llvm-project/llvm/lib/Target/R600/R600ISelLowering.cpp

1107 lines
40 KiB
C++

//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for R600
//
//===----------------------------------------------------------------------===//
#include "R600ISelLowering.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Function.h"
using namespace llvm;
R600TargetLowering::R600TargetLowering(TargetMachine &TM) :
AMDGPUTargetLowering(TM),
TII(static_cast<const R600InstrInfo*>(TM.getInstrInfo())) {
addRegisterClass(MVT::v4f32, &AMDGPU::R600_Reg128RegClass);
addRegisterClass(MVT::f32, &AMDGPU::R600_Reg32RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::R600_Reg128RegClass);
addRegisterClass(MVT::i32, &AMDGPU::R600_Reg32RegClass);
computeRegisterProperties();
setOperationAction(ISD::FADD, MVT::v4f32, Expand);
setOperationAction(ISD::FMUL, MVT::v4f32, Expand);
setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
setOperationAction(ISD::FSUB, MVT::v4f32, Expand);
setOperationAction(ISD::ADD, MVT::v4i32, Expand);
setOperationAction(ISD::AND, MVT::v4i32, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Expand);
setOperationAction(ISD::UDIV, MVT::v4i32, Expand);
setOperationAction(ISD::UREM, MVT::v4i32, Expand);
setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::FSUB, MVT::f32, Expand);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i1, Custom);
setOperationAction(ISD::ROTL, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
// Legalize loads and stores to the private address space.
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Custom);
setOperationAction(ISD::STORE, MVT::i8, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
setTargetDAGCombine(ISD::FP_ROUND);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::SELECT_CC);
setBooleanContents(ZeroOrNegativeOneBooleanContent);
setSchedulingPreference(Sched::VLIW);
}
MachineBasicBlock * R600TargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
MachineFunction * MF = BB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineBasicBlock::iterator I = *MI;
switch (MI->getOpcode()) {
default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::CLAMP_R600: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
AMDGPU::MOV,
MI->getOperand(0).getReg(),
MI->getOperand(1).getReg());
TII->addFlag(NewMI, 0, MO_FLAG_CLAMP);
break;
}
case AMDGPU::FABS_R600: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
AMDGPU::MOV,
MI->getOperand(0).getReg(),
MI->getOperand(1).getReg());
TII->addFlag(NewMI, 0, MO_FLAG_ABS);
break;
}
case AMDGPU::FNEG_R600: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
AMDGPU::MOV,
MI->getOperand(0).getReg(),
MI->getOperand(1).getReg());
TII->addFlag(NewMI, 0, MO_FLAG_NEG);
break;
}
case AMDGPU::MASK_WRITE: {
unsigned maskedRegister = MI->getOperand(0).getReg();
assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
TII->addFlag(defInstr, 0, MO_FLAG_MASK);
break;
}
case AMDGPU::MOV_IMM_F32:
TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(),
MI->getOperand(1).getFPImm()->getValueAPF()
.bitcastToAPInt().getZExtValue());
break;
case AMDGPU::MOV_IMM_I32:
TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(),
MI->getOperand(1).getImm());
break;
case AMDGPU::CONST_COPY: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, MI, AMDGPU::MOV,
MI->getOperand(0).getReg(), AMDGPU::ALU_CONST);
TII->setImmOperand(NewMI, R600Operands::SRC0_SEL,
MI->getOperand(1).getImm());
break;
}
case AMDGPU::RAT_WRITE_CACHELESS_32_eg:
case AMDGPU::RAT_WRITE_CACHELESS_128_eg: {
unsigned EOP = (llvm::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0;
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode()))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addImm(EOP); // Set End of program bit
break;
}
case AMDGPU::TXD: {
unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0)
.addOperand(MI->getOperand(3))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6));
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1)
.addOperand(MI->getOperand(2))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6));
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_G))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6))
.addReg(T0, RegState::Implicit)
.addReg(T1, RegState::Implicit);
break;
}
case AMDGPU::TXD_SHADOW: {
unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0)
.addOperand(MI->getOperand(3))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6));
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1)
.addOperand(MI->getOperand(2))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6));
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_C_G))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6))
.addReg(T0, RegState::Implicit)
.addReg(T1, RegState::Implicit);
break;
}
case AMDGPU::BRANCH:
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP))
.addOperand(MI->getOperand(0));
break;
case AMDGPU::BRANCH_COND_f32: {
MachineInstr *NewMI =
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
AMDGPU::PREDICATE_BIT)
.addOperand(MI->getOperand(1))
.addImm(OPCODE_IS_NOT_ZERO)
.addImm(0); // Flags
TII->addFlag(NewMI, 0, MO_FLAG_PUSH);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
.addOperand(MI->getOperand(0))
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
break;
}
case AMDGPU::BRANCH_COND_i32: {
MachineInstr *NewMI =
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
AMDGPU::PREDICATE_BIT)
.addOperand(MI->getOperand(1))
.addImm(OPCODE_IS_NOT_ZERO_INT)
.addImm(0); // Flags
TII->addFlag(NewMI, 0, MO_FLAG_PUSH);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
.addOperand(MI->getOperand(0))
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
break;
}
case AMDGPU::EG_ExportSwz:
case AMDGPU::R600_ExportSwz: {
// Instruction is left unmodified if its not the last one of its type
bool isLastInstructionOfItsType = true;
unsigned InstExportType = MI->getOperand(1).getImm();
for (MachineBasicBlock::iterator NextExportInst = llvm::next(I),
EndBlock = BB->end(); NextExportInst != EndBlock;
NextExportInst = llvm::next(NextExportInst)) {
if (NextExportInst->getOpcode() == AMDGPU::EG_ExportSwz ||
NextExportInst->getOpcode() == AMDGPU::R600_ExportSwz) {
unsigned CurrentInstExportType = NextExportInst->getOperand(1)
.getImm();
if (CurrentInstExportType == InstExportType) {
isLastInstructionOfItsType = false;
break;
}
}
}
bool EOP = (llvm::next(I)->getOpcode() == AMDGPU::RETURN)? 1 : 0;
if (!EOP && !isLastInstructionOfItsType)
return BB;
unsigned CfInst = (MI->getOpcode() == AMDGPU::EG_ExportSwz)? 84 : 40;
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode()))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addOperand(MI->getOperand(2))
.addOperand(MI->getOperand(3))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6))
.addImm(CfInst)
.addImm(EOP);
break;
}
case AMDGPU::RETURN: {
// RETURN instructions must have the live-out registers as implicit uses,
// otherwise they appear dead.
R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
MachineInstrBuilder MIB(*MF, MI);
for (unsigned i = 0, e = MFI->LiveOuts.size(); i != e; ++i)
MIB.addReg(MFI->LiveOuts[i], RegState::Implicit);
return BB;
}
}
MI->eraseFromParent();
return BB;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
using namespace llvm::Intrinsic;
using namespace llvm::AMDGPUIntrinsic;
SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::ROTL: return LowerROTL(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::INTRINSIC_VOID: {
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::AMDGPU_store_output: {
MachineFunction &MF = DAG.getMachineFunction();
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
int64_t RegIndex = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex);
MFI->LiveOuts.push_back(Reg);
return DAG.getCopyToReg(Chain, Op.getDebugLoc(), Reg, Op.getOperand(2));
}
case AMDGPUIntrinsic::R600_store_swizzle: {
const SDValue Args[8] = {
Chain,
Op.getOperand(2), // Export Value
Op.getOperand(3), // ArrayBase
Op.getOperand(4), // Type
DAG.getConstant(0, MVT::i32), // SWZ_X
DAG.getConstant(1, MVT::i32), // SWZ_Y
DAG.getConstant(2, MVT::i32), // SWZ_Z
DAG.getConstant(3, MVT::i32) // SWZ_W
};
return DAG.getNode(AMDGPUISD::EXPORT, Op.getDebugLoc(), Op.getValueType(),
Args, 8);
}
// default for switch(IntrinsicID)
default: break;
}
// break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT VT = Op.getValueType();
DebugLoc DL = Op.getDebugLoc();
switch(IntrinsicID) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case AMDGPUIntrinsic::R600_load_input: {
int64_t RegIndex = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex);
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, Reg, VT);
}
case AMDGPUIntrinsic::R600_interp_input: {
int slot = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
int ijb = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
MachineSDNode *interp;
if (ijb < 0) {
interp = DAG.getMachineNode(AMDGPU::INTERP_VEC_LOAD, DL,
MVT::v4f32, DAG.getTargetConstant(slot / 4 , MVT::i32));
return DAG.getTargetExtractSubreg(
TII->getRegisterInfo().getSubRegFromChannel(slot % 4),
DL, MVT::f32, SDValue(interp, 0));
}
if (slot % 4 < 2)
interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL,
MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32),
CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb + 1), MVT::f32),
CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb), MVT::f32));
else
interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL,
MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32),
CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb + 1), MVT::f32),
CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb), MVT::f32));
return SDValue(interp, slot % 2);
}
case r600_read_ngroups_x:
return LowerImplicitParameter(DAG, VT, DL, 0);
case r600_read_ngroups_y:
return LowerImplicitParameter(DAG, VT, DL, 1);
case r600_read_ngroups_z:
return LowerImplicitParameter(DAG, VT, DL, 2);
case r600_read_global_size_x:
return LowerImplicitParameter(DAG, VT, DL, 3);
case r600_read_global_size_y:
return LowerImplicitParameter(DAG, VT, DL, 4);
case r600_read_global_size_z:
return LowerImplicitParameter(DAG, VT, DL, 5);
case r600_read_local_size_x:
return LowerImplicitParameter(DAG, VT, DL, 6);
case r600_read_local_size_y:
return LowerImplicitParameter(DAG, VT, DL, 7);
case r600_read_local_size_z:
return LowerImplicitParameter(DAG, VT, DL, 8);
case r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_X, VT);
case r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_Y, VT);
case r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_Z, VT);
case r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T0_X, VT);
case r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T0_Y, VT);
case r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T0_Z, VT);
}
// break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
break;
}
} // end switch(Op.getOpcode())
return SDValue();
}
void R600TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default: return;
case ISD::FP_TO_UINT: Results.push_back(LowerFPTOUINT(N->getOperand(0), DAG));
return;
case ISD::LOAD: {
SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
Results.push_back(SDValue(Node, 0));
Results.push_back(SDValue(Node, 1));
// XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
// function
DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
return;
}
case ISD::STORE:
SDNode *Node = LowerSTORE(SDValue(N, 0), DAG).getNode();
Results.push_back(SDValue(Node, 0));
return;
}
}
SDValue R600TargetLowering::LowerFPTOUINT(SDValue Op, SelectionDAG &DAG) const {
return DAG.getNode(
ISD::SETCC,
Op.getDebugLoc(),
MVT::i1,
Op, DAG.getConstantFP(0.0f, MVT::f32),
DAG.getCondCode(ISD::SETNE)
);
}
SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
DebugLoc DL,
unsigned DwordOffset) const {
unsigned ByteOffset = DwordOffset * 4;
PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
AMDGPUAS::PARAM_I_ADDRESS);
// We shouldn't be using an offset wider than 16-bits for implicit parameters.
assert(isInt<16>(ByteOffset));
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getConstant(ByteOffset, MVT::i32), // PTR
MachinePointerInfo(ConstantPointerNull::get(PtrType)),
false, false, false, 0);
}
SDValue R600TargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL =
static_cast<const AMDGPUFrameLowering*>(getTargetMachine().getFrameLowering());
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op);
assert(FIN);
unsigned FrameIndex = FIN->getIndex();
unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), MVT::i32);
}
SDValue R600TargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT VT = Op.getValueType();
return DAG.getNode(AMDGPUISD::BITALIGN, DL, VT,
Op.getOperand(0),
Op.getOperand(0),
DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(32, MVT::i32),
Op.getOperand(1)));
}
bool R600TargetLowering::isZero(SDValue Op) const {
if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
return Cst->isNullValue();
} else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
return CstFP->isZero();
} else {
return false;
}
}
SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue True = Op.getOperand(2);
SDValue False = Op.getOperand(3);
SDValue CC = Op.getOperand(4);
SDValue Temp;
// LHS and RHS are guaranteed to be the same value type
EVT CompareVT = LHS.getValueType();
// Check if we can lower this to a native operation.
// Try to lower to a SET* instruction:
//
// SET* can match the following patterns:
//
// select_cc f32, f32, -1, 0, cc_any
// select_cc f32, f32, 1.0f, 0.0f, cc_any
// select_cc i32, i32, -1, 0, cc_any
//
// Move hardware True/False values to the correct operand.
if (isHWTrueValue(False) && isHWFalseValue(True)) {
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
std::swap(False, True);
CC = DAG.getCondCode(ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32));
}
if (isHWTrueValue(True) && isHWFalseValue(False) &&
(CompareVT == VT || VT == MVT::i32)) {
// This can be matched by a SET* instruction.
return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
}
// Try to lower to a CND* instruction:
//
// CND* can match the following patterns:
//
// select_cc f32, 0.0, f32, f32, cc_any
// select_cc f32, 0.0, i32, i32, cc_any
// select_cc i32, 0, f32, f32, cc_any
// select_cc i32, 0, i32, i32, cc_any
//
if (isZero(LHS) || isZero(RHS)) {
SDValue Cond = (isZero(LHS) ? RHS : LHS);
SDValue Zero = (isZero(LHS) ? LHS : RHS);
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
if (CompareVT != VT) {
// Bitcast True / False to the correct types. This will end up being
// a nop, but it allows us to define only a single pattern in the
// .TD files for each CND* instruction rather than having to have
// one pattern for integer True/False and one for fp True/False
True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
}
if (isZero(LHS)) {
CCOpcode = ISD::getSetCCSwappedOperands(CCOpcode);
}
switch (CCOpcode) {
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETNE:
case ISD::SETULE:
case ISD::SETULT:
case ISD::SETOLE:
case ISD::SETOLT:
case ISD::SETLE:
case ISD::SETLT:
CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
Temp = True;
True = False;
False = Temp;
break;
default:
break;
}
SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
Cond, Zero,
True, False,
DAG.getCondCode(CCOpcode));
return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
}
// Possible Min/Max pattern
SDValue MinMax = LowerMinMax(Op, DAG);
if (MinMax.getNode()) {
return MinMax;
}
// If we make it this for it means we have no native instructions to handle
// this SELECT_CC, so we must lower it.
SDValue HWTrue, HWFalse;
if (CompareVT == MVT::f32) {
HWTrue = DAG.getConstantFP(1.0f, CompareVT);
HWFalse = DAG.getConstantFP(0.0f, CompareVT);
} else if (CompareVT == MVT::i32) {
HWTrue = DAG.getConstant(-1, CompareVT);
HWFalse = DAG.getConstant(0, CompareVT);
}
else {
assert(!"Unhandled value type in LowerSELECT_CC");
}
// Lower this unsupported SELECT_CC into a combination of two supported
// SELECT_CC operations.
SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
return DAG.getNode(ISD::SELECT_CC, DL, VT,
Cond, HWFalse,
True, False,
DAG.getCondCode(ISD::SETNE));
}
SDValue R600TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
return DAG.getNode(ISD::SELECT_CC,
Op.getDebugLoc(),
Op.getValueType(),
Op.getOperand(0),
DAG.getConstant(0, MVT::i32),
Op.getOperand(1),
Op.getOperand(2),
DAG.getCondCode(ISD::SETNE));
}
/// LLVM generates byte-addresed pointers. For indirect addressing, we need to
/// convert these pointers to a register index. Each register holds
/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
/// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
/// for indirect addressing.
SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
unsigned StackWidth,
SelectionDAG &DAG) const {
unsigned SRLPad;
switch(StackWidth) {
case 1:
SRLPad = 2;
break;
case 2:
SRLPad = 3;
break;
case 4:
SRLPad = 4;
break;
default: llvm_unreachable("Invalid stack width");
}
return DAG.getNode(ISD::SRL, Ptr.getDebugLoc(), Ptr.getValueType(), Ptr,
DAG.getConstant(SRLPad, MVT::i32));
}
void R600TargetLowering::getStackAddress(unsigned StackWidth,
unsigned ElemIdx,
unsigned &Channel,
unsigned &PtrIncr) const {
switch (StackWidth) {
default:
case 1:
Channel = 0;
if (ElemIdx > 0) {
PtrIncr = 1;
} else {
PtrIncr = 0;
}
break;
case 2:
Channel = ElemIdx % 2;
if (ElemIdx == 2) {
PtrIncr = 1;
} else {
PtrIncr = 0;
}
break;
case 4:
Channel = ElemIdx;
PtrIncr = 0;
break;
}
}
SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
SDValue Chain = Op.getOperand(0);
SDValue Value = Op.getOperand(1);
SDValue Ptr = Op.getOperand(2);
if (StoreNode->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
Ptr->getOpcode() != AMDGPUISD::DWORDADDR) {
// Convert pointer from byte address to dword address.
Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, Ptr.getValueType(),
DAG.getNode(ISD::SRL, DL, Ptr.getValueType(),
Ptr, DAG.getConstant(2, MVT::i32)));
if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
assert(!"Truncated and indexed stores not supported yet");
} else {
Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
}
return Chain;
}
EVT ValueVT = Value.getValueType();
if (StoreNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
return SDValue();
}
// Lowering for indirect addressing
const MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
getTargetMachine().getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
if (ValueVT.isVector()) {
unsigned NumElemVT = ValueVT.getVectorNumElements();
EVT ElemVT = ValueVT.getVectorElementType();
SDValue Stores[4];
assert(NumElemVT >= StackWidth && "Stack width cannot be greater than "
"vector width in load");
for (unsigned i = 0; i < NumElemVT; ++i) {
unsigned Channel, PtrIncr;
getStackAddress(StackWidth, i, Channel, PtrIncr);
Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
DAG.getConstant(PtrIncr, MVT::i32));
SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT,
Value, DAG.getConstant(i, MVT::i32));
Stores[i] = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
Chain, Elem, Ptr,
DAG.getTargetConstant(Channel, MVT::i32));
}
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores, NumElemVT);
} else {
if (ValueVT == MVT::i8) {
Value = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Value);
}
Chain = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, Chain, Value, Ptr,
DAG.getTargetConstant(0, MVT::i32)); // Channel
}
return Chain;
}
// return (512 + (kc_bank << 12)
static int
ConstantAddressBlock(unsigned AddressSpace) {
switch (AddressSpace) {
case AMDGPUAS::CONSTANT_BUFFER_0:
return 512;
case AMDGPUAS::CONSTANT_BUFFER_1:
return 512 + 4096;
case AMDGPUAS::CONSTANT_BUFFER_2:
return 512 + 4096 * 2;
case AMDGPUAS::CONSTANT_BUFFER_3:
return 512 + 4096 * 3;
case AMDGPUAS::CONSTANT_BUFFER_4:
return 512 + 4096 * 4;
case AMDGPUAS::CONSTANT_BUFFER_5:
return 512 + 4096 * 5;
case AMDGPUAS::CONSTANT_BUFFER_6:
return 512 + 4096 * 6;
case AMDGPUAS::CONSTANT_BUFFER_7:
return 512 + 4096 * 7;
case AMDGPUAS::CONSTANT_BUFFER_8:
return 512 + 4096 * 8;
case AMDGPUAS::CONSTANT_BUFFER_9:
return 512 + 4096 * 9;
case AMDGPUAS::CONSTANT_BUFFER_10:
return 512 + 4096 * 10;
case AMDGPUAS::CONSTANT_BUFFER_11:
return 512 + 4096 * 11;
case AMDGPUAS::CONSTANT_BUFFER_12:
return 512 + 4096 * 12;
case AMDGPUAS::CONSTANT_BUFFER_13:
return 512 + 4096 * 13;
case AMDGPUAS::CONSTANT_BUFFER_14:
return 512 + 4096 * 14;
case AMDGPUAS::CONSTANT_BUFFER_15:
return 512 + 4096 * 15;
default:
return -1;
}
}
SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const
{
EVT VT = Op.getValueType();
DebugLoc DL = Op.getDebugLoc();
LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
SDValue Chain = Op.getOperand(0);
SDValue Ptr = Op.getOperand(1);
SDValue LoweredLoad;
int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
if (ConstantBlock > -1) {
SDValue Result;
if (dyn_cast<ConstantExpr>(LoadNode->getSrcValue()) ||
dyn_cast<Constant>(LoadNode->getSrcValue()) ||
dyn_cast<ConstantSDNode>(Ptr)) {
SDValue Slots[4];
for (unsigned i = 0; i < 4; i++) {
// We want Const position encoded with the following formula :
// (((512 + (kc_bank << 12) + const_index) << 2) + chan)
// const_index is Ptr computed by llvm using an alignment of 16.
// Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
// then div by 4 at the ISel step
SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(4 * i + ConstantBlock * 16, MVT::i32));
Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
}
Result = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, Slots, 4);
} else {
// non constant ptr cant be folded, keeps it as a v4f32 load
Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(4, MVT::i32)),
DAG.getConstant(LoadNode->getAddressSpace() -
AMDGPUAS::CONSTANT_BUFFER_0, MVT::i32)
);
}
if (!VT.isVector()) {
Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
DAG.getConstant(0, MVT::i32));
}
SDValue MergedValues[2] = {
Result,
Chain
};
return DAG.getMergeValues(MergedValues, 2, DL);
}
if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
return SDValue();
}
// Lowering for indirect addressing
const MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
getTargetMachine().getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
if (VT.isVector()) {
unsigned NumElemVT = VT.getVectorNumElements();
EVT ElemVT = VT.getVectorElementType();
SDValue Loads[4];
assert(NumElemVT >= StackWidth && "Stack width cannot be greater than "
"vector width in load");
for (unsigned i = 0; i < NumElemVT; ++i) {
unsigned Channel, PtrIncr;
getStackAddress(StackWidth, i, Channel, PtrIncr);
Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
DAG.getConstant(PtrIncr, MVT::i32));
Loads[i] = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, ElemVT,
Chain, Ptr,
DAG.getTargetConstant(Channel, MVT::i32),
Op.getOperand(2));
}
for (unsigned i = NumElemVT; i < 4; ++i) {
Loads[i] = DAG.getUNDEF(ElemVT);
}
EVT TargetVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, 4);
LoweredLoad = DAG.getNode(ISD::BUILD_VECTOR, DL, TargetVT, Loads, 4);
} else {
LoweredLoad = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, VT,
Chain, Ptr,
DAG.getTargetConstant(0, MVT::i32), // Channel
Op.getOperand(2));
}
SDValue Ops[2];
Ops[0] = LoweredLoad;
Ops[1] = Chain;
return DAG.getMergeValues(Ops, 2, DL);
}
/// XXX Only kernel functions are supported, so we can assume for now that
/// every function is a kernel function, but in the future we should use
/// separate calling conventions for kernel and non-kernel functions.
SDValue R600TargetLowering::LowerFormalArguments(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
unsigned ParamOffsetBytes = 36;
Function::const_arg_iterator FuncArg =
DAG.getMachineFunction().getFunction()->arg_begin();
for (unsigned i = 0, e = Ins.size(); i < e; ++i, ++FuncArg) {
EVT VT = Ins[i].VT;
Type *ArgType = FuncArg->getType();
unsigned ArgSizeInBits = ArgType->isPointerTy() ?
32 : ArgType->getPrimitiveSizeInBits();
unsigned ArgBytes = ArgSizeInBits >> 3;
EVT ArgVT;
if (ArgSizeInBits < VT.getSizeInBits()) {
assert(!ArgType->isFloatTy() &&
"Extending floating point arguments not supported yet");
ArgVT = MVT::getIntegerVT(ArgSizeInBits);
} else {
ArgVT = VT;
}
PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
AMDGPUAS::PARAM_I_ADDRESS);
SDValue Arg = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getRoot(),
DAG.getConstant(ParamOffsetBytes, MVT::i32),
MachinePointerInfo(UndefValue::get(PtrTy)),
ArgVT, false, false, ArgBytes);
InVals.push_back(Arg);
ParamOffsetBytes += ArgBytes;
}
return Chain;
}
EVT R600TargetLowering::getSetCCResultType(EVT VT) const {
if (!VT.isVector()) return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
//===----------------------------------------------------------------------===//
// Custom DAG Optimizations
//===----------------------------------------------------------------------===//
SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
// (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
case ISD::FP_ROUND: {
SDValue Arg = N->getOperand(0);
if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), N->getValueType(0),
Arg.getOperand(0));
}
break;
}
// (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
// (i32 select_cc f32, f32, -1, 0 cc)
//
// Mesa's GLSL frontend generates the above pattern a lot and we can lower
// this to one of the SET*_DX10 instructions.
case ISD::FP_TO_SINT: {
SDValue FNeg = N->getOperand(0);
if (FNeg.getOpcode() != ISD::FNEG) {
return SDValue();
}
SDValue SelectCC = FNeg.getOperand(0);
if (SelectCC.getOpcode() != ISD::SELECT_CC ||
SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
!isHWTrueValue(SelectCC.getOperand(2)) ||
!isHWFalseValue(SelectCC.getOperand(3))) {
return SDValue();
}
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N->getValueType(0),
SelectCC.getOperand(0), // LHS
SelectCC.getOperand(1), // RHS
DAG.getConstant(-1, MVT::i32), // True
DAG.getConstant(0, MVT::i32), // Flase
SelectCC.getOperand(4)); // CC
break;
}
// Extract_vec (Build_vector) generated by custom lowering
// also needs to be customly combined
case ISD::EXTRACT_VECTOR_ELT: {
SDValue Arg = N->getOperand(0);
if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
unsigned Element = Const->getZExtValue();
return Arg->getOperand(Element);
}
}
if (Arg.getOpcode() == ISD::BITCAST &&
Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
unsigned Element = Const->getZExtValue();
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getVTList(),
Arg->getOperand(0).getOperand(Element));
}
}
}
case ISD::SELECT_CC: {
// fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
// selectcc x, y, a, b, inv(cc)
//
// fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
// selectcc x, y, a, b, cc
SDValue LHS = N->getOperand(0);
if (LHS.getOpcode() != ISD::SELECT_CC) {
return SDValue();
}
SDValue RHS = N->getOperand(1);
SDValue True = N->getOperand(2);
SDValue False = N->getOperand(3);
ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
if (LHS.getOperand(2).getNode() != True.getNode() ||
LHS.getOperand(3).getNode() != False.getNode() ||
RHS.getNode() != False.getNode()) {
return SDValue();
}
switch (NCC) {
default: return SDValue();
case ISD::SETNE: return LHS;
case ISD::SETEQ: {
ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
LHSCC = ISD::getSetCCInverse(LHSCC,
LHS.getOperand(0).getValueType().isInteger());
return DAG.getSelectCC(N->getDebugLoc(),
LHS.getOperand(0),
LHS.getOperand(1),
LHS.getOperand(2),
LHS.getOperand(3),
LHSCC);
}
}
}
case AMDGPUISD::EXPORT: {
SDValue Arg = N->getOperand(1);
if (Arg.getOpcode() != ISD::BUILD_VECTOR)
break;
SDValue NewBldVec[4] = {
DAG.getUNDEF(MVT::f32),
DAG.getUNDEF(MVT::f32),
DAG.getUNDEF(MVT::f32),
DAG.getUNDEF(MVT::f32)
};
SDValue NewArgs[8] = {
N->getOperand(0), // Chain
SDValue(),
N->getOperand(2), // ArrayBase
N->getOperand(3), // Type
N->getOperand(4), // SWZ_X
N->getOperand(5), // SWZ_Y
N->getOperand(6), // SWZ_Z
N->getOperand(7) // SWZ_W
};
for (unsigned i = 0; i < Arg.getNumOperands(); i++) {
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg.getOperand(i))) {
if (C->isZero()) {
NewArgs[4 + i] = DAG.getConstant(4, MVT::i32); // SEL_0
} else if (C->isExactlyValue(1.0)) {
NewArgs[4 + i] = DAG.getConstant(5, MVT::i32); // SEL_0
} else {
NewBldVec[i] = Arg.getOperand(i);
}
} else {
NewBldVec[i] = Arg.getOperand(i);
}
}
DebugLoc DL = N->getDebugLoc();
NewArgs[1] = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4f32, NewBldVec, 4);
return DAG.getNode(AMDGPUISD::EXPORT, DL, N->getVTList(), NewArgs, 8);
}
}
return SDValue();
}