forked from OSchip/llvm-project
1394 lines
52 KiB
C++
1394 lines
52 KiB
C++
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements sparse conditional constant propagation and merging:
|
|
//
|
|
// Specifically, this:
|
|
// * Assumes values are constant unless proven otherwise
|
|
// * Assumes BasicBlocks are dead unless proven otherwise
|
|
// * Proves values to be constant, and replaces them with constants
|
|
// * Proves conditional branches to be unconditional
|
|
//
|
|
// Notice that:
|
|
// * This pass has a habit of making definitions be dead. It is a good idea
|
|
// to to run a DCE pass sometime after running this pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sccp"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/hash_map"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
// LatticeVal class - This class represents the different lattice values that an
|
|
// instruction may occupy. It is a simple class with value semantics.
|
|
//
|
|
namespace {
|
|
|
|
class LatticeVal {
|
|
enum {
|
|
undefined, // This instruction has no known value
|
|
constant, // This instruction has a constant value
|
|
overdefined // This instruction has an unknown value
|
|
} LatticeValue; // The current lattice position
|
|
Constant *ConstantVal; // If Constant value, the current value
|
|
public:
|
|
inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
|
|
|
|
// markOverdefined - Return true if this is a new status to be in...
|
|
inline bool markOverdefined() {
|
|
if (LatticeValue != overdefined) {
|
|
LatticeValue = overdefined;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// markConstant - Return true if this is a new status for us...
|
|
inline bool markConstant(Constant *V) {
|
|
if (LatticeValue != constant) {
|
|
LatticeValue = constant;
|
|
ConstantVal = V;
|
|
return true;
|
|
} else {
|
|
assert(ConstantVal == V && "Marking constant with different value");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool isUndefined() const { return LatticeValue == undefined; }
|
|
inline bool isConstant() const { return LatticeValue == constant; }
|
|
inline bool isOverdefined() const { return LatticeValue == overdefined; }
|
|
|
|
inline Constant *getConstant() const {
|
|
assert(isConstant() && "Cannot get the constant of a non-constant!");
|
|
return ConstantVal;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
|
|
/// Constant Propagation.
|
|
///
|
|
class SCCPSolver : public InstVisitor<SCCPSolver> {
|
|
std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable
|
|
hash_map<Value*, LatticeVal> ValueState; // The state each value is in...
|
|
|
|
/// GlobalValue - If we are tracking any values for the contents of a global
|
|
/// variable, we keep a mapping from the constant accessor to the element of
|
|
/// the global, to the currently known value. If the value becomes
|
|
/// overdefined, it's entry is simply removed from this map.
|
|
hash_map<GlobalVariable*, LatticeVal> TrackedGlobals;
|
|
|
|
/// TrackedFunctionRetVals - If we are tracking arguments into and the return
|
|
/// value out of a function, it will have an entry in this map, indicating
|
|
/// what the known return value for the function is.
|
|
hash_map<Function*, LatticeVal> TrackedFunctionRetVals;
|
|
|
|
// The reason for two worklists is that overdefined is the lowest state
|
|
// on the lattice, and moving things to overdefined as fast as possible
|
|
// makes SCCP converge much faster.
|
|
// By having a separate worklist, we accomplish this because everything
|
|
// possibly overdefined will become overdefined at the soonest possible
|
|
// point.
|
|
std::vector<Value*> OverdefinedInstWorkList;
|
|
std::vector<Value*> InstWorkList;
|
|
|
|
|
|
std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list
|
|
|
|
/// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
|
|
/// overdefined, despite the fact that the PHI node is overdefined.
|
|
std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
|
|
|
|
/// KnownFeasibleEdges - Entries in this set are edges which have already had
|
|
/// PHI nodes retriggered.
|
|
typedef std::pair<BasicBlock*,BasicBlock*> Edge;
|
|
std::set<Edge> KnownFeasibleEdges;
|
|
public:
|
|
|
|
/// MarkBlockExecutable - This method can be used by clients to mark all of
|
|
/// the blocks that are known to be intrinsically live in the processed unit.
|
|
void MarkBlockExecutable(BasicBlock *BB) {
|
|
DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n");
|
|
BBExecutable.insert(BB); // Basic block is executable!
|
|
BBWorkList.push_back(BB); // Add the block to the work list!
|
|
}
|
|
|
|
/// TrackValueOfGlobalVariable - Clients can use this method to
|
|
/// inform the SCCPSolver that it should track loads and stores to the
|
|
/// specified global variable if it can. This is only legal to call if
|
|
/// performing Interprocedural SCCP.
|
|
void TrackValueOfGlobalVariable(GlobalVariable *GV) {
|
|
const Type *ElTy = GV->getType()->getElementType();
|
|
if (ElTy->isFirstClassType()) {
|
|
LatticeVal &IV = TrackedGlobals[GV];
|
|
if (!isa<UndefValue>(GV->getInitializer()))
|
|
IV.markConstant(GV->getInitializer());
|
|
}
|
|
}
|
|
|
|
/// AddTrackedFunction - If the SCCP solver is supposed to track calls into
|
|
/// and out of the specified function (which cannot have its address taken),
|
|
/// this method must be called.
|
|
void AddTrackedFunction(Function *F) {
|
|
assert(F->hasInternalLinkage() && "Can only track internal functions!");
|
|
// Add an entry, F -> undef.
|
|
TrackedFunctionRetVals[F];
|
|
}
|
|
|
|
/// Solve - Solve for constants and executable blocks.
|
|
///
|
|
void Solve();
|
|
|
|
/// ResolveBranchesIn - While solving the dataflow for a function, we assume
|
|
/// that branches on undef values cannot reach any of their successors.
|
|
/// However, this is not a safe assumption. After we solve dataflow, this
|
|
/// method should be use to handle this. If this returns true, the solver
|
|
/// should be rerun.
|
|
bool ResolveBranchesIn(Function &F);
|
|
|
|
/// getExecutableBlocks - Once we have solved for constants, return the set of
|
|
/// blocks that is known to be executable.
|
|
std::set<BasicBlock*> &getExecutableBlocks() {
|
|
return BBExecutable;
|
|
}
|
|
|
|
/// getValueMapping - Once we have solved for constants, return the mapping of
|
|
/// LLVM values to LatticeVals.
|
|
hash_map<Value*, LatticeVal> &getValueMapping() {
|
|
return ValueState;
|
|
}
|
|
|
|
/// getTrackedFunctionRetVals - Get the inferred return value map.
|
|
///
|
|
const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() {
|
|
return TrackedFunctionRetVals;
|
|
}
|
|
|
|
/// getTrackedGlobals - Get and return the set of inferred initializers for
|
|
/// global variables.
|
|
const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
|
|
return TrackedGlobals;
|
|
}
|
|
|
|
|
|
private:
|
|
// markConstant - Make a value be marked as "constant". If the value
|
|
// is not already a constant, add it to the instruction work list so that
|
|
// the users of the instruction are updated later.
|
|
//
|
|
inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
|
|
if (IV.markConstant(C)) {
|
|
DEBUG(std::cerr << "markConstant: " << *C << ": " << *V);
|
|
InstWorkList.push_back(V);
|
|
}
|
|
}
|
|
inline void markConstant(Value *V, Constant *C) {
|
|
markConstant(ValueState[V], V, C);
|
|
}
|
|
|
|
// markOverdefined - Make a value be marked as "overdefined". If the
|
|
// value is not already overdefined, add it to the overdefined instruction
|
|
// work list so that the users of the instruction are updated later.
|
|
|
|
inline void markOverdefined(LatticeVal &IV, Value *V) {
|
|
if (IV.markOverdefined()) {
|
|
DEBUG(std::cerr << "markOverdefined: ";
|
|
if (Function *F = dyn_cast<Function>(V))
|
|
std::cerr << "Function '" << F->getName() << "'\n";
|
|
else
|
|
std::cerr << *V);
|
|
// Only instructions go on the work list
|
|
OverdefinedInstWorkList.push_back(V);
|
|
}
|
|
}
|
|
inline void markOverdefined(Value *V) {
|
|
markOverdefined(ValueState[V], V);
|
|
}
|
|
|
|
inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
|
|
if (IV.isOverdefined() || MergeWithV.isUndefined())
|
|
return; // Noop.
|
|
if (MergeWithV.isOverdefined())
|
|
markOverdefined(IV, V);
|
|
else if (IV.isUndefined())
|
|
markConstant(IV, V, MergeWithV.getConstant());
|
|
else if (IV.getConstant() != MergeWithV.getConstant())
|
|
markOverdefined(IV, V);
|
|
}
|
|
|
|
inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
|
|
return mergeInValue(ValueState[V], V, MergeWithV);
|
|
}
|
|
|
|
|
|
// getValueState - Return the LatticeVal object that corresponds to the value.
|
|
// This function is necessary because not all values should start out in the
|
|
// underdefined state... Argument's should be overdefined, and
|
|
// constants should be marked as constants. If a value is not known to be an
|
|
// Instruction object, then use this accessor to get its value from the map.
|
|
//
|
|
inline LatticeVal &getValueState(Value *V) {
|
|
hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V);
|
|
if (I != ValueState.end()) return I->second; // Common case, in the map
|
|
|
|
if (Constant *CPV = dyn_cast<Constant>(V)) {
|
|
if (isa<UndefValue>(V)) {
|
|
// Nothing to do, remain undefined.
|
|
} else {
|
|
ValueState[CPV].markConstant(CPV); // Constants are constant
|
|
}
|
|
}
|
|
// All others are underdefined by default...
|
|
return ValueState[V];
|
|
}
|
|
|
|
// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
|
|
// work list if it is not already executable...
|
|
//
|
|
void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
|
|
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
|
|
return; // This edge is already known to be executable!
|
|
|
|
if (BBExecutable.count(Dest)) {
|
|
DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
|
|
<< " -> " << Dest->getName() << "\n");
|
|
|
|
// The destination is already executable, but we just made an edge
|
|
// feasible that wasn't before. Revisit the PHI nodes in the block
|
|
// because they have potentially new operands.
|
|
for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
|
|
visitPHINode(*cast<PHINode>(I));
|
|
|
|
} else {
|
|
MarkBlockExecutable(Dest);
|
|
}
|
|
}
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
//
|
|
void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible...
|
|
//
|
|
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
|
|
|
|
// OperandChangedState - This method is invoked on all of the users of an
|
|
// instruction that was just changed state somehow.... Based on this
|
|
// information, we need to update the specified user of this instruction.
|
|
//
|
|
void OperandChangedState(User *U) {
|
|
// Only instructions use other variable values!
|
|
Instruction &I = cast<Instruction>(*U);
|
|
if (BBExecutable.count(I.getParent())) // Inst is executable?
|
|
visit(I);
|
|
}
|
|
|
|
private:
|
|
friend class InstVisitor<SCCPSolver>;
|
|
|
|
// visit implementations - Something changed in this instruction... Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate.
|
|
//
|
|
void visitPHINode(PHINode &I);
|
|
|
|
// Terminators
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitTerminatorInst(TerminatorInst &TI);
|
|
|
|
void visitCastInst(CastInst &I);
|
|
void visitSelectInst(SelectInst &I);
|
|
void visitBinaryOperator(Instruction &I);
|
|
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
|
|
void visitExtractElementInst(ExtractElementInst &I);
|
|
void visitInsertElementInst(InsertElementInst &I);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &I);
|
|
|
|
// Instructions that cannot be folded away...
|
|
void visitStoreInst (Instruction &I);
|
|
void visitLoadInst (LoadInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
|
|
void visitInvokeInst (InvokeInst &II) {
|
|
visitCallSite(CallSite::get(&II));
|
|
visitTerminatorInst(II);
|
|
}
|
|
void visitCallSite (CallSite CS);
|
|
void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
|
|
void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
|
|
void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
|
|
void visitVANextInst (Instruction &I) { markOverdefined(&I); }
|
|
void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
|
|
void visitFreeInst (Instruction &I) { /*returns void*/ }
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
// If a new instruction is added to LLVM that we don't handle...
|
|
std::cerr << "SCCP: Don't know how to handle: " << I;
|
|
markOverdefined(&I); // Just in case
|
|
}
|
|
};
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
//
|
|
void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
|
|
std::vector<bool> &Succs) {
|
|
Succs.resize(TI.getNumSuccessors());
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
|
|
if (BI->isUnconditional()) {
|
|
Succs[0] = true;
|
|
} else {
|
|
LatticeVal &BCValue = getValueState(BI->getCondition());
|
|
if (BCValue.isOverdefined() ||
|
|
(BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
|
|
// Overdefined condition variables, and branches on unfoldable constant
|
|
// conditions, mean the branch could go either way.
|
|
Succs[0] = Succs[1] = true;
|
|
} else if (BCValue.isConstant()) {
|
|
// Constant condition variables mean the branch can only go a single way
|
|
Succs[BCValue.getConstant() == ConstantBool::getFalse()] = true;
|
|
}
|
|
}
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
|
|
// Invoke instructions successors are always executable.
|
|
Succs[0] = Succs[1] = true;
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
|
|
LatticeVal &SCValue = getValueState(SI->getCondition());
|
|
if (SCValue.isOverdefined() || // Overdefined condition?
|
|
(SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
|
|
// All destinations are executable!
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
} else if (SCValue.isConstant()) {
|
|
Constant *CPV = SCValue.getConstant();
|
|
// Make sure to skip the "default value" which isn't a value
|
|
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
|
|
if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
|
|
Succs[i] = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Constant value not equal to any of the branches... must execute
|
|
// default branch then...
|
|
Succs[0] = true;
|
|
}
|
|
} else {
|
|
std::cerr << "SCCP: Don't know how to handle: " << TI;
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
}
|
|
}
|
|
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible...
|
|
//
|
|
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
|
|
assert(BBExecutable.count(To) && "Dest should always be alive!");
|
|
|
|
// Make sure the source basic block is executable!!
|
|
if (!BBExecutable.count(From)) return false;
|
|
|
|
// Check to make sure this edge itself is actually feasible now...
|
|
TerminatorInst *TI = From->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isUnconditional())
|
|
return true;
|
|
else {
|
|
LatticeVal &BCValue = getValueState(BI->getCondition());
|
|
if (BCValue.isOverdefined()) {
|
|
// Overdefined condition variables mean the branch could go either way.
|
|
return true;
|
|
} else if (BCValue.isConstant()) {
|
|
// Not branching on an evaluatable constant?
|
|
if (!isa<ConstantBool>(BCValue.getConstant())) return true;
|
|
|
|
// Constant condition variables mean the branch can only go a single way
|
|
return BI->getSuccessor(BCValue.getConstant() ==
|
|
ConstantBool::getFalse()) == To;
|
|
}
|
|
return false;
|
|
}
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
|
|
// Invoke instructions successors are always executable.
|
|
return true;
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
LatticeVal &SCValue = getValueState(SI->getCondition());
|
|
if (SCValue.isOverdefined()) { // Overdefined condition?
|
|
// All destinations are executable!
|
|
return true;
|
|
} else if (SCValue.isConstant()) {
|
|
Constant *CPV = SCValue.getConstant();
|
|
if (!isa<ConstantInt>(CPV))
|
|
return true; // not a foldable constant?
|
|
|
|
// Make sure to skip the "default value" which isn't a value
|
|
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
|
|
if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
|
|
return SI->getSuccessor(i) == To;
|
|
|
|
// Constant value not equal to any of the branches... must execute
|
|
// default branch then...
|
|
return SI->getDefaultDest() == To;
|
|
}
|
|
return false;
|
|
} else {
|
|
std::cerr << "Unknown terminator instruction: " << *TI;
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// visit Implementations - Something changed in this instruction... Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate. This method
|
|
// makes sure to do the following actions:
|
|
//
|
|
// 1. If a phi node merges two constants in, and has conflicting value coming
|
|
// from different branches, or if the PHI node merges in an overdefined
|
|
// value, then the PHI node becomes overdefined.
|
|
// 2. If a phi node merges only constants in, and they all agree on value, the
|
|
// PHI node becomes a constant value equal to that.
|
|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
|
|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
|
|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
|
|
// 6. If a conditional branch has a value that is constant, make the selected
|
|
// destination executable
|
|
// 7. If a conditional branch has a value that is overdefined, make all
|
|
// successors executable.
|
|
//
|
|
void SCCPSolver::visitPHINode(PHINode &PN) {
|
|
LatticeVal &PNIV = getValueState(&PN);
|
|
if (PNIV.isOverdefined()) {
|
|
// There may be instructions using this PHI node that are not overdefined
|
|
// themselves. If so, make sure that they know that the PHI node operand
|
|
// changed.
|
|
std::multimap<PHINode*, Instruction*>::iterator I, E;
|
|
tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
|
|
if (I != E) {
|
|
std::vector<Instruction*> Users;
|
|
Users.reserve(std::distance(I, E));
|
|
for (; I != E; ++I) Users.push_back(I->second);
|
|
while (!Users.empty()) {
|
|
visit(Users.back());
|
|
Users.pop_back();
|
|
}
|
|
}
|
|
return; // Quick exit
|
|
}
|
|
|
|
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
|
|
// and slow us down a lot. Just mark them overdefined.
|
|
if (PN.getNumIncomingValues() > 64) {
|
|
markOverdefined(PNIV, &PN);
|
|
return;
|
|
}
|
|
|
|
// Look at all of the executable operands of the PHI node. If any of them
|
|
// are overdefined, the PHI becomes overdefined as well. If they are all
|
|
// constant, and they agree with each other, the PHI becomes the identical
|
|
// constant. If they are constant and don't agree, the PHI is overdefined.
|
|
// If there are no executable operands, the PHI remains undefined.
|
|
//
|
|
Constant *OperandVal = 0;
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
LatticeVal &IV = getValueState(PN.getIncomingValue(i));
|
|
if (IV.isUndefined()) continue; // Doesn't influence PHI node.
|
|
|
|
if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
|
|
if (IV.isOverdefined()) { // PHI node becomes overdefined!
|
|
markOverdefined(PNIV, &PN);
|
|
return;
|
|
}
|
|
|
|
if (OperandVal == 0) { // Grab the first value...
|
|
OperandVal = IV.getConstant();
|
|
} else { // Another value is being merged in!
|
|
// There is already a reachable operand. If we conflict with it,
|
|
// then the PHI node becomes overdefined. If we agree with it, we
|
|
// can continue on.
|
|
|
|
// Check to see if there are two different constants merging...
|
|
if (IV.getConstant() != OperandVal) {
|
|
// Yes there is. This means the PHI node is not constant.
|
|
// You must be overdefined poor PHI.
|
|
//
|
|
markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined
|
|
return; // I'm done analyzing you
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we exited the loop, this means that the PHI node only has constant
|
|
// arguments that agree with each other(and OperandVal is the constant) or
|
|
// OperandVal is null because there are no defined incoming arguments. If
|
|
// this is the case, the PHI remains undefined.
|
|
//
|
|
if (OperandVal)
|
|
markConstant(PNIV, &PN, OperandVal); // Acquire operand value
|
|
}
|
|
|
|
void SCCPSolver::visitReturnInst(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) return; // Ret void
|
|
|
|
// If we are tracking the return value of this function, merge it in.
|
|
Function *F = I.getParent()->getParent();
|
|
if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
|
|
hash_map<Function*, LatticeVal>::iterator TFRVI =
|
|
TrackedFunctionRetVals.find(F);
|
|
if (TFRVI != TrackedFunctionRetVals.end() &&
|
|
!TFRVI->second.isOverdefined()) {
|
|
LatticeVal &IV = getValueState(I.getOperand(0));
|
|
mergeInValue(TFRVI->second, F, IV);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
|
|
std::vector<bool> SuccFeasible;
|
|
getFeasibleSuccessors(TI, SuccFeasible);
|
|
|
|
BasicBlock *BB = TI.getParent();
|
|
|
|
// Mark all feasible successors executable...
|
|
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
|
|
if (SuccFeasible[i])
|
|
markEdgeExecutable(BB, TI.getSuccessor(i));
|
|
}
|
|
|
|
void SCCPSolver::visitCastInst(CastInst &I) {
|
|
Value *V = I.getOperand(0);
|
|
LatticeVal &VState = getValueState(V);
|
|
if (VState.isOverdefined()) // Inherit overdefinedness of operand
|
|
markOverdefined(&I);
|
|
else if (VState.isConstant()) // Propagate constant value
|
|
markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
|
|
}
|
|
|
|
void SCCPSolver::visitSelectInst(SelectInst &I) {
|
|
LatticeVal &CondValue = getValueState(I.getCondition());
|
|
if (CondValue.isUndefined())
|
|
return;
|
|
if (CondValue.isConstant()) {
|
|
if (ConstantBool *CondCB = dyn_cast<ConstantBool>(CondValue.getConstant())){
|
|
mergeInValue(&I, getValueState(CondCB->getValue() ? I.getTrueValue()
|
|
: I.getFalseValue()));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, the condition is overdefined or a constant we can't evaluate.
|
|
// See if we can produce something better than overdefined based on the T/F
|
|
// value.
|
|
LatticeVal &TVal = getValueState(I.getTrueValue());
|
|
LatticeVal &FVal = getValueState(I.getFalseValue());
|
|
|
|
// select ?, C, C -> C.
|
|
if (TVal.isConstant() && FVal.isConstant() &&
|
|
TVal.getConstant() == FVal.getConstant()) {
|
|
markConstant(&I, FVal.getConstant());
|
|
return;
|
|
}
|
|
|
|
if (TVal.isUndefined()) { // select ?, undef, X -> X.
|
|
mergeInValue(&I, FVal);
|
|
} else if (FVal.isUndefined()) { // select ?, X, undef -> X.
|
|
mergeInValue(&I, TVal);
|
|
} else {
|
|
markOverdefined(&I);
|
|
}
|
|
}
|
|
|
|
// Handle BinaryOperators and Shift Instructions...
|
|
void SCCPSolver::visitBinaryOperator(Instruction &I) {
|
|
LatticeVal &IV = ValueState[&I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
LatticeVal &V1State = getValueState(I.getOperand(0));
|
|
LatticeVal &V2State = getValueState(I.getOperand(1));
|
|
|
|
if (V1State.isOverdefined() || V2State.isOverdefined()) {
|
|
// If this is an AND or OR with 0 or -1, it doesn't matter that the other
|
|
// operand is overdefined.
|
|
if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
|
|
LatticeVal *NonOverdefVal = 0;
|
|
if (!V1State.isOverdefined()) {
|
|
NonOverdefVal = &V1State;
|
|
} else if (!V2State.isOverdefined()) {
|
|
NonOverdefVal = &V2State;
|
|
}
|
|
|
|
if (NonOverdefVal) {
|
|
if (NonOverdefVal->isUndefined()) {
|
|
// Could annihilate value.
|
|
if (I.getOpcode() == Instruction::And)
|
|
markConstant(IV, &I, Constant::getNullValue(I.getType()));
|
|
else
|
|
markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
|
|
return;
|
|
} else {
|
|
if (I.getOpcode() == Instruction::And) {
|
|
if (NonOverdefVal->getConstant()->isNullValue()) {
|
|
markConstant(IV, &I, NonOverdefVal->getConstant());
|
|
return; // X or 0 = -1
|
|
}
|
|
} else {
|
|
if (ConstantIntegral *CI =
|
|
dyn_cast<ConstantIntegral>(NonOverdefVal->getConstant()))
|
|
if (CI->isAllOnesValue()) {
|
|
markConstant(IV, &I, NonOverdefVal->getConstant());
|
|
return; // X or -1 = -1
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// If both operands are PHI nodes, it is possible that this instruction has
|
|
// a constant value, despite the fact that the PHI node doesn't. Check for
|
|
// this condition now.
|
|
if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
|
|
if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
|
|
if (PN1->getParent() == PN2->getParent()) {
|
|
// Since the two PHI nodes are in the same basic block, they must have
|
|
// entries for the same predecessors. Walk the predecessor list, and
|
|
// if all of the incoming values are constants, and the result of
|
|
// evaluating this expression with all incoming value pairs is the
|
|
// same, then this expression is a constant even though the PHI node
|
|
// is not a constant!
|
|
LatticeVal Result;
|
|
for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
|
|
LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
|
|
BasicBlock *InBlock = PN1->getIncomingBlock(i);
|
|
LatticeVal &In2 =
|
|
getValueState(PN2->getIncomingValueForBlock(InBlock));
|
|
|
|
if (In1.isOverdefined() || In2.isOverdefined()) {
|
|
Result.markOverdefined();
|
|
break; // Cannot fold this operation over the PHI nodes!
|
|
} else if (In1.isConstant() && In2.isConstant()) {
|
|
Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
|
|
In2.getConstant());
|
|
if (Result.isUndefined())
|
|
Result.markConstant(V);
|
|
else if (Result.isConstant() && Result.getConstant() != V) {
|
|
Result.markOverdefined();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found a constant value here, then we know the instruction is
|
|
// constant despite the fact that the PHI nodes are overdefined.
|
|
if (Result.isConstant()) {
|
|
markConstant(IV, &I, Result.getConstant());
|
|
// Remember that this instruction is virtually using the PHI node
|
|
// operands.
|
|
UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
|
|
UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
|
|
return;
|
|
} else if (Result.isUndefined()) {
|
|
return;
|
|
}
|
|
|
|
// Okay, this really is overdefined now. Since we might have
|
|
// speculatively thought that this was not overdefined before, and
|
|
// added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
|
|
// make sure to clean out any entries that we put there, for
|
|
// efficiency.
|
|
std::multimap<PHINode*, Instruction*>::iterator It, E;
|
|
tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
|
|
while (It != E) {
|
|
if (It->second == &I) {
|
|
UsersOfOverdefinedPHIs.erase(It++);
|
|
} else
|
|
++It;
|
|
}
|
|
tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
|
|
while (It != E) {
|
|
if (It->second == &I) {
|
|
UsersOfOverdefinedPHIs.erase(It++);
|
|
} else
|
|
++It;
|
|
}
|
|
}
|
|
|
|
markOverdefined(IV, &I);
|
|
} else if (V1State.isConstant() && V2State.isConstant()) {
|
|
markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
|
|
V2State.getConstant()));
|
|
}
|
|
}
|
|
|
|
void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
|
|
LatticeVal &ValState = getValueState(I.getOperand(0));
|
|
LatticeVal &IdxState = getValueState(I.getOperand(1));
|
|
|
|
if (ValState.isOverdefined() || IdxState.isOverdefined())
|
|
markOverdefined(&I);
|
|
else if(ValState.isConstant() && IdxState.isConstant())
|
|
markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
|
|
IdxState.getConstant()));
|
|
}
|
|
|
|
void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
|
|
LatticeVal &ValState = getValueState(I.getOperand(0));
|
|
LatticeVal &EltState = getValueState(I.getOperand(1));
|
|
LatticeVal &IdxState = getValueState(I.getOperand(2));
|
|
|
|
if (ValState.isOverdefined() || EltState.isOverdefined() ||
|
|
IdxState.isOverdefined())
|
|
markOverdefined(&I);
|
|
else if(ValState.isConstant() && EltState.isConstant() &&
|
|
IdxState.isConstant())
|
|
markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
|
|
EltState.getConstant(),
|
|
IdxState.getConstant()));
|
|
else if (ValState.isUndefined() && EltState.isConstant() &&
|
|
IdxState.isConstant())
|
|
markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
|
|
EltState.getConstant(),
|
|
IdxState.getConstant()));
|
|
}
|
|
|
|
void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
|
|
LatticeVal &V1State = getValueState(I.getOperand(0));
|
|
LatticeVal &V2State = getValueState(I.getOperand(1));
|
|
LatticeVal &MaskState = getValueState(I.getOperand(2));
|
|
|
|
if (MaskState.isUndefined() ||
|
|
(V1State.isUndefined() && V2State.isUndefined()))
|
|
return; // Undefined output if mask or both inputs undefined.
|
|
|
|
if (V1State.isOverdefined() || V2State.isOverdefined() ||
|
|
MaskState.isOverdefined()) {
|
|
markOverdefined(&I);
|
|
} else {
|
|
// A mix of constant/undef inputs.
|
|
Constant *V1 = V1State.isConstant() ?
|
|
V1State.getConstant() : UndefValue::get(I.getType());
|
|
Constant *V2 = V2State.isConstant() ?
|
|
V2State.getConstant() : UndefValue::get(I.getType());
|
|
Constant *Mask = MaskState.isConstant() ?
|
|
MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
|
|
markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
|
|
}
|
|
}
|
|
|
|
// Handle getelementptr instructions... if all operands are constants then we
|
|
// can turn this into a getelementptr ConstantExpr.
|
|
//
|
|
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
LatticeVal &IV = ValueState[&I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
std::vector<Constant*> Operands;
|
|
Operands.reserve(I.getNumOperands());
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
LatticeVal &State = getValueState(I.getOperand(i));
|
|
if (State.isUndefined())
|
|
return; // Operands are not resolved yet...
|
|
else if (State.isOverdefined()) {
|
|
markOverdefined(IV, &I);
|
|
return;
|
|
}
|
|
assert(State.isConstant() && "Unknown state!");
|
|
Operands.push_back(State.getConstant());
|
|
}
|
|
|
|
Constant *Ptr = Operands[0];
|
|
Operands.erase(Operands.begin()); // Erase the pointer from idx list...
|
|
|
|
markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
|
|
}
|
|
|
|
void SCCPSolver::visitStoreInst(Instruction &SI) {
|
|
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
|
|
return;
|
|
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
|
|
hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
|
|
if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
|
|
|
|
// Get the value we are storing into the global.
|
|
LatticeVal &PtrVal = getValueState(SI.getOperand(0));
|
|
|
|
mergeInValue(I->second, GV, PtrVal);
|
|
if (I->second.isOverdefined())
|
|
TrackedGlobals.erase(I); // No need to keep tracking this!
|
|
}
|
|
|
|
|
|
// Handle load instructions. If the operand is a constant pointer to a constant
|
|
// global, we can replace the load with the loaded constant value!
|
|
void SCCPSolver::visitLoadInst(LoadInst &I) {
|
|
LatticeVal &IV = ValueState[&I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
LatticeVal &PtrVal = getValueState(I.getOperand(0));
|
|
if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
|
|
if (PtrVal.isConstant() && !I.isVolatile()) {
|
|
Value *Ptr = PtrVal.getConstant();
|
|
if (isa<ConstantPointerNull>(Ptr)) {
|
|
// load null -> null
|
|
markConstant(IV, &I, Constant::getNullValue(I.getType()));
|
|
return;
|
|
}
|
|
|
|
// Transform load (constant global) into the value loaded.
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
|
if (GV->isConstant()) {
|
|
if (!GV->isExternal()) {
|
|
markConstant(IV, &I, GV->getInitializer());
|
|
return;
|
|
}
|
|
} else if (!TrackedGlobals.empty()) {
|
|
// If we are tracking this global, merge in the known value for it.
|
|
hash_map<GlobalVariable*, LatticeVal>::iterator It =
|
|
TrackedGlobals.find(GV);
|
|
if (It != TrackedGlobals.end()) {
|
|
mergeInValue(IV, &I, It->second);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
|
if (CE->getOpcode() == Instruction::GetElementPtr)
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
|
|
if (GV->isConstant() && !GV->isExternal())
|
|
if (Constant *V =
|
|
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
|
|
markConstant(IV, &I, V);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise we cannot say for certain what value this load will produce.
|
|
// Bail out.
|
|
markOverdefined(IV, &I);
|
|
}
|
|
|
|
void SCCPSolver::visitCallSite(CallSite CS) {
|
|
Function *F = CS.getCalledFunction();
|
|
|
|
// If we are tracking this function, we must make sure to bind arguments as
|
|
// appropriate.
|
|
hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
|
|
if (F && F->hasInternalLinkage())
|
|
TFRVI = TrackedFunctionRetVals.find(F);
|
|
|
|
if (TFRVI != TrackedFunctionRetVals.end()) {
|
|
// If this is the first call to the function hit, mark its entry block
|
|
// executable.
|
|
if (!BBExecutable.count(F->begin()))
|
|
MarkBlockExecutable(F->begin());
|
|
|
|
CallSite::arg_iterator CAI = CS.arg_begin();
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
|
|
AI != E; ++AI, ++CAI) {
|
|
LatticeVal &IV = ValueState[AI];
|
|
if (!IV.isOverdefined())
|
|
mergeInValue(IV, AI, getValueState(*CAI));
|
|
}
|
|
}
|
|
Instruction *I = CS.getInstruction();
|
|
if (I->getType() == Type::VoidTy) return;
|
|
|
|
LatticeVal &IV = ValueState[I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
// Propagate the return value of the function to the value of the instruction.
|
|
if (TFRVI != TrackedFunctionRetVals.end()) {
|
|
mergeInValue(IV, I, TFRVI->second);
|
|
return;
|
|
}
|
|
|
|
if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) {
|
|
markOverdefined(IV, I);
|
|
return;
|
|
}
|
|
|
|
std::vector<Constant*> Operands;
|
|
Operands.reserve(I->getNumOperands()-1);
|
|
|
|
for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
|
|
AI != E; ++AI) {
|
|
LatticeVal &State = getValueState(*AI);
|
|
if (State.isUndefined())
|
|
return; // Operands are not resolved yet...
|
|
else if (State.isOverdefined()) {
|
|
markOverdefined(IV, I);
|
|
return;
|
|
}
|
|
assert(State.isConstant() && "Unknown state!");
|
|
Operands.push_back(State.getConstant());
|
|
}
|
|
|
|
if (Constant *C = ConstantFoldCall(F, Operands))
|
|
markConstant(IV, I, C);
|
|
else
|
|
markOverdefined(IV, I);
|
|
}
|
|
|
|
|
|
void SCCPSolver::Solve() {
|
|
// Process the work lists until they are empty!
|
|
while (!BBWorkList.empty() || !InstWorkList.empty() ||
|
|
!OverdefinedInstWorkList.empty()) {
|
|
// Process the instruction work list...
|
|
while (!OverdefinedInstWorkList.empty()) {
|
|
Value *I = OverdefinedInstWorkList.back();
|
|
OverdefinedInstWorkList.pop_back();
|
|
|
|
DEBUG(std::cerr << "\nPopped off OI-WL: " << *I);
|
|
|
|
// "I" got into the work list because it either made the transition from
|
|
// bottom to constant
|
|
//
|
|
// Anything on this worklist that is overdefined need not be visited
|
|
// since all of its users will have already been marked as overdefined
|
|
// Update all of the users of this instruction's value...
|
|
//
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI)
|
|
OperandChangedState(*UI);
|
|
}
|
|
// Process the instruction work list...
|
|
while (!InstWorkList.empty()) {
|
|
Value *I = InstWorkList.back();
|
|
InstWorkList.pop_back();
|
|
|
|
DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
|
|
|
|
// "I" got into the work list because it either made the transition from
|
|
// bottom to constant
|
|
//
|
|
// Anything on this worklist that is overdefined need not be visited
|
|
// since all of its users will have already been marked as overdefined.
|
|
// Update all of the users of this instruction's value...
|
|
//
|
|
if (!getValueState(I).isOverdefined())
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI)
|
|
OperandChangedState(*UI);
|
|
}
|
|
|
|
// Process the basic block work list...
|
|
while (!BBWorkList.empty()) {
|
|
BasicBlock *BB = BBWorkList.back();
|
|
BBWorkList.pop_back();
|
|
|
|
DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);
|
|
|
|
// Notify all instructions in this basic block that they are newly
|
|
// executable.
|
|
visit(BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ResolveBranchesIn - While solving the dataflow for a function, we assume
|
|
/// that branches on undef values cannot reach any of their successors.
|
|
/// However, this is not a safe assumption. After we solve dataflow, this
|
|
/// method should be use to handle this. If this returns true, the solver
|
|
/// should be rerun.
|
|
bool SCCPSolver::ResolveBranchesIn(Function &F) {
|
|
bool BranchesResolved = false;
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
if (BBExecutable.count(BB)) {
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional()) {
|
|
LatticeVal &BCValue = getValueState(BI->getCondition());
|
|
if (BCValue.isUndefined()) {
|
|
BI->setCondition(ConstantBool::getTrue());
|
|
BranchesResolved = true;
|
|
visit(BI);
|
|
}
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
LatticeVal &SCValue = getValueState(SI->getCondition());
|
|
if (SCValue.isUndefined()) {
|
|
const Type *CondTy = SI->getCondition()->getType();
|
|
SI->setCondition(Constant::getNullValue(CondTy));
|
|
BranchesResolved = true;
|
|
visit(SI);
|
|
}
|
|
}
|
|
}
|
|
|
|
return BranchesResolved;
|
|
}
|
|
|
|
|
|
namespace {
|
|
Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
|
|
Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
|
|
/// Sparse Conditional COnstant Propagator.
|
|
///
|
|
struct SCCP : public FunctionPass {
|
|
// runOnFunction - Run the Sparse Conditional Constant Propagation
|
|
// algorithm, and return true if the function was modified.
|
|
//
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
|
|
RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
|
|
} // end anonymous namespace
|
|
|
|
|
|
// createSCCPPass - This is the public interface to this file...
|
|
FunctionPass *llvm::createSCCPPass() {
|
|
return new SCCP();
|
|
}
|
|
|
|
|
|
// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
|
|
// and return true if the function was modified.
|
|
//
|
|
bool SCCP::runOnFunction(Function &F) {
|
|
DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n");
|
|
SCCPSolver Solver;
|
|
|
|
// Mark the first block of the function as being executable.
|
|
Solver.MarkBlockExecutable(F.begin());
|
|
|
|
// Mark all arguments to the function as being overdefined.
|
|
hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
|
|
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI)
|
|
Values[AI].markOverdefined();
|
|
|
|
// Solve for constants.
|
|
bool ResolvedBranches = true;
|
|
while (ResolvedBranches) {
|
|
Solver.Solve();
|
|
DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n");
|
|
ResolvedBranches = Solver.ResolveBranchesIn(F);
|
|
}
|
|
|
|
bool MadeChanges = false;
|
|
|
|
// If we decided that there are basic blocks that are dead in this function,
|
|
// delete their contents now. Note that we cannot actually delete the blocks,
|
|
// as we cannot modify the CFG of the function.
|
|
//
|
|
std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
if (!ExecutableBBs.count(BB)) {
|
|
DEBUG(std::cerr << " BasicBlock Dead:" << *BB);
|
|
++NumDeadBlocks;
|
|
|
|
// Delete the instructions backwards, as it has a reduced likelihood of
|
|
// having to update as many def-use and use-def chains.
|
|
std::vector<Instruction*> Insts;
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
|
|
I != E; ++I)
|
|
Insts.push_back(I);
|
|
while (!Insts.empty()) {
|
|
Instruction *I = Insts.back();
|
|
Insts.pop_back();
|
|
if (!I->use_empty())
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
BB->getInstList().erase(I);
|
|
MadeChanges = true;
|
|
++NumInstRemoved;
|
|
}
|
|
} else {
|
|
// Iterate over all of the instructions in a function, replacing them with
|
|
// constants if we have found them to be of constant values.
|
|
//
|
|
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
|
|
Instruction *Inst = BI++;
|
|
if (Inst->getType() != Type::VoidTy) {
|
|
LatticeVal &IV = Values[Inst];
|
|
if (IV.isConstant() || IV.isUndefined() &&
|
|
!isa<TerminatorInst>(Inst)) {
|
|
Constant *Const = IV.isConstant()
|
|
? IV.getConstant() : UndefValue::get(Inst->getType());
|
|
DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst);
|
|
|
|
// Replaces all of the uses of a variable with uses of the constant.
|
|
Inst->replaceAllUsesWith(Const);
|
|
|
|
// Delete the instruction.
|
|
BB->getInstList().erase(Inst);
|
|
|
|
// Hey, we just changed something!
|
|
MadeChanges = true;
|
|
++NumInstRemoved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChanges;
|
|
}
|
|
|
|
namespace {
|
|
Statistic<> IPNumInstRemoved("ipsccp", "Number of instructions removed");
|
|
Statistic<> IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable");
|
|
Statistic<> IPNumArgsElimed ("ipsccp",
|
|
"Number of arguments constant propagated");
|
|
Statistic<> IPNumGlobalConst("ipsccp",
|
|
"Number of globals found to be constant");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
/// IPSCCP Class - This class implements interprocedural Sparse Conditional
|
|
/// Constant Propagation.
|
|
///
|
|
struct IPSCCP : public ModulePass {
|
|
bool runOnModule(Module &M);
|
|
};
|
|
|
|
RegisterPass<IPSCCP>
|
|
Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
|
|
} // end anonymous namespace
|
|
|
|
// createIPSCCPPass - This is the public interface to this file...
|
|
ModulePass *llvm::createIPSCCPPass() {
|
|
return new IPSCCP();
|
|
}
|
|
|
|
|
|
static bool AddressIsTaken(GlobalValue *GV) {
|
|
// Delete any dead constantexpr klingons.
|
|
GV->removeDeadConstantUsers();
|
|
|
|
for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
|
|
UI != E; ++UI)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
|
if (SI->getOperand(0) == GV || SI->isVolatile())
|
|
return true; // Storing addr of GV.
|
|
} else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
|
|
// Make sure we are calling the function, not passing the address.
|
|
CallSite CS = CallSite::get(cast<Instruction>(*UI));
|
|
for (CallSite::arg_iterator AI = CS.arg_begin(),
|
|
E = CS.arg_end(); AI != E; ++AI)
|
|
if (*AI == GV)
|
|
return true;
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
|
if (LI->isVolatile())
|
|
return true;
|
|
} else {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IPSCCP::runOnModule(Module &M) {
|
|
SCCPSolver Solver;
|
|
|
|
// Loop over all functions, marking arguments to those with their addresses
|
|
// taken or that are external as overdefined.
|
|
//
|
|
hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
|
|
if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
|
|
if (!F->isExternal())
|
|
Solver.MarkBlockExecutable(F->begin());
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
|
|
AI != E; ++AI)
|
|
Values[AI].markOverdefined();
|
|
} else {
|
|
Solver.AddTrackedFunction(F);
|
|
}
|
|
|
|
// Loop over global variables. We inform the solver about any internal global
|
|
// variables that do not have their 'addresses taken'. If they don't have
|
|
// their addresses taken, we can propagate constants through them.
|
|
for (Module::global_iterator G = M.global_begin(), E = M.global_end();
|
|
G != E; ++G)
|
|
if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
|
|
Solver.TrackValueOfGlobalVariable(G);
|
|
|
|
// Solve for constants.
|
|
bool ResolvedBranches = true;
|
|
while (ResolvedBranches) {
|
|
Solver.Solve();
|
|
|
|
DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n");
|
|
ResolvedBranches = false;
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
|
|
ResolvedBranches |= Solver.ResolveBranchesIn(*F);
|
|
}
|
|
|
|
bool MadeChanges = false;
|
|
|
|
// Iterate over all of the instructions in the module, replacing them with
|
|
// constants if we have found them to be of constant values.
|
|
//
|
|
std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
|
|
AI != E; ++AI)
|
|
if (!AI->use_empty()) {
|
|
LatticeVal &IV = Values[AI];
|
|
if (IV.isConstant() || IV.isUndefined()) {
|
|
Constant *CST = IV.isConstant() ?
|
|
IV.getConstant() : UndefValue::get(AI->getType());
|
|
DEBUG(std::cerr << "*** Arg " << *AI << " = " << *CST <<"\n");
|
|
|
|
// Replaces all of the uses of a variable with uses of the
|
|
// constant.
|
|
AI->replaceAllUsesWith(CST);
|
|
++IPNumArgsElimed;
|
|
}
|
|
}
|
|
|
|
std::vector<BasicBlock*> BlocksToErase;
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
if (!ExecutableBBs.count(BB)) {
|
|
DEBUG(std::cerr << " BasicBlock Dead:" << *BB);
|
|
++IPNumDeadBlocks;
|
|
|
|
// Delete the instructions backwards, as it has a reduced likelihood of
|
|
// having to update as many def-use and use-def chains.
|
|
std::vector<Instruction*> Insts;
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
|
|
Insts.push_back(I);
|
|
|
|
while (!Insts.empty()) {
|
|
Instruction *I = Insts.back();
|
|
Insts.pop_back();
|
|
if (!I->use_empty())
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
BB->getInstList().erase(I);
|
|
MadeChanges = true;
|
|
++IPNumInstRemoved;
|
|
}
|
|
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *Succ = TI->getSuccessor(i);
|
|
if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin()))
|
|
TI->getSuccessor(i)->removePredecessor(BB);
|
|
}
|
|
if (!TI->use_empty())
|
|
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
|
|
BB->getInstList().erase(TI);
|
|
|
|
if (&*BB != &F->front())
|
|
BlocksToErase.push_back(BB);
|
|
else
|
|
new UnreachableInst(BB);
|
|
|
|
} else {
|
|
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
|
|
Instruction *Inst = BI++;
|
|
if (Inst->getType() != Type::VoidTy) {
|
|
LatticeVal &IV = Values[Inst];
|
|
if (IV.isConstant() || IV.isUndefined() &&
|
|
!isa<TerminatorInst>(Inst)) {
|
|
Constant *Const = IV.isConstant()
|
|
? IV.getConstant() : UndefValue::get(Inst->getType());
|
|
DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst);
|
|
|
|
// Replaces all of the uses of a variable with uses of the
|
|
// constant.
|
|
Inst->replaceAllUsesWith(Const);
|
|
|
|
// Delete the instruction.
|
|
if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
|
|
BB->getInstList().erase(Inst);
|
|
|
|
// Hey, we just changed something!
|
|
MadeChanges = true;
|
|
++IPNumInstRemoved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that all instructions in the function are constant folded, erase dead
|
|
// blocks, because we can now use ConstantFoldTerminator to get rid of
|
|
// in-edges.
|
|
for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
|
|
// If there are any PHI nodes in this successor, drop entries for BB now.
|
|
BasicBlock *DeadBB = BlocksToErase[i];
|
|
while (!DeadBB->use_empty()) {
|
|
Instruction *I = cast<Instruction>(DeadBB->use_back());
|
|
bool Folded = ConstantFoldTerminator(I->getParent());
|
|
assert(Folded && "Didn't fold away reference to block!");
|
|
}
|
|
|
|
// Finally, delete the basic block.
|
|
F->getBasicBlockList().erase(DeadBB);
|
|
}
|
|
}
|
|
|
|
// If we inferred constant or undef return values for a function, we replaced
|
|
// all call uses with the inferred value. This means we don't need to bother
|
|
// actually returning anything from the function. Replace all return
|
|
// instructions with return undef.
|
|
const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
|
|
for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(),
|
|
E = RV.end(); I != E; ++I)
|
|
if (!I->second.isOverdefined() &&
|
|
I->first->getReturnType() != Type::VoidTy) {
|
|
Function *F = I->first;
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
|
|
if (!isa<UndefValue>(RI->getOperand(0)))
|
|
RI->setOperand(0, UndefValue::get(F->getReturnType()));
|
|
}
|
|
|
|
// If we infered constant or undef values for globals variables, we can delete
|
|
// the global and any stores that remain to it.
|
|
const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
|
|
for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
|
|
E = TG.end(); I != E; ++I) {
|
|
GlobalVariable *GV = I->first;
|
|
assert(!I->second.isOverdefined() &&
|
|
"Overdefined values should have been taken out of the map!");
|
|
DEBUG(std::cerr << "Found that GV '" << GV->getName()<< "' is constant!\n");
|
|
while (!GV->use_empty()) {
|
|
StoreInst *SI = cast<StoreInst>(GV->use_back());
|
|
SI->eraseFromParent();
|
|
}
|
|
M.getGlobalList().erase(GV);
|
|
++IPNumGlobalConst;
|
|
}
|
|
|
|
return MadeChanges;
|
|
}
|