forked from OSchip/llvm-project
1063 lines
37 KiB
C++
1063 lines
37 KiB
C++
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This is the LLVM vectorization plan. It represents a candidate for
|
|
/// vectorization, allowing to plan and optimize how to vectorize a given loop
|
|
/// before generating LLVM-IR.
|
|
/// The vectorizer uses vectorization plans to estimate the costs of potential
|
|
/// candidates and if profitable to execute the desired plan, generating vector
|
|
/// LLVM-IR code.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlan.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopVersioning.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
extern cl::opt<bool> EnableVPlanNativePath;
|
|
|
|
#define DEBUG_TYPE "vplan"
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
|
|
const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
V.print(OS, SlotTracker);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
|
|
const ElementCount &VF) const {
|
|
switch (LaneKind) {
|
|
case VPLane::Kind::ScalableLast:
|
|
// Lane = RuntimeVF - VF.getKnownMinValue() + Lane
|
|
return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
|
|
Builder.getInt32(VF.getKnownMinValue() - Lane));
|
|
case VPLane::Kind::First:
|
|
return Builder.getInt32(Lane);
|
|
}
|
|
llvm_unreachable("Unknown lane kind");
|
|
}
|
|
|
|
VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
|
|
: SubclassID(SC), UnderlyingVal(UV), Def(Def) {
|
|
if (Def)
|
|
Def->addDefinedValue(this);
|
|
}
|
|
|
|
VPValue::~VPValue() {
|
|
assert(Users.empty() && "trying to delete a VPValue with remaining users");
|
|
if (Def)
|
|
Def->removeDefinedValue(this);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
|
|
if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
|
|
R->print(OS, "", SlotTracker);
|
|
else
|
|
printAsOperand(OS, SlotTracker);
|
|
}
|
|
|
|
void VPValue::dump() const {
|
|
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
print(dbgs(), SlotTracker);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
void VPDef::dump() const {
|
|
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
|
|
VPSlotTracker SlotTracker(
|
|
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
|
|
print(dbgs(), "", SlotTracker);
|
|
dbgs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// Get the top-most entry block of \p Start. This is the entry block of the
|
|
// containing VPlan. This function is templated to support both const and non-const blocks
|
|
template <typename T> static T *getPlanEntry(T *Start) {
|
|
T *Next = Start;
|
|
T *Current = Start;
|
|
while ((Next = Next->getParent()))
|
|
Current = Next;
|
|
|
|
SmallSetVector<T *, 8> WorkList;
|
|
WorkList.insert(Current);
|
|
|
|
for (unsigned i = 0; i < WorkList.size(); i++) {
|
|
T *Current = WorkList[i];
|
|
if (Current->getNumPredecessors() == 0)
|
|
return Current;
|
|
auto &Predecessors = Current->getPredecessors();
|
|
WorkList.insert(Predecessors.begin(), Predecessors.end());
|
|
}
|
|
|
|
llvm_unreachable("VPlan without any entry node without predecessors");
|
|
}
|
|
|
|
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
|
|
|
|
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
|
|
|
|
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
void VPBlockBase::setPlan(VPlan *ParentPlan) {
|
|
assert(ParentPlan->getEntry() == this &&
|
|
"Can only set plan on its entry block.");
|
|
Plan = ParentPlan;
|
|
}
|
|
|
|
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExiting();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExiting();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
|
|
if (!Successors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getExiting() == this &&
|
|
"Block w/o successors not the exiting block of its parent.");
|
|
return Parent->getEnclosingBlockWithSuccessors();
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
|
|
if (!Predecessors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getEntry() == this &&
|
|
"Block w/o predecessors not the entry of its parent.");
|
|
return Parent->getEnclosingBlockWithPredecessors();
|
|
}
|
|
|
|
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
|
|
SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
|
|
|
|
for (VPBlockBase *Block : Blocks)
|
|
delete Block;
|
|
}
|
|
|
|
VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
|
|
iterator It = begin();
|
|
while (It != end() && It->isPhi())
|
|
It++;
|
|
return It;
|
|
}
|
|
|
|
Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
|
|
if (!Def->getDef())
|
|
return Def->getLiveInIRValue();
|
|
|
|
if (hasScalarValue(Def, Instance)) {
|
|
return Data
|
|
.PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
|
|
}
|
|
|
|
assert(hasVectorValue(Def, Instance.Part));
|
|
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
|
|
if (!VecPart->getType()->isVectorTy()) {
|
|
assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
|
|
return VecPart;
|
|
}
|
|
// TODO: Cache created scalar values.
|
|
Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
|
|
auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
|
|
// set(Def, Extract, Instance);
|
|
return Extract;
|
|
}
|
|
BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
|
|
VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
|
|
return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
|
|
}
|
|
|
|
void VPTransformState::addNewMetadata(Instruction *To,
|
|
const Instruction *Orig) {
|
|
// If the loop was versioned with memchecks, add the corresponding no-alias
|
|
// metadata.
|
|
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
|
|
LVer->annotateInstWithNoAlias(To, Orig);
|
|
}
|
|
|
|
void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
|
|
propagateMetadata(To, From);
|
|
addNewMetadata(To, From);
|
|
}
|
|
|
|
void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
|
|
for (Value *V : To) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
addMetadata(I, From);
|
|
}
|
|
}
|
|
|
|
BasicBlock *
|
|
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
|
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
|
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
|
|
BasicBlock *PrevBB = CFG.PrevBB;
|
|
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
|
|
PrevBB->getParent(), CFG.ExitBB);
|
|
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
|
|
|
|
// Hook up the new basic block to its predecessors.
|
|
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
|
|
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
|
|
auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
|
|
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
|
|
|
|
assert(PredBB && "Predecessor basic-block not found building successor.");
|
|
auto *PredBBTerminator = PredBB->getTerminator();
|
|
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
|
|
|
|
auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
|
|
if (isa<UnreachableInst>(PredBBTerminator)) {
|
|
assert(PredVPSuccessors.size() == 1 &&
|
|
"Predecessor ending w/o branch must have single successor.");
|
|
DebugLoc DL = PredBBTerminator->getDebugLoc();
|
|
PredBBTerminator->eraseFromParent();
|
|
auto *Br = BranchInst::Create(NewBB, PredBB);
|
|
Br->setDebugLoc(DL);
|
|
} else if (TermBr && !TermBr->isConditional()) {
|
|
TermBr->setSuccessor(0, NewBB);
|
|
} else {
|
|
// Set each forward successor here when it is created, excluding
|
|
// backedges. A backward successor is set when the branch is created.
|
|
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
|
|
assert(!TermBr->getSuccessor(idx) &&
|
|
"Trying to reset an existing successor block.");
|
|
TermBr->setSuccessor(idx, NewBB);
|
|
}
|
|
}
|
|
return NewBB;
|
|
}
|
|
|
|
void VPBasicBlock::execute(VPTransformState *State) {
|
|
bool Replica = State->Instance && !State->Instance->isFirstIteration();
|
|
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
|
|
VPBlockBase *SingleHPred = nullptr;
|
|
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
|
|
|
|
auto IsLoopRegion = [](VPBlockBase *BB) {
|
|
auto *R = dyn_cast<VPRegionBlock>(BB);
|
|
return R && !R->isReplicator();
|
|
};
|
|
|
|
// 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
|
|
if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
|
|
// ExitBB can be re-used for the exit block of the Plan.
|
|
NewBB = State->CFG.ExitBB;
|
|
State->CFG.PrevBB = NewBB;
|
|
|
|
// Update the branch instruction in the predecessor to branch to ExitBB.
|
|
VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
|
|
VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
|
|
assert(PredVPB->getSingleSuccessor() == this &&
|
|
"predecessor must have the current block as only successor");
|
|
BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
|
|
// The Exit block of a loop is always set to be successor 0 of the Exiting
|
|
// block.
|
|
cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
|
|
} else if (PrevVPBB && /* A */
|
|
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
|
|
SingleHPred->getExitingBasicBlock() == PrevVPBB &&
|
|
PrevVPBB->getSingleHierarchicalSuccessor() &&
|
|
(SingleHPred->getParent() == getEnclosingLoopRegion() &&
|
|
!IsLoopRegion(SingleHPred))) && /* B */
|
|
!(Replica && getPredecessors().empty())) { /* C */
|
|
// The last IR basic block is reused, as an optimization, in three cases:
|
|
// A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
|
|
// B. when the current VPBB has a single (hierarchical) predecessor which
|
|
// is PrevVPBB and the latter has a single (hierarchical) successor which
|
|
// both are in the same non-replicator region; and
|
|
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
|
|
// is the exiting VPBB of this region from a previous instance, or the
|
|
// predecessor of this region.
|
|
|
|
NewBB = createEmptyBasicBlock(State->CFG);
|
|
State->Builder.SetInsertPoint(NewBB);
|
|
// Temporarily terminate with unreachable until CFG is rewired.
|
|
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
|
// Register NewBB in its loop. In innermost loops its the same for all
|
|
// BB's.
|
|
if (State->CurrentVectorLoop)
|
|
State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
|
|
State->Builder.SetInsertPoint(Terminator);
|
|
State->CFG.PrevBB = NewBB;
|
|
}
|
|
|
|
// 2. Fill the IR basic block with IR instructions.
|
|
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
|
|
<< " in BB:" << NewBB->getName() << '\n');
|
|
|
|
State->CFG.VPBB2IRBB[this] = NewBB;
|
|
State->CFG.PrevVPBB = this;
|
|
|
|
for (VPRecipeBase &Recipe : Recipes)
|
|
Recipe.execute(*State);
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
|
|
}
|
|
|
|
void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
|
|
for (VPRecipeBase &R : Recipes) {
|
|
for (auto *Def : R.definedValues())
|
|
Def->replaceAllUsesWith(NewValue);
|
|
|
|
for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
|
|
R.setOperand(I, NewValue);
|
|
}
|
|
}
|
|
|
|
VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
|
|
assert((SplitAt == end() || SplitAt->getParent() == this) &&
|
|
"can only split at a position in the same block");
|
|
|
|
SmallVector<VPBlockBase *, 2> Succs(successors());
|
|
// First, disconnect the current block from its successors.
|
|
for (VPBlockBase *Succ : Succs)
|
|
VPBlockUtils::disconnectBlocks(this, Succ);
|
|
|
|
// Create new empty block after the block to split.
|
|
auto *SplitBlock = new VPBasicBlock(getName() + ".split");
|
|
VPBlockUtils::insertBlockAfter(SplitBlock, this);
|
|
|
|
// Add successors for block to split to new block.
|
|
for (VPBlockBase *Succ : Succs)
|
|
VPBlockUtils::connectBlocks(SplitBlock, Succ);
|
|
|
|
// Finally, move the recipes starting at SplitAt to new block.
|
|
for (VPRecipeBase &ToMove :
|
|
make_early_inc_range(make_range(SplitAt, this->end())))
|
|
ToMove.moveBefore(*SplitBlock, SplitBlock->end());
|
|
|
|
return SplitBlock;
|
|
}
|
|
|
|
VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
|
|
VPRegionBlock *P = getParent();
|
|
if (P && P->isReplicator()) {
|
|
P = P->getParent();
|
|
assert(!cast<VPRegionBlock>(P)->isReplicator() &&
|
|
"unexpected nested replicate regions");
|
|
}
|
|
return P;
|
|
}
|
|
|
|
static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
|
|
if (VPBB->empty()) {
|
|
assert(
|
|
VPBB->getNumSuccessors() < 2 &&
|
|
"block with multiple successors doesn't have a recipe as terminator");
|
|
return false;
|
|
}
|
|
|
|
const VPRecipeBase *R = &VPBB->back();
|
|
auto *VPI = dyn_cast<VPInstruction>(R);
|
|
bool IsCondBranch =
|
|
isa<VPBranchOnMaskRecipe>(R) ||
|
|
(VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
|
|
VPI->getOpcode() == VPInstruction::BranchOnCount));
|
|
(void)IsCondBranch;
|
|
|
|
if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
|
|
assert(IsCondBranch && "block with multiple successors not terminated by "
|
|
"conditional branch recipe");
|
|
|
|
return true;
|
|
}
|
|
|
|
assert(
|
|
!IsCondBranch &&
|
|
"block with 0 or 1 successors terminated by conditional branch recipe");
|
|
return false;
|
|
}
|
|
|
|
VPRecipeBase *VPBasicBlock::getTerminator() {
|
|
if (hasConditionalTerminator(this))
|
|
return &back();
|
|
return nullptr;
|
|
}
|
|
|
|
const VPRecipeBase *VPBasicBlock::getTerminator() const {
|
|
if (hasConditionalTerminator(this))
|
|
return &back();
|
|
return nullptr;
|
|
}
|
|
|
|
bool VPBasicBlock::isExiting() const {
|
|
return getParent()->getExitingBasicBlock() == this;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
|
|
if (getSuccessors().empty()) {
|
|
O << Indent << "No successors\n";
|
|
} else {
|
|
O << Indent << "Successor(s): ";
|
|
ListSeparator LS;
|
|
for (auto *Succ : getSuccessors())
|
|
O << LS << Succ->getName();
|
|
O << '\n';
|
|
}
|
|
}
|
|
|
|
void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << Indent << getName() << ":\n";
|
|
|
|
auto RecipeIndent = Indent + " ";
|
|
for (const VPRecipeBase &Recipe : *this) {
|
|
Recipe.print(O, RecipeIndent, SlotTracker);
|
|
O << '\n';
|
|
}
|
|
|
|
printSuccessors(O, Indent);
|
|
}
|
|
#endif
|
|
|
|
void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
// Drop all references in VPBasicBlocks and replace all uses with
|
|
// DummyValue.
|
|
Block->dropAllReferences(NewValue);
|
|
}
|
|
|
|
void VPRegionBlock::execute(VPTransformState *State) {
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
|
|
|
|
if (!isReplicator()) {
|
|
// Create and register the new vector loop.
|
|
Loop *PrevLoop = State->CurrentVectorLoop;
|
|
State->CurrentVectorLoop = State->LI->AllocateLoop();
|
|
BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
|
|
Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
|
|
|
|
// Insert the new loop into the loop nest and register the new basic blocks
|
|
// before calling any utilities such as SCEV that require valid LoopInfo.
|
|
if (ParentLoop)
|
|
ParentLoop->addChildLoop(State->CurrentVectorLoop);
|
|
else
|
|
State->LI->addTopLevelLoop(State->CurrentVectorLoop);
|
|
|
|
// Visit the VPBlocks connected to "this", starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
|
|
State->CurrentVectorLoop = PrevLoop;
|
|
return;
|
|
}
|
|
|
|
assert(!State->Instance && "Replicating a Region with non-null instance.");
|
|
|
|
// Enter replicating mode.
|
|
State->Instance = VPIteration(0, 0);
|
|
|
|
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
|
|
State->Instance->Part = Part;
|
|
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
|
|
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
|
|
++Lane) {
|
|
State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
|
|
// Visit the VPBlocks connected to \p this, starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Exit replicating mode.
|
|
State->Instance.reset();
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
|
|
auto NewIndent = Indent + " ";
|
|
for (auto *BlockBase : depth_first(Entry)) {
|
|
O << '\n';
|
|
BlockBase->print(O, NewIndent, SlotTracker);
|
|
}
|
|
O << Indent << "}\n";
|
|
|
|
printSuccessors(O, Indent);
|
|
}
|
|
#endif
|
|
|
|
void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
|
|
Value *CanonicalIVStartValue,
|
|
VPTransformState &State,
|
|
bool IsEpilogueVectorization) {
|
|
|
|
VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock();
|
|
auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back());
|
|
// Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when
|
|
// preparing to execute the plan for the main vector loop.
|
|
if (!IsEpilogueVectorization && Term &&
|
|
Term->getOpcode() == VPInstruction::BranchOnCount &&
|
|
isa<ConstantInt>(TripCountV)) {
|
|
ConstantInt *C = cast<ConstantInt>(TripCountV);
|
|
uint64_t TCVal = C->getZExtValue();
|
|
if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) {
|
|
auto *BOC =
|
|
new VPInstruction(VPInstruction::BranchOnCond,
|
|
{getOrAddExternalDef(State.Builder.getTrue())});
|
|
Term->eraseFromParent();
|
|
ExitingVPBB->appendRecipe(BOC);
|
|
// TODO: Further simplifications are possible
|
|
// 1. Replace inductions with constants.
|
|
// 2. Replace vector loop region with VPBasicBlock.
|
|
}
|
|
}
|
|
|
|
// Check if the trip count is needed, and if so build it.
|
|
if (TripCount && TripCount->getNumUsers()) {
|
|
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
|
|
State.set(TripCount, TripCountV, Part);
|
|
}
|
|
|
|
// Check if the backedge taken count is needed, and if so build it.
|
|
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
|
|
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
|
|
auto *TCMO = Builder.CreateSub(TripCountV,
|
|
ConstantInt::get(TripCountV->getType(), 1),
|
|
"trip.count.minus.1");
|
|
auto VF = State.VF;
|
|
Value *VTCMO =
|
|
VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
|
|
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
|
|
State.set(BackedgeTakenCount, VTCMO, Part);
|
|
}
|
|
|
|
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
|
|
State.set(&VectorTripCount, VectorTripCountV, Part);
|
|
|
|
// When vectorizing the epilogue loop, the canonical induction start value
|
|
// needs to be changed from zero to the value after the main vector loop.
|
|
if (CanonicalIVStartValue) {
|
|
VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue);
|
|
auto *IV = getCanonicalIV();
|
|
assert(all_of(IV->users(),
|
|
[](const VPUser *U) {
|
|
if (isa<VPScalarIVStepsRecipe>(U))
|
|
return true;
|
|
auto *VPI = cast<VPInstruction>(U);
|
|
return VPI->getOpcode() ==
|
|
VPInstruction::CanonicalIVIncrement ||
|
|
VPI->getOpcode() ==
|
|
VPInstruction::CanonicalIVIncrementNUW;
|
|
}) &&
|
|
"the canonical IV should only be used by its increments or "
|
|
"ScalarIVSteps when "
|
|
"resetting the start value");
|
|
IV->setOperand(0, VPV);
|
|
}
|
|
}
|
|
|
|
/// Generate the code inside the preheader and body of the vectorized loop.
|
|
/// Assumes a single pre-header basic-block was created for this. Introduce
|
|
/// additional basic-blocks as needed, and fill them all.
|
|
void VPlan::execute(VPTransformState *State) {
|
|
// Set the reverse mapping from VPValues to Values for code generation.
|
|
for (auto &Entry : Value2VPValue)
|
|
State->VPValue2Value[Entry.second] = Entry.first;
|
|
|
|
// Initialize CFG state.
|
|
State->CFG.PrevVPBB = nullptr;
|
|
State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
|
|
BasicBlock *VectorPreHeader = State->CFG.PrevBB;
|
|
State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
|
|
|
|
// Generate code in the loop pre-header and body.
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
Block->execute(State);
|
|
|
|
VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
|
|
BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
|
|
|
|
// Fix the latch value of canonical, reduction and first-order recurrences
|
|
// phis in the vector loop.
|
|
VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &R : Header->phis()) {
|
|
// Skip phi-like recipes that generate their backedege values themselves.
|
|
if (isa<VPWidenPHIRecipe>(&R))
|
|
continue;
|
|
|
|
if (isa<VPWidenPointerInductionRecipe>(&R) ||
|
|
isa<VPWidenIntOrFpInductionRecipe>(&R)) {
|
|
PHINode *Phi = nullptr;
|
|
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
|
|
Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
|
|
} else {
|
|
auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
|
|
// TODO: Split off the case that all users of a pointer phi are scalar
|
|
// from the VPWidenPointerInductionRecipe.
|
|
if (WidenPhi->onlyScalarsGenerated(State->VF))
|
|
continue;
|
|
|
|
auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
|
|
Phi = cast<PHINode>(GEP->getPointerOperand());
|
|
}
|
|
|
|
Phi->setIncomingBlock(1, VectorLatchBB);
|
|
|
|
// Move the last step to the end of the latch block. This ensures
|
|
// consistent placement of all induction updates.
|
|
Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
|
|
Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
|
|
continue;
|
|
}
|
|
|
|
auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
|
|
// For canonical IV, first-order recurrences and in-order reduction phis,
|
|
// only a single part is generated, which provides the last part from the
|
|
// previous iteration. For non-ordered reductions all UF parts are
|
|
// generated.
|
|
bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
|
|
isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
|
|
cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
|
|
unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
|
|
|
|
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
|
|
Value *Phi = State->get(PhiR, Part);
|
|
Value *Val = State->get(PhiR->getBackedgeValue(),
|
|
SinglePartNeeded ? State->UF - 1 : Part);
|
|
cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
|
|
}
|
|
}
|
|
|
|
// We do not attempt to preserve DT for outer loop vectorization currently.
|
|
if (!EnableVPlanNativePath) {
|
|
BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
|
|
State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
|
|
updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
|
|
State->CFG.ExitBB);
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::print(raw_ostream &O) const {
|
|
VPSlotTracker SlotTracker(this);
|
|
|
|
O << "VPlan '" << Name << "' {";
|
|
|
|
if (VectorTripCount.getNumUsers() > 0) {
|
|
O << "\nLive-in ";
|
|
VectorTripCount.printAsOperand(O, SlotTracker);
|
|
O << " = vector-trip-count\n";
|
|
}
|
|
|
|
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
|
|
O << "\nLive-in ";
|
|
BackedgeTakenCount->printAsOperand(O, SlotTracker);
|
|
O << " = backedge-taken count\n";
|
|
}
|
|
|
|
for (const VPBlockBase *Block : depth_first(getEntry())) {
|
|
O << '\n';
|
|
Block->print(O, "", SlotTracker);
|
|
}
|
|
|
|
if (!LiveOuts.empty())
|
|
O << "\n";
|
|
for (auto &KV : LiveOuts) {
|
|
O << "Live-out ";
|
|
KV.second->getPhi()->printAsOperand(O);
|
|
O << " = ";
|
|
KV.second->getOperand(0)->printAsOperand(O, SlotTracker);
|
|
O << "\n";
|
|
}
|
|
|
|
O << "}\n";
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::printDOT(raw_ostream &O) const {
|
|
VPlanPrinter Printer(O, *this);
|
|
Printer.dump();
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void VPlan::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
|
|
assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
|
|
LiveOuts.insert({PN, new VPLiveOut(PN, V)});
|
|
}
|
|
|
|
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
|
|
BasicBlock *LoopLatchBB,
|
|
BasicBlock *LoopExitBB) {
|
|
// The vector body may be more than a single basic-block by this point.
|
|
// Update the dominator tree information inside the vector body by propagating
|
|
// it from header to latch, expecting only triangular control-flow, if any.
|
|
BasicBlock *PostDomSucc = nullptr;
|
|
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
|
|
// Get the list of successors of this block.
|
|
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
|
|
assert(Succs.size() <= 2 &&
|
|
"Basic block in vector loop has more than 2 successors.");
|
|
PostDomSucc = Succs[0];
|
|
if (Succs.size() == 1) {
|
|
assert(PostDomSucc->getSinglePredecessor() &&
|
|
"PostDom successor has more than one predecessor.");
|
|
DT->addNewBlock(PostDomSucc, BB);
|
|
continue;
|
|
}
|
|
BasicBlock *InterimSucc = Succs[1];
|
|
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
|
|
PostDomSucc = Succs[1];
|
|
InterimSucc = Succs[0];
|
|
}
|
|
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
|
|
"One successor of a basic block does not lead to the other.");
|
|
assert(InterimSucc->getSinglePredecessor() &&
|
|
"Interim successor has more than one predecessor.");
|
|
assert(PostDomSucc->hasNPredecessors(2) &&
|
|
"PostDom successor has more than two predecessors.");
|
|
DT->addNewBlock(InterimSucc, BB);
|
|
DT->addNewBlock(PostDomSucc, BB);
|
|
}
|
|
// Latch block is a new dominator for the loop exit.
|
|
DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
|
|
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
|
|
Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
|
|
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
|
|
Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
|
|
const std::string &Name = Block->getName();
|
|
if (!Name.empty())
|
|
return Name;
|
|
return "VPB" + Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
void VPlanPrinter::dump() {
|
|
Depth = 1;
|
|
bumpIndent(0);
|
|
OS << "digraph VPlan {\n";
|
|
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
|
|
if (!Plan.getName().empty())
|
|
OS << "\\n" << DOT::EscapeString(Plan.getName());
|
|
if (Plan.BackedgeTakenCount) {
|
|
OS << ", where:\\n";
|
|
Plan.BackedgeTakenCount->print(OS, SlotTracker);
|
|
OS << " := BackedgeTakenCount";
|
|
}
|
|
OS << "\"]\n";
|
|
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
|
|
OS << "edge [fontname=Courier, fontsize=30]\n";
|
|
OS << "compound=true\n";
|
|
|
|
for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
|
|
dumpBlock(Block);
|
|
|
|
OS << "}\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
|
|
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
|
|
dumpBasicBlock(BasicBlock);
|
|
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
dumpRegion(Region);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
|
|
bool Hidden, const Twine &Label) {
|
|
// Due to "dot" we print an edge between two regions as an edge between the
|
|
// exiting basic block and the entry basic of the respective regions.
|
|
const VPBlockBase *Tail = From->getExitingBasicBlock();
|
|
const VPBlockBase *Head = To->getEntryBasicBlock();
|
|
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
|
|
OS << " [ label=\"" << Label << '\"';
|
|
if (Tail != From)
|
|
OS << " ltail=" << getUID(From);
|
|
if (Head != To)
|
|
OS << " lhead=" << getUID(To);
|
|
if (Hidden)
|
|
OS << "; splines=none";
|
|
OS << "]\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
|
|
auto &Successors = Block->getSuccessors();
|
|
if (Successors.size() == 1)
|
|
drawEdge(Block, Successors.front(), false, "");
|
|
else if (Successors.size() == 2) {
|
|
drawEdge(Block, Successors.front(), false, "T");
|
|
drawEdge(Block, Successors.back(), false, "F");
|
|
} else {
|
|
unsigned SuccessorNumber = 0;
|
|
for (auto *Successor : Successors)
|
|
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
|
|
}
|
|
}
|
|
|
|
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
|
|
// Implement dot-formatted dump by performing plain-text dump into the
|
|
// temporary storage followed by some post-processing.
|
|
OS << Indent << getUID(BasicBlock) << " [label =\n";
|
|
bumpIndent(1);
|
|
std::string Str;
|
|
raw_string_ostream SS(Str);
|
|
// Use no indentation as we need to wrap the lines into quotes ourselves.
|
|
BasicBlock->print(SS, "", SlotTracker);
|
|
|
|
// We need to process each line of the output separately, so split
|
|
// single-string plain-text dump.
|
|
SmallVector<StringRef, 0> Lines;
|
|
StringRef(Str).rtrim('\n').split(Lines, "\n");
|
|
|
|
auto EmitLine = [&](StringRef Line, StringRef Suffix) {
|
|
OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
|
|
};
|
|
|
|
// Don't need the "+" after the last line.
|
|
for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
|
|
EmitLine(Line, " +\n");
|
|
EmitLine(Lines.back(), "\n");
|
|
|
|
bumpIndent(-1);
|
|
OS << Indent << "]\n";
|
|
|
|
dumpEdges(BasicBlock);
|
|
}
|
|
|
|
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
|
|
OS << Indent << "subgraph " << getUID(Region) << " {\n";
|
|
bumpIndent(1);
|
|
OS << Indent << "fontname=Courier\n"
|
|
<< Indent << "label=\""
|
|
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
|
|
<< DOT::EscapeString(Region->getName()) << "\"\n";
|
|
// Dump the blocks of the region.
|
|
assert(Region->getEntry() && "Region contains no inner blocks.");
|
|
for (const VPBlockBase *Block : depth_first(Region->getEntry()))
|
|
dumpBlock(Block);
|
|
bumpIndent(-1);
|
|
OS << Indent << "}\n";
|
|
dumpEdges(Region);
|
|
}
|
|
|
|
void VPlanIngredient::print(raw_ostream &O) const {
|
|
if (auto *Inst = dyn_cast<Instruction>(V)) {
|
|
if (!Inst->getType()->isVoidTy()) {
|
|
Inst->printAsOperand(O, false);
|
|
O << " = ";
|
|
}
|
|
O << Inst->getOpcodeName() << " ";
|
|
unsigned E = Inst->getNumOperands();
|
|
if (E > 0) {
|
|
Inst->getOperand(0)->printAsOperand(O, false);
|
|
for (unsigned I = 1; I < E; ++I)
|
|
Inst->getOperand(I)->printAsOperand(O << ", ", false);
|
|
}
|
|
} else // !Inst
|
|
V->printAsOperand(O, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
|
|
|
|
void VPValue::replaceAllUsesWith(VPValue *New) {
|
|
for (unsigned J = 0; J < getNumUsers();) {
|
|
VPUser *User = Users[J];
|
|
unsigned NumUsers = getNumUsers();
|
|
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
|
|
if (User->getOperand(I) == this)
|
|
User->setOperand(I, New);
|
|
// If a user got removed after updating the current user, the next user to
|
|
// update will be moved to the current position, so we only need to
|
|
// increment the index if the number of users did not change.
|
|
if (NumUsers == getNumUsers())
|
|
J++;
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
|
|
if (const Value *UV = getUnderlyingValue()) {
|
|
OS << "ir<";
|
|
UV->printAsOperand(OS, false);
|
|
OS << ">";
|
|
return;
|
|
}
|
|
|
|
unsigned Slot = Tracker.getSlot(this);
|
|
if (Slot == unsigned(-1))
|
|
OS << "<badref>";
|
|
else
|
|
OS << "vp<%" << Tracker.getSlot(this) << ">";
|
|
}
|
|
|
|
void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
|
|
interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
|
|
Op->printAsOperand(O, SlotTracker);
|
|
});
|
|
}
|
|
#endif
|
|
|
|
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
|
|
Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI) {
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
|
|
for (VPBlockBase *Base : RPOT) {
|
|
visitBlock(Base, Old2New, IAI);
|
|
}
|
|
}
|
|
|
|
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI) {
|
|
if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
|
|
for (VPRecipeBase &VPI : *VPBB) {
|
|
if (isa<VPHeaderPHIRecipe>(&VPI))
|
|
continue;
|
|
assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
|
|
auto *VPInst = cast<VPInstruction>(&VPI);
|
|
|
|
auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
|
|
if (!Inst)
|
|
continue;
|
|
auto *IG = IAI.getInterleaveGroup(Inst);
|
|
if (!IG)
|
|
continue;
|
|
|
|
auto NewIGIter = Old2New.find(IG);
|
|
if (NewIGIter == Old2New.end())
|
|
Old2New[IG] = new InterleaveGroup<VPInstruction>(
|
|
IG->getFactor(), IG->isReverse(), IG->getAlign());
|
|
|
|
if (Inst == IG->getInsertPos())
|
|
Old2New[IG]->setInsertPos(VPInst);
|
|
|
|
InterleaveGroupMap[VPInst] = Old2New[IG];
|
|
InterleaveGroupMap[VPInst]->insertMember(
|
|
VPInst, IG->getIndex(Inst),
|
|
Align(IG->isReverse() ? (-1) * int(IG->getFactor())
|
|
: IG->getFactor()));
|
|
}
|
|
} else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
visitRegion(Region, Old2New, IAI);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
|
|
InterleavedAccessInfo &IAI) {
|
|
Old2NewTy Old2New;
|
|
visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
|
|
}
|
|
|
|
void VPSlotTracker::assignSlot(const VPValue *V) {
|
|
assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
|
|
Slots[V] = NextSlot++;
|
|
}
|
|
|
|
void VPSlotTracker::assignSlots(const VPlan &Plan) {
|
|
|
|
for (const auto &P : Plan.VPExternalDefs)
|
|
assignSlot(P.second);
|
|
|
|
assignSlot(&Plan.VectorTripCount);
|
|
if (Plan.BackedgeTakenCount)
|
|
assignSlot(Plan.BackedgeTakenCount);
|
|
|
|
ReversePostOrderTraversal<
|
|
VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
|
|
RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
|
|
Plan.getEntry()));
|
|
for (const VPBasicBlock *VPBB :
|
|
VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
|
|
for (const VPRecipeBase &Recipe : *VPBB)
|
|
for (VPValue *Def : Recipe.definedValues())
|
|
assignSlot(Def);
|
|
}
|
|
|
|
bool vputils::onlyFirstLaneUsed(VPValue *Def) {
|
|
return all_of(Def->users(),
|
|
[Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
|
|
}
|
|
|
|
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
|
|
ScalarEvolution &SE) {
|
|
if (auto *E = dyn_cast<SCEVConstant>(Expr))
|
|
return Plan.getOrAddExternalDef(E->getValue());
|
|
if (auto *E = dyn_cast<SCEVUnknown>(Expr))
|
|
return Plan.getOrAddExternalDef(E->getValue());
|
|
|
|
VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
|
|
VPValue *Step = new VPExpandSCEVRecipe(Expr, SE);
|
|
Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef()));
|
|
return Step;
|
|
}
|