llvm-project/lld/ELF/InputSection.h

327 lines
11 KiB
C++

//===- InputSection.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_INPUT_SECTION_H
#define LLD_ELF_INPUT_SECTION_H
#include "Config.h"
#include "Relocations.h"
#include "Thunks.h"
#include "lld/Core/LLVM.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Object/ELF.h"
#include <mutex>
namespace lld {
namespace elf {
class DefinedCommon;
class SymbolBody;
struct SectionPiece;
template <class ELFT> class DefinedRegular;
template <class ELFT> class ObjectFile;
template <class ELFT> class OutputSection;
class OutputSectionBase;
// We need non-template input section class to store symbol layout
// in linker script parser structures, where we do not have ELFT
// template parameter. For each scripted output section symbol we
// store pointer to preceding InputSectionData object or nullptr,
// if symbol should be placed at the very beginning of the output
// section
class InputSectionData {
public:
enum Kind { Regular, EHFrame, Merge, Synthetic, };
// The garbage collector sets sections' Live bits.
// If GC is disabled, all sections are considered live by default.
InputSectionData(Kind SectionKind, StringRef Name, ArrayRef<uint8_t> Data,
bool Live)
: SectionKind(SectionKind), Live(Live), Assigned(false), Name(Name),
Data(Data) {}
private:
unsigned SectionKind : 3;
public:
Kind kind() const { return (Kind)SectionKind; }
unsigned Live : 1; // for garbage collection
unsigned Assigned : 1; // for linker script
uint32_t Alignment;
StringRef Name;
ArrayRef<uint8_t> Data;
template <typename T> llvm::ArrayRef<T> getDataAs() const {
size_t S = Data.size();
assert(S % sizeof(T) == 0);
return llvm::makeArrayRef<T>((const T *)Data.data(), S / sizeof(T));
}
std::vector<Relocation> Relocations;
};
// This corresponds to a section of an input file.
template <class ELFT> class InputSectionBase : public InputSectionData {
protected:
typedef typename ELFT::Chdr Elf_Chdr;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
// The file this section is from.
ObjectFile<ELFT> *File;
public:
// These corresponds to the fields in Elf_Shdr.
uintX_t Flags;
uintX_t Offset = 0;
uintX_t Entsize;
uint32_t Type;
uint32_t Link;
uint32_t Info;
InputSectionBase()
: InputSectionData(Regular, "", ArrayRef<uint8_t>(), false), Repl(this) {
NumRelocations = 0;
AreRelocsRela = false;
}
InputSectionBase(ObjectFile<ELFT> *File, const Elf_Shdr *Header,
StringRef Name, Kind SectionKind);
InputSectionBase(ObjectFile<ELFT> *File, uintX_t Flags, uint32_t Type,
uintX_t Entsize, uint32_t Link, uint32_t Info,
uintX_t Addralign, ArrayRef<uint8_t> Data, StringRef Name,
Kind SectionKind);
OutputSectionBase *OutSec = nullptr;
// Relocations that refer to this section.
const Elf_Rel *FirstRelocation = nullptr;
unsigned NumRelocations : 31;
unsigned AreRelocsRela : 1;
ArrayRef<Elf_Rel> rels() const {
assert(!AreRelocsRela);
return llvm::makeArrayRef(FirstRelocation, NumRelocations);
}
ArrayRef<Elf_Rela> relas() const {
assert(AreRelocsRela);
return llvm::makeArrayRef(static_cast<const Elf_Rela *>(FirstRelocation),
NumRelocations);
}
// This pointer points to the "real" instance of this instance.
// Usually Repl == this. However, if ICF merges two sections,
// Repl pointer of one section points to another section. So,
// if you need to get a pointer to this instance, do not use
// this but instead this->Repl.
InputSectionBase<ELFT> *Repl;
// Returns the size of this section (even if this is a common or BSS.)
size_t getSize() const;
ObjectFile<ELFT> *getFile() const { return File; }
llvm::object::ELFFile<ELFT> getObj() const { return File->getObj(); }
uintX_t getOffset(const DefinedRegular<ELFT> &Sym) const;
InputSectionBase *getLinkOrderDep() const;
// Translate an offset in the input section to an offset in the output
// section.
uintX_t getOffset(uintX_t Offset) const;
// ELF supports ZLIB-compressed section.
// Returns true if the section is compressed.
bool isCompressed() const;
void uncompress();
// Returns a source location string. Used to construct an error message.
std::string getLocation(uintX_t Offset);
void relocate(uint8_t *Buf, uint8_t *BufEnd);
private:
std::pair<ArrayRef<uint8_t>, uint64_t>
getElfCompressedData(ArrayRef<uint8_t> Data);
std::pair<ArrayRef<uint8_t>, uint64_t>
getRawCompressedData(ArrayRef<uint8_t> Data);
};
// SectionPiece represents a piece of splittable section contents.
// We allocate a lot of these and binary search on them. This means that they
// have to be as compact as possible, which is why we don't store the size (can
// be found by looking at the next one) and put the hash in a side table.
struct SectionPiece {
SectionPiece(size_t Off, bool Live = false)
: InputOff(Off), OutputOff(-1), Live(Live || !Config->GcSections) {}
size_t InputOff;
ssize_t OutputOff : 8 * sizeof(ssize_t) - 1;
size_t Live : 1;
};
static_assert(sizeof(SectionPiece) == 2 * sizeof(size_t),
"SectionPiece is too big");
// This corresponds to a SHF_MERGE section of an input file.
template <class ELFT> class MergeInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::Shdr Elf_Shdr;
public:
MergeInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header,
StringRef Name);
static bool classof(const InputSectionData *S);
void splitIntoPieces();
// Mark the piece at a given offset live. Used by GC.
void markLiveAt(uintX_t Offset) {
assert(this->Flags & llvm::ELF::SHF_ALLOC);
LiveOffsets.insert(Offset);
}
// Translate an offset in the input section to an offset
// in the output section.
uintX_t getOffset(uintX_t Offset) const;
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<SectionPiece> Pieces;
// Returns I'th piece's data. This function is very hot when
// string merging is enabled, so we want to inline.
LLVM_ATTRIBUTE_ALWAYS_INLINE
llvm::CachedHashStringRef getData(size_t I) const {
size_t Begin = Pieces[I].InputOff;
size_t End;
if (Pieces.size() - 1 == I)
End = this->Data.size();
else
End = Pieces[I + 1].InputOff;
StringRef S = {(const char *)(this->Data.data() + Begin), End - Begin};
return {S, Hashes[I]};
}
// Returns the SectionPiece at a given input section offset.
SectionPiece *getSectionPiece(uintX_t Offset);
const SectionPiece *getSectionPiece(uintX_t Offset) const;
private:
void splitStrings(ArrayRef<uint8_t> A, size_t Size);
void splitNonStrings(ArrayRef<uint8_t> A, size_t Size);
std::vector<uint32_t> Hashes;
mutable llvm::DenseMap<uintX_t, uintX_t> OffsetMap;
mutable std::once_flag InitOffsetMap;
llvm::DenseSet<uintX_t> LiveOffsets;
};
struct EhSectionPiece : public SectionPiece {
EhSectionPiece(size_t Off, InputSectionData *ID, uint32_t Size,
unsigned FirstRelocation)
: SectionPiece(Off, false), ID(ID), Size(Size),
FirstRelocation(FirstRelocation) {}
InputSectionData *ID;
uint32_t Size;
uint32_t size() const { return Size; }
ArrayRef<uint8_t> data() { return {ID->Data.data() + this->InputOff, Size}; }
unsigned FirstRelocation;
};
// This corresponds to a .eh_frame section of an input file.
template <class ELFT> class EhInputSection : public InputSectionBase<ELFT> {
public:
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::uint uintX_t;
EhInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header, StringRef Name);
static bool classof(const InputSectionData *S);
void split();
template <class RelTy> void split(ArrayRef<RelTy> Rels);
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<EhSectionPiece> Pieces;
};
// This corresponds to a non SHF_MERGE section of an input file.
template <class ELFT> class InputSection : public InputSectionBase<ELFT> {
typedef InputSectionBase<ELFT> Base;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
typedef InputSectionData::Kind Kind;
public:
InputSection();
InputSection(uintX_t Flags, uint32_t Type, uintX_t Addralign,
ArrayRef<uint8_t> Data, StringRef Name,
Kind K = InputSectionData::Regular);
InputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header, StringRef Name);
static InputSection<ELFT> Discarded;
// Write this section to a mmap'ed file, assuming Buf is pointing to
// beginning of the output section.
void writeTo(uint8_t *Buf);
// The offset from beginning of the output sections this section was assigned
// to. The writer sets a value.
uint64_t OutSecOff = 0;
// InputSection that is dependent on us (reverse dependency for GC)
InputSectionBase<ELFT> *DependentSection = nullptr;
static bool classof(const InputSectionData *S);
InputSectionBase<ELFT> *getRelocatedSection();
// Register thunk related to the symbol. When the section is written
// to a mmap'ed file, target is requested to write an actual thunk code.
// Now thunks is supported for MIPS and ARM target only.
void addThunk(const Thunk<ELFT> *T);
// The offset of synthetic thunk code from beginning of this section.
uint64_t getThunkOff() const;
// Size of chunk with thunks code.
uint64_t getThunksSize() const;
template <class RelTy>
void relocateNonAlloc(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
// Used by ICF.
uint32_t Class[2] = {0, 0};
// Called by ICF to merge two input sections.
void replace(InputSection<ELFT> *Other);
private:
template <class RelTy>
void copyRelocations(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
llvm::TinyPtrVector<const Thunk<ELFT> *> Thunks;
};
template <class ELFT> InputSection<ELFT> InputSection<ELFT>::Discarded;
} // namespace elf
template <class ELFT> std::string toString(const elf::InputSectionBase<ELFT> *);
} // namespace lld
#endif