determine whether referencing
|
||
// a particular member would be ambiguous. For example, given
|
||
//
|
||
// struct A { int member; };
|
||
// struct B { int member; };
|
||
// struct C : A, B { };
|
||
//
|
||
// void f(C *c) { c->### }
|
||
//
|
||
// accessing 'member' would result in an ambiguity. However, we
|
||
// could be smart enough to qualify the member with the base
|
||
// class, e.g.,
|
||
//
|
||
// c->B::member
|
||
//
|
||
// or
|
||
//
|
||
// c->A::member
|
||
|
||
// Find results in this base class (and its bases).
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
|
||
true, Consumer, Visited);
|
||
}
|
||
}
|
||
|
||
// Traverse the contexts of Objective-C classes.
|
||
if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
|
||
// Traverse categories.
|
||
for (ObjCCategoryDecl *Category = IFace->getCategoryList();
|
||
Category; Category = Category->getNextClassCategory()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
|
||
Consumer, Visited);
|
||
}
|
||
|
||
// Traverse protocols.
|
||
for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
|
||
E = IFace->protocol_end(); I != E; ++I) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
|
||
Visited);
|
||
}
|
||
|
||
// Traverse the superclass.
|
||
if (IFace->getSuperClass()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
|
||
true, Consumer, Visited);
|
||
}
|
||
|
||
// If there is an implementation, traverse it. We do this to find
|
||
// synthesized ivars.
|
||
if (IFace->getImplementation()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(IFace->getImplementation(), Result,
|
||
QualifiedNameLookup, true, Consumer, Visited);
|
||
}
|
||
} else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
|
||
for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
|
||
E = Protocol->protocol_end(); I != E; ++I) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
|
||
Visited);
|
||
}
|
||
} else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
|
||
for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
|
||
E = Category->protocol_end(); I != E; ++I) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
|
||
Visited);
|
||
}
|
||
|
||
// If there is an implementation, traverse it.
|
||
if (Category->getImplementation()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(Category->getImplementation(), Result,
|
||
QualifiedNameLookup, true, Consumer, Visited);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void LookupVisibleDecls(Scope *S, LookupResult &Result,
|
||
UnqualUsingDirectiveSet &UDirs,
|
||
VisibleDeclConsumer &Consumer,
|
||
VisibleDeclsRecord &Visited) {
|
||
if (!S)
|
||
return;
|
||
|
||
if (!S->getEntity() || !S->getParent() ||
|
||
((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
|
||
// Walk through the declarations in this Scope.
|
||
for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
|
||
D != DEnd; ++D) {
|
||
if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
|
||
if (Result.isAcceptableDecl(ND)) {
|
||
Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
|
||
Visited.add(ND);
|
||
}
|
||
}
|
||
}
|
||
|
||
// FIXME: C++ [temp.local]p8
|
||
DeclContext *Entity = 0;
|
||
if (S->getEntity()) {
|
||
// Look into this scope's declaration context, along with any of its
|
||
// parent lookup contexts (e.g., enclosing classes), up to the point
|
||
// where we hit the context stored in the next outer scope.
|
||
Entity = (DeclContext *)S->getEntity();
|
||
DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
|
||
|
||
for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
|
||
Ctx = Ctx->getLookupParent()) {
|
||
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
|
||
if (Method->isInstanceMethod()) {
|
||
// For instance methods, look for ivars in the method's interface.
|
||
LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
|
||
Result.getNameLoc(), Sema::LookupMemberName);
|
||
if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
|
||
LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false, Consumer, Visited);
|
||
}
|
||
|
||
// We've already performed all of the name lookup that we need
|
||
// to for Objective-C methods; the next context will be the
|
||
// outer scope.
|
||
break;
|
||
}
|
||
|
||
if (Ctx->isFunctionOrMethod())
|
||
continue;
|
||
|
||
LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false, Consumer, Visited);
|
||
}
|
||
} else if (!S->getParent()) {
|
||
// Look into the translation unit scope. We walk through the translation
|
||
// unit's declaration context, because the Scope itself won't have all of
|
||
// the declarations if we loaded a precompiled header.
|
||
// FIXME: We would like the translation unit's Scope object to point to the
|
||
// translation unit, so we don't need this special "if" branch. However,
|
||
// doing so would force the normal C++ name-lookup code to look into the
|
||
// translation unit decl when the IdentifierInfo chains would suffice.
|
||
// Once we fix that problem (which is part of a more general "don't look
|
||
// in DeclContexts unless we have to" optimization), we can eliminate this.
|
||
Entity = Result.getSema().Context.getTranslationUnitDecl();
|
||
LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false, Consumer, Visited);
|
||
}
|
||
|
||
if (Entity) {
|
||
// Lookup visible declarations in any namespaces found by using
|
||
// directives.
|
||
UnqualUsingDirectiveSet::const_iterator UI, UEnd;
|
||
llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
|
||
for (; UI != UEnd; ++UI)
|
||
LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
|
||
Result, /*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false, Consumer, Visited);
|
||
}
|
||
|
||
// Lookup names in the parent scope.
|
||
ShadowContextRAII Shadow(Visited);
|
||
LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
|
||
}
|
||
|
||
void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
|
||
VisibleDeclConsumer &Consumer) {
|
||
// Determine the set of using directives available during
|
||
// unqualified name lookup.
|
||
Scope *Initial = S;
|
||
UnqualUsingDirectiveSet UDirs;
|
||
if (getLangOptions().CPlusPlus) {
|
||
// Find the first namespace or translation-unit scope.
|
||
while (S && !isNamespaceOrTranslationUnitScope(S))
|
||
S = S->getParent();
|
||
|
||
UDirs.visitScopeChain(Initial, S);
|
||
}
|
||
UDirs.done();
|
||
|
||
// Look for visible declarations.
|
||
LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
|
||
VisibleDeclsRecord Visited;
|
||
ShadowContextRAII Shadow(Visited);
|
||
::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
|
||
}
|
||
|
||
void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
|
||
VisibleDeclConsumer &Consumer) {
|
||
LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
|
||
VisibleDeclsRecord Visited;
|
||
ShadowContextRAII Shadow(Visited);
|
||
::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
|
||
/*InBaseClass=*/false, Consumer, Visited);
|
||
}
|
||
|
||
//----------------------------------------------------------------------------
|
||
// Typo correction
|
||
//----------------------------------------------------------------------------
|
||
|
||
namespace {
|
||
class TypoCorrectionConsumer : public VisibleDeclConsumer {
|
||
/// \brief The name written that is a typo in the source.
|
||
llvm::StringRef Typo;
|
||
|
||
/// \brief The results found that have the smallest edit distance
|
||
/// found (so far) with the typo name.
|
||
llvm::SmallVector<NamedDecl *, 4> BestResults;
|
||
|
||
/// \brief The keywords that have the smallest edit distance.
|
||
llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
|
||
|
||
/// \brief The best edit distance found so far.
|
||
unsigned BestEditDistance;
|
||
|
||
public:
|
||
explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
|
||
: Typo(Typo->getName()) { }
|
||
|
||
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
|
||
void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
|
||
|
||
typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
|
||
iterator begin() const { return BestResults.begin(); }
|
||
iterator end() const { return BestResults.end(); }
|
||
void clear_decls() { BestResults.clear(); }
|
||
|
||
bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
|
||
|
||
typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
|
||
keyword_iterator;
|
||
keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
|
||
keyword_iterator keyword_end() const { return BestKeywords.end(); }
|
||
bool keyword_empty() const { return BestKeywords.empty(); }
|
||
unsigned keyword_size() const { return BestKeywords.size(); }
|
||
|
||
unsigned getBestEditDistance() const { return BestEditDistance; }
|
||
};
|
||
|
||
}
|
||
|
||
void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
|
||
bool InBaseClass) {
|
||
// Don't consider hidden names for typo correction.
|
||
if (Hiding)
|
||
return;
|
||
|
||
// Only consider entities with identifiers for names, ignoring
|
||
// special names (constructors, overloaded operators, selectors,
|
||
// etc.).
|
||
IdentifierInfo *Name = ND->getIdentifier();
|
||
if (!Name)
|
||
return;
|
||
|
||
// Compute the edit distance between the typo and the name of this
|
||
// entity. If this edit distance is not worse than the best edit
|
||
// distance we've seen so far, add it to the list of results.
|
||
unsigned ED = Typo.edit_distance(Name->getName());
|
||
if (!BestResults.empty() || !BestKeywords.empty()) {
|
||
if (ED < BestEditDistance) {
|
||
// This result is better than any we've seen before; clear out
|
||
// the previous results.
|
||
BestResults.clear();
|
||
BestKeywords.clear();
|
||
BestEditDistance = ED;
|
||
} else if (ED > BestEditDistance) {
|
||
// This result is worse than the best results we've seen so far;
|
||
// ignore it.
|
||
return;
|
||
}
|
||
} else
|
||
BestEditDistance = ED;
|
||
|
||
BestResults.push_back(ND);
|
||
}
|
||
|
||
void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
|
||
llvm::StringRef Keyword) {
|
||
// Compute the edit distance between the typo and this keyword.
|
||
// If this edit distance is not worse than the best edit
|
||
// distance we've seen so far, add it to the list of results.
|
||
unsigned ED = Typo.edit_distance(Keyword);
|
||
if (!BestResults.empty() || !BestKeywords.empty()) {
|
||
if (ED < BestEditDistance) {
|
||
BestResults.clear();
|
||
BestKeywords.clear();
|
||
BestEditDistance = ED;
|
||
} else if (ED > BestEditDistance) {
|
||
// This result is worse than the best results we've seen so far;
|
||
// ignore it.
|
||
return;
|
||
}
|
||
} else
|
||
BestEditDistance = ED;
|
||
|
||
BestKeywords.push_back(&Context.Idents.get(Keyword));
|
||
}
|
||
|
||
/// \brief Try to "correct" a typo in the source code by finding
|
||
/// visible declarations whose names are similar to the name that was
|
||
/// present in the source code.
|
||
///
|
||
/// \param Res the \c LookupResult structure that contains the name
|
||
/// that was present in the source code along with the name-lookup
|
||
/// criteria used to search for the name. On success, this structure
|
||
/// will contain the results of name lookup.
|
||
///
|
||
/// \param S the scope in which name lookup occurs.
|
||
///
|
||
/// \param SS the nested-name-specifier that precedes the name we're
|
||
/// looking for, if present.
|
||
///
|
||
/// \param MemberContext if non-NULL, the context in which to look for
|
||
/// a member access expression.
|
||
///
|
||
/// \param EnteringContext whether we're entering the context described by
|
||
/// the nested-name-specifier SS.
|
||
///
|
||
/// \param CTC The context in which typo correction occurs, which impacts the
|
||
/// set of keywords permitted.
|
||
///
|
||
/// \param OPT when non-NULL, the search for visible declarations will
|
||
/// also walk the protocols in the qualified interfaces of \p OPT.
|
||
///
|
||
/// \returns the corrected name if the typo was corrected, otherwise returns an
|
||
/// empty \c DeclarationName. When a typo was corrected, the result structure
|
||
/// may contain the results of name lookup for the correct name or it may be
|
||
/// empty.
|
||
DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
|
||
DeclContext *MemberContext,
|
||
bool EnteringContext,
|
||
CorrectTypoContext CTC,
|
||
const ObjCObjectPointerType *OPT) {
|
||
if (Diags.hasFatalErrorOccurred())
|
||
return DeclarationName();
|
||
|
||
// Provide a stop gap for files that are just seriously broken. Trying
|
||
// to correct all typos can turn into a HUGE performance penalty, causing
|
||
// some files to take minutes to get rejected by the parser.
|
||
// FIXME: Is this the right solution?
|
||
if (TyposCorrected == 20)
|
||
return DeclarationName();
|
||
++TyposCorrected;
|
||
|
||
// We only attempt to correct typos for identifiers.
|
||
IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
|
||
if (!Typo)
|
||
return DeclarationName();
|
||
|
||
// If the scope specifier itself was invalid, don't try to correct
|
||
// typos.
|
||
if (SS && SS->isInvalid())
|
||
return DeclarationName();
|
||
|
||
// Never try to correct typos during template deduction or
|
||
// instantiation.
|
||
if (!ActiveTemplateInstantiations.empty())
|
||
return DeclarationName();
|
||
|
||
TypoCorrectionConsumer Consumer(Typo);
|
||
|
||
// Perform name lookup to find visible, similarly-named entities.
|
||
if (MemberContext) {
|
||
LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
|
||
|
||
// Look in qualified interfaces.
|
||
if (OPT) {
|
||
for (ObjCObjectPointerType::qual_iterator
|
||
I = OPT->qual_begin(), E = OPT->qual_end();
|
||
I != E; ++I)
|
||
LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
|
||
}
|
||
} else if (SS && SS->isSet()) {
|
||
DeclContext *DC = computeDeclContext(*SS, EnteringContext);
|
||
if (!DC)
|
||
return DeclarationName();
|
||
|
||
LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
|
||
} else {
|
||
LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
|
||
}
|
||
|
||
// Add context-dependent keywords.
|
||
bool WantTypeSpecifiers = false;
|
||
bool WantExpressionKeywords = false;
|
||
bool WantCXXNamedCasts = false;
|
||
bool WantRemainingKeywords = false;
|
||
switch (CTC) {
|
||
case CTC_Unknown:
|
||
WantTypeSpecifiers = true;
|
||
WantExpressionKeywords = true;
|
||
WantCXXNamedCasts = true;
|
||
WantRemainingKeywords = true;
|
||
break;
|
||
|
||
case CTC_NoKeywords:
|
||
break;
|
||
|
||
case CTC_Type:
|
||
WantTypeSpecifiers = true;
|
||
break;
|
||
|
||
case CTC_ObjCMessageReceiver:
|
||
Consumer.addKeywordResult(Context, "super");
|
||
// Fall through to handle message receivers like expressions.
|
||
|
||
case CTC_Expression:
|
||
if (getLangOptions().CPlusPlus)
|
||
WantTypeSpecifiers = true;
|
||
WantExpressionKeywords = true;
|
||
// Fall through to get C++ named casts.
|
||
|
||
case CTC_CXXCasts:
|
||
WantCXXNamedCasts = true;
|
||
break;
|
||
|
||
case CTC_MemberLookup:
|
||
if (getLangOptions().CPlusPlus)
|
||
Consumer.addKeywordResult(Context, "template");
|
||
break;
|
||
}
|
||
|
||
if (WantTypeSpecifiers) {
|
||
// Add type-specifier keywords to the set of results.
|
||
const char *CTypeSpecs[] = {
|
||
"char", "const", "double", "enum", "float", "int", "long", "short",
|
||
"signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
|
||
"_Complex", "_Imaginary",
|
||
// storage-specifiers as well
|
||
"extern", "inline", "static", "typedef"
|
||
};
|
||
|
||
const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
|
||
for (unsigned I = 0; I != NumCTypeSpecs; ++I)
|
||
Consumer.addKeywordResult(Context, CTypeSpecs[I]);
|
||
|
||
if (getLangOptions().C99)
|
||
Consumer.addKeywordResult(Context, "restrict");
|
||
if (getLangOptions().Bool || getLangOptions().CPlusPlus)
|
||
Consumer.addKeywordResult(Context, "bool");
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
Consumer.addKeywordResult(Context, "class");
|
||
Consumer.addKeywordResult(Context, "typename");
|
||
Consumer.addKeywordResult(Context, "wchar_t");
|
||
|
||
if (getLangOptions().CPlusPlus0x) {
|
||
Consumer.addKeywordResult(Context, "char16_t");
|
||
Consumer.addKeywordResult(Context, "char32_t");
|
||
Consumer.addKeywordResult(Context, "constexpr");
|
||
Consumer.addKeywordResult(Context, "decltype");
|
||
Consumer.addKeywordResult(Context, "thread_local");
|
||
}
|
||
}
|
||
|
||
if (getLangOptions().GNUMode)
|
||
Consumer.addKeywordResult(Context, "typeof");
|
||
}
|
||
|
||
if (WantCXXNamedCasts) {
|
||
Consumer.addKeywordResult(Context, "const_cast");
|
||
Consumer.addKeywordResult(Context, "dynamic_cast");
|
||
Consumer.addKeywordResult(Context, "reinterpret_cast");
|
||
Consumer.addKeywordResult(Context, "static_cast");
|
||
}
|
||
|
||
if (WantExpressionKeywords) {
|
||
Consumer.addKeywordResult(Context, "sizeof");
|
||
if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
|
||
Consumer.addKeywordResult(Context, "false");
|
||
Consumer.addKeywordResult(Context, "true");
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
const char *CXXExprs[] = {
|
||
"delete", "new", "operator", "throw", "typeid"
|
||
};
|
||
const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
|
||
for (unsigned I = 0; I != NumCXXExprs; ++I)
|
||
Consumer.addKeywordResult(Context, CXXExprs[I]);
|
||
|
||
if (isa<CXXMethodDecl>(CurContext) &&
|
||
cast<CXXMethodDecl>(CurContext)->isInstance())
|
||
Consumer.addKeywordResult(Context, "this");
|
||
|
||
if (getLangOptions().CPlusPlus0x) {
|
||
Consumer.addKeywordResult(Context, "alignof");
|
||
Consumer.addKeywordResult(Context, "nullptr");
|
||
}
|
||
}
|
||
}
|
||
|
||
if (WantRemainingKeywords) {
|
||
if (getCurFunctionOrMethodDecl() || getCurBlock()) {
|
||
// Statements.
|
||
const char *CStmts[] = {
|
||
"do", "else", "for", "goto", "if", "return", "switch", "while" };
|
||
const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
|
||
for (unsigned I = 0; I != NumCStmts; ++I)
|
||
Consumer.addKeywordResult(Context, CStmts[I]);
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
Consumer.addKeywordResult(Context, "catch");
|
||
Consumer.addKeywordResult(Context, "try");
|
||
}
|
||
|
||
if (S && S->getBreakParent())
|
||
Consumer.addKeywordResult(Context, "break");
|
||
|
||
if (S && S->getContinueParent())
|
||
Consumer.addKeywordResult(Context, "continue");
|
||
|
||
if (!getSwitchStack().empty()) {
|
||
Consumer.addKeywordResult(Context, "case");
|
||
Consumer.addKeywordResult(Context, "default");
|
||
}
|
||
} else {
|
||
if (getLangOptions().CPlusPlus) {
|
||
Consumer.addKeywordResult(Context, "namespace");
|
||
Consumer.addKeywordResult(Context, "template");
|
||
}
|
||
|
||
if (S && S->isClassScope()) {
|
||
Consumer.addKeywordResult(Context, "explicit");
|
||
Consumer.addKeywordResult(Context, "friend");
|
||
Consumer.addKeywordResult(Context, "mutable");
|
||
Consumer.addKeywordResult(Context, "private");
|
||
Consumer.addKeywordResult(Context, "protected");
|
||
Consumer.addKeywordResult(Context, "public");
|
||
Consumer.addKeywordResult(Context, "virtual");
|
||
}
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
Consumer.addKeywordResult(Context, "using");
|
||
|
||
if (getLangOptions().CPlusPlus0x)
|
||
Consumer.addKeywordResult(Context, "static_assert");
|
||
}
|
||
}
|
||
|
||
// If we haven't found anything, we're done.
|
||
if (Consumer.empty())
|
||
return DeclarationName();
|
||
|
||
// Only allow a single, closest name in the result set (it's okay to
|
||
// have overloads of that name, though).
|
||
DeclarationName BestName;
|
||
NamedDecl *BestIvarOrPropertyDecl = 0;
|
||
bool FoundIvarOrPropertyDecl = false;
|
||
|
||
// Check all of the declaration results to find the best name so far.
|
||
for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
|
||
IEnd = Consumer.end();
|
||
I != IEnd; ++I) {
|
||
if (!BestName)
|
||
BestName = (*I)->getDeclName();
|
||
else if (BestName != (*I)->getDeclName())
|
||
return DeclarationName();
|
||
|
||
// \brief Keep track of either an Objective-C ivar or a property, but not
|
||
// both.
|
||
if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
|
||
if (FoundIvarOrPropertyDecl)
|
||
BestIvarOrPropertyDecl = 0;
|
||
else {
|
||
BestIvarOrPropertyDecl = *I;
|
||
FoundIvarOrPropertyDecl = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Now check all of the keyword results to find the best name.
|
||
switch (Consumer.keyword_size()) {
|
||
case 0:
|
||
// No keywords matched.
|
||
break;
|
||
|
||
case 1:
|
||
// If we already have a name
|
||
if (!BestName) {
|
||
// We did not have anything previously,
|
||
BestName = *Consumer.keyword_begin();
|
||
} else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
|
||
// We have a declaration with the same name as a context-sensitive
|
||
// keyword. The keyword takes precedence.
|
||
BestIvarOrPropertyDecl = 0;
|
||
FoundIvarOrPropertyDecl = false;
|
||
Consumer.clear_decls();
|
||
} else {
|
||
// Name collision; we will not correct typos.
|
||
return DeclarationName();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
// Name collision; we will not correct typos.
|
||
return DeclarationName();
|
||
}
|
||
|
||
// BestName is the closest viable name to what the user
|
||
// typed. However, to make sure that we don't pick something that's
|
||
// way off, make sure that the user typed at least 3 characters for
|
||
// each correction.
|
||
unsigned ED = Consumer.getBestEditDistance();
|
||
if (ED == 0 || !BestName.getAsIdentifierInfo() ||
|
||
(BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
|
||
return DeclarationName();
|
||
|
||
// Perform name lookup again with the name we chose, and declare
|
||
// success if we found something that was not ambiguous.
|
||
Res.clear();
|
||
Res.setLookupName(BestName);
|
||
|
||
// If we found an ivar or property, add that result; no further
|
||
// lookup is required.
|
||
if (BestIvarOrPropertyDecl)
|
||
Res.addDecl(BestIvarOrPropertyDecl);
|
||
// If we're looking into the context of a member, perform qualified
|
||
// name lookup on the best name.
|
||
else if (!Consumer.keyword_empty()) {
|
||
// The best match was a keyword. Return it.
|
||
return BestName;
|
||
} else if (MemberContext)
|
||
LookupQualifiedName(Res, MemberContext);
|
||
// Perform lookup as if we had just parsed the best name.
|
||
else
|
||
LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
|
||
EnteringContext);
|
||
|
||
if (Res.isAmbiguous()) {
|
||
Res.suppressDiagnostics();
|
||
return DeclarationName();
|
||
}
|
||
|
||
if (Res.getResultKind() != LookupResult::NotFound)
|
||
return BestName;
|
||
|
||
return DeclarationName();
|
||
}
|