llvm-project/llvm/lib/MC/MCParser/AsmLexer.cpp

753 lines
24 KiB
C++

//===- AsmLexer.cpp - Lexer for Assembly Files ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class implements the lexer for assembly files.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCParser/AsmLexer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SaveAndRestore.h"
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
AsmLexer::AsmLexer(const MCAsmInfo &MAI) : MAI(MAI) {
AllowAtInIdentifier = !StringRef(MAI.getCommentString()).startswith("@");
}
AsmLexer::~AsmLexer() = default;
void AsmLexer::setBuffer(StringRef Buf, const char *ptr) {
CurBuf = Buf;
if (ptr)
CurPtr = ptr;
else
CurPtr = CurBuf.begin();
TokStart = nullptr;
}
/// ReturnError - Set the error to the specified string at the specified
/// location. This is defined to always return AsmToken::Error.
AsmToken AsmLexer::ReturnError(const char *Loc, const std::string &Msg) {
SetError(SMLoc::getFromPointer(Loc), Msg);
return AsmToken(AsmToken::Error, StringRef(Loc, CurPtr - Loc));
}
int AsmLexer::getNextChar() {
if (CurPtr == CurBuf.end())
return EOF;
return (unsigned char)*CurPtr++;
}
/// LexFloatLiteral: [0-9]*[.][0-9]*([eE][+-]?[0-9]*)?
///
/// The leading integral digit sequence and dot should have already been
/// consumed, some or all of the fractional digit sequence *can* have been
/// consumed.
AsmToken AsmLexer::LexFloatLiteral() {
// Skip the fractional digit sequence.
while (isDigit(*CurPtr))
++CurPtr;
// Check for exponent; we intentionally accept a slighlty wider set of
// literals here and rely on the upstream client to reject invalid ones (e.g.,
// "1e+").
if (*CurPtr == 'e' || *CurPtr == 'E') {
++CurPtr;
if (*CurPtr == '-' || *CurPtr == '+')
++CurPtr;
while (isDigit(*CurPtr))
++CurPtr;
}
return AsmToken(AsmToken::Real,
StringRef(TokStart, CurPtr - TokStart));
}
/// LexHexFloatLiteral matches essentially (.[0-9a-fA-F]*)?[pP][+-]?[0-9a-fA-F]+
/// while making sure there are enough actual digits around for the constant to
/// be valid.
///
/// The leading "0x[0-9a-fA-F]*" (i.e. integer part) has already been consumed
/// before we get here.
AsmToken AsmLexer::LexHexFloatLiteral(bool NoIntDigits) {
assert((*CurPtr == 'p' || *CurPtr == 'P' || *CurPtr == '.') &&
"unexpected parse state in floating hex");
bool NoFracDigits = true;
// Skip the fractional part if there is one
if (*CurPtr == '.') {
++CurPtr;
const char *FracStart = CurPtr;
while (isHexDigit(*CurPtr))
++CurPtr;
NoFracDigits = CurPtr == FracStart;
}
if (NoIntDigits && NoFracDigits)
return ReturnError(TokStart, "invalid hexadecimal floating-point constant: "
"expected at least one significand digit");
// Make sure we do have some kind of proper exponent part
if (*CurPtr != 'p' && *CurPtr != 'P')
return ReturnError(TokStart, "invalid hexadecimal floating-point constant: "
"expected exponent part 'p'");
++CurPtr;
if (*CurPtr == '+' || *CurPtr == '-')
++CurPtr;
// N.b. exponent digits are *not* hex
const char *ExpStart = CurPtr;
while (isDigit(*CurPtr))
++CurPtr;
if (CurPtr == ExpStart)
return ReturnError(TokStart, "invalid hexadecimal floating-point constant: "
"expected at least one exponent digit");
return AsmToken(AsmToken::Real, StringRef(TokStart, CurPtr - TokStart));
}
/// LexIdentifier: [a-zA-Z_.][a-zA-Z0-9_$.@?]*
static bool IsIdentifierChar(char c, bool AllowAt) {
return isAlnum(c) || c == '_' || c == '$' || c == '.' ||
(c == '@' && AllowAt) || c == '?';
}
AsmToken AsmLexer::LexIdentifier() {
// Check for floating point literals.
if (CurPtr[-1] == '.' && isDigit(*CurPtr)) {
// Disambiguate a .1243foo identifier from a floating literal.
while (isDigit(*CurPtr))
++CurPtr;
if (*CurPtr == 'e' || *CurPtr == 'E' ||
!IsIdentifierChar(*CurPtr, AllowAtInIdentifier))
return LexFloatLiteral();
}
while (IsIdentifierChar(*CurPtr, AllowAtInIdentifier))
++CurPtr;
// Handle . as a special case.
if (CurPtr == TokStart+1 && TokStart[0] == '.')
return AsmToken(AsmToken::Dot, StringRef(TokStart, 1));
return AsmToken(AsmToken::Identifier, StringRef(TokStart, CurPtr - TokStart));
}
/// LexSlash: Slash: /
/// C-Style Comment: /* ... */
AsmToken AsmLexer::LexSlash() {
switch (*CurPtr) {
case '*':
IsAtStartOfStatement = false;
break; // C style comment.
case '/':
++CurPtr;
return LexLineComment();
default:
IsAtStartOfStatement = false;
return AsmToken(AsmToken::Slash, StringRef(TokStart, 1));
}
// C Style comment.
++CurPtr; // skip the star.
const char *CommentTextStart = CurPtr;
while (CurPtr != CurBuf.end()) {
switch (*CurPtr++) {
case '*':
// End of the comment?
if (*CurPtr != '/')
break;
// If we have a CommentConsumer, notify it about the comment.
if (CommentConsumer) {
CommentConsumer->HandleComment(
SMLoc::getFromPointer(CommentTextStart),
StringRef(CommentTextStart, CurPtr - 1 - CommentTextStart));
}
++CurPtr; // End the */.
return AsmToken(AsmToken::Comment,
StringRef(TokStart, CurPtr - TokStart));
}
}
return ReturnError(TokStart, "unterminated comment");
}
/// LexLineComment: Comment: #[^\n]*
/// : //[^\n]*
AsmToken AsmLexer::LexLineComment() {
// Mark This as an end of statement with a body of the
// comment. While it would be nicer to leave this two tokens,
// backwards compatability with TargetParsers makes keeping this in this form
// better.
const char *CommentTextStart = CurPtr;
int CurChar = getNextChar();
while (CurChar != '\n' && CurChar != '\r' && CurChar != EOF)
CurChar = getNextChar();
if (CurChar == '\r' && CurPtr != CurBuf.end() && *CurPtr == '\n')
++CurPtr;
// If we have a CommentConsumer, notify it about the comment.
if (CommentConsumer) {
CommentConsumer->HandleComment(
SMLoc::getFromPointer(CommentTextStart),
StringRef(CommentTextStart, CurPtr - 1 - CommentTextStart));
}
IsAtStartOfLine = true;
// This is a whole line comment. leave newline
if (IsAtStartOfStatement)
return AsmToken(AsmToken::EndOfStatement,
StringRef(TokStart, CurPtr - TokStart));
IsAtStartOfStatement = true;
return AsmToken(AsmToken::EndOfStatement,
StringRef(TokStart, CurPtr - 1 - TokStart));
}
static void SkipIgnoredIntegerSuffix(const char *&CurPtr) {
// Skip ULL, UL, U, L and LL suffices.
if (CurPtr[0] == 'U')
++CurPtr;
if (CurPtr[0] == 'L')
++CurPtr;
if (CurPtr[0] == 'L')
++CurPtr;
}
// Look ahead to search for first non-hex digit, if it's [hH], then we treat the
// integer as a hexadecimal, possibly with leading zeroes.
static unsigned doHexLookAhead(const char *&CurPtr, unsigned DefaultRadix,
bool LexHex) {
const char *FirstNonDec = nullptr;
const char *LookAhead = CurPtr;
while (true) {
if (isDigit(*LookAhead)) {
++LookAhead;
} else {
if (!FirstNonDec)
FirstNonDec = LookAhead;
// Keep going if we are looking for a 'h' suffix.
if (LexHex && isHexDigit(*LookAhead))
++LookAhead;
else
break;
}
}
bool isHex = LexHex && (*LookAhead == 'h' || *LookAhead == 'H');
CurPtr = isHex || !FirstNonDec ? LookAhead : FirstNonDec;
if (isHex)
return 16;
return DefaultRadix;
}
static AsmToken intToken(StringRef Ref, APInt &Value)
{
if (Value.isIntN(64))
return AsmToken(AsmToken::Integer, Ref, Value);
return AsmToken(AsmToken::BigNum, Ref, Value);
}
/// LexDigit: First character is [0-9].
/// Local Label: [0-9][:]
/// Forward/Backward Label: [0-9][fb]
/// Binary integer: 0b[01]+
/// Octal integer: 0[0-7]+
/// Hex integer: 0x[0-9a-fA-F]+ or [0x]?[0-9][0-9a-fA-F]*[hH]
/// Decimal integer: [1-9][0-9]*
AsmToken AsmLexer::LexDigit() {
// MASM-flavor binary integer: [01]+[bB]
// MASM-flavor hexadecimal integer: [0-9][0-9a-fA-F]*[hH]
if (LexMasmIntegers && isdigit(CurPtr[-1])) {
const char *FirstNonBinary = (CurPtr[-1] != '0' && CurPtr[-1] != '1') ?
CurPtr - 1 : nullptr;
const char *OldCurPtr = CurPtr;
while (isHexDigit(*CurPtr)) {
if (*CurPtr != '0' && *CurPtr != '1' && !FirstNonBinary)
FirstNonBinary = CurPtr;
++CurPtr;
}
unsigned Radix = 0;
if (*CurPtr == 'h' || *CurPtr == 'H') {
// hexadecimal number
++CurPtr;
Radix = 16;
} else if (FirstNonBinary && FirstNonBinary + 1 == CurPtr &&
(*FirstNonBinary == 'b' || *FirstNonBinary == 'B'))
Radix = 2;
if (Radix == 2 || Radix == 16) {
StringRef Result(TokStart, CurPtr - TokStart);
APInt Value(128, 0, true);
if (Result.drop_back().getAsInteger(Radix, Value))
return ReturnError(TokStart, Radix == 2 ? "invalid binary number" :
"invalid hexdecimal number");
// MSVC accepts and ignores type suffices on integer literals.
SkipIgnoredIntegerSuffix(CurPtr);
return intToken(Result, Value);
}
// octal/decimal integers, or floating point numbers, fall through
CurPtr = OldCurPtr;
}
// Decimal integer: [1-9][0-9]*
if (CurPtr[-1] != '0' || CurPtr[0] == '.') {
unsigned Radix = doHexLookAhead(CurPtr, 10, LexMasmIntegers);
bool isHex = Radix == 16;
// Check for floating point literals.
if (!isHex && (*CurPtr == '.' || *CurPtr == 'e')) {
++CurPtr;
return LexFloatLiteral();
}
StringRef Result(TokStart, CurPtr - TokStart);
APInt Value(128, 0, true);
if (Result.getAsInteger(Radix, Value))
return ReturnError(TokStart, !isHex ? "invalid decimal number" :
"invalid hexdecimal number");
// Consume the [hH].
if (LexMasmIntegers && Radix == 16)
++CurPtr;
// The darwin/x86 (and x86-64) assembler accepts and ignores type
// suffices on integer literals.
SkipIgnoredIntegerSuffix(CurPtr);
return intToken(Result, Value);
}
if (!LexMasmIntegers && ((*CurPtr == 'b') || (*CurPtr == 'B'))) {
++CurPtr;
// See if we actually have "0b" as part of something like "jmp 0b\n"
if (!isDigit(CurPtr[0])) {
--CurPtr;
StringRef Result(TokStart, CurPtr - TokStart);
return AsmToken(AsmToken::Integer, Result, 0);
}
const char *NumStart = CurPtr;
while (CurPtr[0] == '0' || CurPtr[0] == '1')
++CurPtr;
// Requires at least one binary digit.
if (CurPtr == NumStart)
return ReturnError(TokStart, "invalid binary number");
StringRef Result(TokStart, CurPtr - TokStart);
APInt Value(128, 0, true);
if (Result.substr(2).getAsInteger(2, Value))
return ReturnError(TokStart, "invalid binary number");
// The darwin/x86 (and x86-64) assembler accepts and ignores ULL and LL
// suffixes on integer literals.
SkipIgnoredIntegerSuffix(CurPtr);
return intToken(Result, Value);
}
if ((*CurPtr == 'x') || (*CurPtr == 'X')) {
++CurPtr;
const char *NumStart = CurPtr;
while (isHexDigit(CurPtr[0]))
++CurPtr;
// "0x.0p0" is valid, and "0x0p0" (but not "0xp0" for example, which will be
// diagnosed by LexHexFloatLiteral).
if (CurPtr[0] == '.' || CurPtr[0] == 'p' || CurPtr[0] == 'P')
return LexHexFloatLiteral(NumStart == CurPtr);
// Otherwise requires at least one hex digit.
if (CurPtr == NumStart)
return ReturnError(CurPtr-2, "invalid hexadecimal number");
APInt Result(128, 0);
if (StringRef(TokStart, CurPtr - TokStart).getAsInteger(0, Result))
return ReturnError(TokStart, "invalid hexadecimal number");
// Consume the optional [hH].
if (LexMasmIntegers && (*CurPtr == 'h' || *CurPtr == 'H'))
++CurPtr;
// The darwin/x86 (and x86-64) assembler accepts and ignores ULL and LL
// suffixes on integer literals.
SkipIgnoredIntegerSuffix(CurPtr);
return intToken(StringRef(TokStart, CurPtr - TokStart), Result);
}
// Either octal or hexadecimal.
APInt Value(128, 0, true);
unsigned Radix = doHexLookAhead(CurPtr, 8, LexMasmIntegers);
bool isHex = Radix == 16;
StringRef Result(TokStart, CurPtr - TokStart);
if (Result.getAsInteger(Radix, Value))
return ReturnError(TokStart, !isHex ? "invalid octal number" :
"invalid hexdecimal number");
// Consume the [hH].
if (Radix == 16)
++CurPtr;
// The darwin/x86 (and x86-64) assembler accepts and ignores ULL and LL
// suffixes on integer literals.
SkipIgnoredIntegerSuffix(CurPtr);
return intToken(Result, Value);
}
/// LexSingleQuote: Integer: 'b'
AsmToken AsmLexer::LexSingleQuote() {
int CurChar = getNextChar();
if (CurChar == '\\')
CurChar = getNextChar();
if (CurChar == EOF)
return ReturnError(TokStart, "unterminated single quote");
CurChar = getNextChar();
if (CurChar != '\'')
return ReturnError(TokStart, "single quote way too long");
// The idea here being that 'c' is basically just an integral
// constant.
StringRef Res = StringRef(TokStart,CurPtr - TokStart);
long long Value;
if (Res.startswith("\'\\")) {
char theChar = Res[2];
switch (theChar) {
default: Value = theChar; break;
case '\'': Value = '\''; break;
case 't': Value = '\t'; break;
case 'n': Value = '\n'; break;
case 'b': Value = '\b'; break;
}
} else
Value = TokStart[1];
return AsmToken(AsmToken::Integer, Res, Value);
}
/// LexQuote: String: "..."
AsmToken AsmLexer::LexQuote() {
int CurChar = getNextChar();
// TODO: does gas allow multiline string constants?
while (CurChar != '"') {
if (CurChar == '\\') {
// Allow \", etc.
CurChar = getNextChar();
}
if (CurChar == EOF)
return ReturnError(TokStart, "unterminated string constant");
CurChar = getNextChar();
}
return AsmToken(AsmToken::String, StringRef(TokStart, CurPtr - TokStart));
}
StringRef AsmLexer::LexUntilEndOfStatement() {
TokStart = CurPtr;
while (!isAtStartOfComment(CurPtr) && // Start of line comment.
!isAtStatementSeparator(CurPtr) && // End of statement marker.
*CurPtr != '\n' && *CurPtr != '\r' && CurPtr != CurBuf.end()) {
++CurPtr;
}
return StringRef(TokStart, CurPtr-TokStart);
}
StringRef AsmLexer::LexUntilEndOfLine() {
TokStart = CurPtr;
while (*CurPtr != '\n' && *CurPtr != '\r' && CurPtr != CurBuf.end()) {
++CurPtr;
}
return StringRef(TokStart, CurPtr-TokStart);
}
size_t AsmLexer::peekTokens(MutableArrayRef<AsmToken> Buf,
bool ShouldSkipSpace) {
SaveAndRestore<const char *> SavedTokenStart(TokStart);
SaveAndRestore<const char *> SavedCurPtr(CurPtr);
SaveAndRestore<bool> SavedAtStartOfLine(IsAtStartOfLine);
SaveAndRestore<bool> SavedAtStartOfStatement(IsAtStartOfStatement);
SaveAndRestore<bool> SavedSkipSpace(SkipSpace, ShouldSkipSpace);
SaveAndRestore<bool> SavedIsPeeking(IsPeeking, true);
std::string SavedErr = getErr();
SMLoc SavedErrLoc = getErrLoc();
size_t ReadCount;
for (ReadCount = 0; ReadCount < Buf.size(); ++ReadCount) {
AsmToken Token = LexToken();
Buf[ReadCount] = Token;
if (Token.is(AsmToken::Eof))
break;
}
SetError(SavedErrLoc, SavedErr);
return ReadCount;
}
bool AsmLexer::isAtStartOfComment(const char *Ptr) {
StringRef CommentString = MAI.getCommentString();
if (CommentString.size() == 1)
return CommentString[0] == Ptr[0];
// Allow # preprocessor commments also be counted as comments for "##" cases
if (CommentString[1] == '#')
return CommentString[0] == Ptr[0];
return strncmp(Ptr, CommentString.data(), CommentString.size()) == 0;
}
bool AsmLexer::isAtStatementSeparator(const char *Ptr) {
return strncmp(Ptr, MAI.getSeparatorString(),
strlen(MAI.getSeparatorString())) == 0;
}
AsmToken AsmLexer::LexToken() {
TokStart = CurPtr;
// This always consumes at least one character.
int CurChar = getNextChar();
if (!IsPeeking && CurChar == '#' && IsAtStartOfStatement) {
// If this starts with a '#', this may be a cpp
// hash directive and otherwise a line comment.
AsmToken TokenBuf[2];
MutableArrayRef<AsmToken> Buf(TokenBuf, 2);
size_t num = peekTokens(Buf, true);
// There cannot be a space preceeding this
if (IsAtStartOfLine && num == 2 && TokenBuf[0].is(AsmToken::Integer) &&
TokenBuf[1].is(AsmToken::String)) {
CurPtr = TokStart; // reset curPtr;
StringRef s = LexUntilEndOfLine();
UnLex(TokenBuf[1]);
UnLex(TokenBuf[0]);
return AsmToken(AsmToken::HashDirective, s);
}
return LexLineComment();
}
if (isAtStartOfComment(TokStart))
return LexLineComment();
if (isAtStatementSeparator(TokStart)) {
CurPtr += strlen(MAI.getSeparatorString()) - 1;
IsAtStartOfLine = true;
IsAtStartOfStatement = true;
return AsmToken(AsmToken::EndOfStatement,
StringRef(TokStart, strlen(MAI.getSeparatorString())));
}
// If we're missing a newline at EOF, make sure we still get an
// EndOfStatement token before the Eof token.
if (CurChar == EOF && !IsAtStartOfStatement) {
IsAtStartOfLine = true;
IsAtStartOfStatement = true;
return AsmToken(AsmToken::EndOfStatement, StringRef(TokStart, 1));
}
IsAtStartOfLine = false;
bool OldIsAtStartOfStatement = IsAtStartOfStatement;
IsAtStartOfStatement = false;
switch (CurChar) {
default:
// Handle identifier: [a-zA-Z_.][a-zA-Z0-9_$.@]*
if (isalpha(CurChar) || CurChar == '_' || CurChar == '.')
return LexIdentifier();
// Unknown character, emit an error.
return ReturnError(TokStart, "invalid character in input");
case EOF:
IsAtStartOfLine = true;
IsAtStartOfStatement = true;
return AsmToken(AsmToken::Eof, StringRef(TokStart, 0));
case 0:
case ' ':
case '\t':
IsAtStartOfStatement = OldIsAtStartOfStatement;
while (*CurPtr == ' ' || *CurPtr == '\t')
CurPtr++;
if (SkipSpace)
return LexToken(); // Ignore whitespace.
else
return AsmToken(AsmToken::Space, StringRef(TokStart, CurPtr - TokStart));
case '\r': {
IsAtStartOfLine = true;
IsAtStartOfStatement = true;
// If this is a CR followed by LF, treat that as one token.
if (CurPtr != CurBuf.end() && *CurPtr == '\n')
++CurPtr;
return AsmToken(AsmToken::EndOfStatement,
StringRef(TokStart, CurPtr - TokStart));
}
case '\n':
IsAtStartOfLine = true;
IsAtStartOfStatement = true;
return AsmToken(AsmToken::EndOfStatement, StringRef(TokStart, 1));
case ':': return AsmToken(AsmToken::Colon, StringRef(TokStart, 1));
case '+': return AsmToken(AsmToken::Plus, StringRef(TokStart, 1));
case '~': return AsmToken(AsmToken::Tilde, StringRef(TokStart, 1));
case '(': return AsmToken(AsmToken::LParen, StringRef(TokStart, 1));
case ')': return AsmToken(AsmToken::RParen, StringRef(TokStart, 1));
case '[': return AsmToken(AsmToken::LBrac, StringRef(TokStart, 1));
case ']': return AsmToken(AsmToken::RBrac, StringRef(TokStart, 1));
case '{': return AsmToken(AsmToken::LCurly, StringRef(TokStart, 1));
case '}': return AsmToken(AsmToken::RCurly, StringRef(TokStart, 1));
case '*': return AsmToken(AsmToken::Star, StringRef(TokStart, 1));
case ',': return AsmToken(AsmToken::Comma, StringRef(TokStart, 1));
case '$': return AsmToken(AsmToken::Dollar, StringRef(TokStart, 1));
case '@': return AsmToken(AsmToken::At, StringRef(TokStart, 1));
case '\\': return AsmToken(AsmToken::BackSlash, StringRef(TokStart, 1));
case '=':
if (*CurPtr == '=') {
++CurPtr;
return AsmToken(AsmToken::EqualEqual, StringRef(TokStart, 2));
}
return AsmToken(AsmToken::Equal, StringRef(TokStart, 1));
case '-':
if (*CurPtr == '>') {
++CurPtr;
return AsmToken(AsmToken::MinusGreater, StringRef(TokStart, 2));
}
return AsmToken(AsmToken::Minus, StringRef(TokStart, 1));
case '|':
if (*CurPtr == '|') {
++CurPtr;
return AsmToken(AsmToken::PipePipe, StringRef(TokStart, 2));
}
return AsmToken(AsmToken::Pipe, StringRef(TokStart, 1));
case '^': return AsmToken(AsmToken::Caret, StringRef(TokStart, 1));
case '&':
if (*CurPtr == '&') {
++CurPtr;
return AsmToken(AsmToken::AmpAmp, StringRef(TokStart, 2));
}
return AsmToken(AsmToken::Amp, StringRef(TokStart, 1));
case '!':
if (*CurPtr == '=') {
++CurPtr;
return AsmToken(AsmToken::ExclaimEqual, StringRef(TokStart, 2));
}
return AsmToken(AsmToken::Exclaim, StringRef(TokStart, 1));
case '%':
if (MAI.hasMipsExpressions()) {
AsmToken::TokenKind Operator;
unsigned OperatorLength;
std::tie(Operator, OperatorLength) =
StringSwitch<std::pair<AsmToken::TokenKind, unsigned>>(
StringRef(CurPtr))
.StartsWith("call16", {AsmToken::PercentCall16, 7})
.StartsWith("call_hi", {AsmToken::PercentCall_Hi, 8})
.StartsWith("call_lo", {AsmToken::PercentCall_Lo, 8})
.StartsWith("dtprel_hi", {AsmToken::PercentDtprel_Hi, 10})
.StartsWith("dtprel_lo", {AsmToken::PercentDtprel_Lo, 10})
.StartsWith("got_disp", {AsmToken::PercentGot_Disp, 9})
.StartsWith("got_hi", {AsmToken::PercentGot_Hi, 7})
.StartsWith("got_lo", {AsmToken::PercentGot_Lo, 7})
.StartsWith("got_ofst", {AsmToken::PercentGot_Ofst, 9})
.StartsWith("got_page", {AsmToken::PercentGot_Page, 9})
.StartsWith("gottprel", {AsmToken::PercentGottprel, 9})
.StartsWith("got", {AsmToken::PercentGot, 4})
.StartsWith("gp_rel", {AsmToken::PercentGp_Rel, 7})
.StartsWith("higher", {AsmToken::PercentHigher, 7})
.StartsWith("highest", {AsmToken::PercentHighest, 8})
.StartsWith("hi", {AsmToken::PercentHi, 3})
.StartsWith("lo", {AsmToken::PercentLo, 3})
.StartsWith("neg", {AsmToken::PercentNeg, 4})
.StartsWith("pcrel_hi", {AsmToken::PercentPcrel_Hi, 9})
.StartsWith("pcrel_lo", {AsmToken::PercentPcrel_Lo, 9})
.StartsWith("tlsgd", {AsmToken::PercentTlsgd, 6})
.StartsWith("tlsldm", {AsmToken::PercentTlsldm, 7})
.StartsWith("tprel_hi", {AsmToken::PercentTprel_Hi, 9})
.StartsWith("tprel_lo", {AsmToken::PercentTprel_Lo, 9})
.Default({AsmToken::Percent, 1});
if (Operator != AsmToken::Percent) {
CurPtr += OperatorLength - 1;
return AsmToken(Operator, StringRef(TokStart, OperatorLength));
}
}
return AsmToken(AsmToken::Percent, StringRef(TokStart, 1));
case '/':
IsAtStartOfStatement = OldIsAtStartOfStatement;
return LexSlash();
case '#': return AsmToken(AsmToken::Hash, StringRef(TokStart, 1));
case '\'': return LexSingleQuote();
case '"': return LexQuote();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
return LexDigit();
case '<':
switch (*CurPtr) {
case '<':
++CurPtr;
return AsmToken(AsmToken::LessLess, StringRef(TokStart, 2));
case '=':
++CurPtr;
return AsmToken(AsmToken::LessEqual, StringRef(TokStart, 2));
case '>':
++CurPtr;
return AsmToken(AsmToken::LessGreater, StringRef(TokStart, 2));
default:
return AsmToken(AsmToken::Less, StringRef(TokStart, 1));
}
case '>':
switch (*CurPtr) {
case '>':
++CurPtr;
return AsmToken(AsmToken::GreaterGreater, StringRef(TokStart, 2));
case '=':
++CurPtr;
return AsmToken(AsmToken::GreaterEqual, StringRef(TokStart, 2));
default:
return AsmToken(AsmToken::Greater, StringRef(TokStart, 1));
}
// TODO: Quoted identifiers (objc methods etc)
// local labels: [0-9][:]
// Forward/backward labels: [0-9][fb]
// Integers, fp constants, character constants.
}
}