forked from OSchip/llvm-project
288 lines
10 KiB
C++
288 lines
10 KiB
C++
//===-- combined_test.cpp ---------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "tests/scudo_unit_test.h"
|
|
|
|
#include "allocator_config.h"
|
|
#include "combined.h"
|
|
|
|
#include <condition_variable>
|
|
#include <mutex>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
static std::mutex Mutex;
|
|
static std::condition_variable Cv;
|
|
static bool Ready = false;
|
|
|
|
static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;
|
|
|
|
template <class Config> static void testAllocator() {
|
|
using AllocatorT = scudo::Allocator<Config>;
|
|
auto Deleter = [](AllocatorT *A) {
|
|
A->unmapTestOnly();
|
|
delete A;
|
|
};
|
|
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
|
|
Deleter);
|
|
Allocator->reset();
|
|
|
|
constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
|
|
|
|
// This allocates and deallocates a bunch of chunks, with a wide range of
|
|
// sizes and alignments, with a focus on sizes that could trigger weird
|
|
// behaviors (plus or minus a small delta of a power of two for example).
|
|
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
|
|
for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
|
|
const scudo::uptr Align = 1U << AlignLog;
|
|
for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
|
|
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
|
|
continue;
|
|
const scudo::uptr Size = (1U << SizeLog) + Delta;
|
|
void *P = Allocator->allocate(Size, Origin, Align);
|
|
EXPECT_NE(P, nullptr);
|
|
EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
|
|
EXPECT_LE(Size, Allocator->getUsableSize(P));
|
|
memset(P, 0xaa, Size);
|
|
Allocator->deallocate(P, Origin, Size);
|
|
}
|
|
}
|
|
}
|
|
Allocator->releaseToOS();
|
|
|
|
// Ensure that specifying ZeroContents returns a zero'd out block.
|
|
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
|
|
for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
|
|
const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
|
|
void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
|
|
EXPECT_NE(P, nullptr);
|
|
for (scudo::uptr I = 0; I < Size; I++)
|
|
EXPECT_EQ((reinterpret_cast<char *>(P))[I], 0);
|
|
memset(P, 0xaa, Size);
|
|
Allocator->deallocate(P, Origin, Size);
|
|
}
|
|
}
|
|
Allocator->releaseToOS();
|
|
|
|
// Verify that a chunk will end up being reused, at some point.
|
|
const scudo::uptr NeedleSize = 1024U;
|
|
void *NeedleP = Allocator->allocate(NeedleSize, Origin);
|
|
Allocator->deallocate(NeedleP, Origin);
|
|
bool Found = false;
|
|
for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
|
|
void *P = Allocator->allocate(NeedleSize, Origin);
|
|
if (P == NeedleP)
|
|
Found = true;
|
|
Allocator->deallocate(P, Origin);
|
|
}
|
|
EXPECT_TRUE(Found);
|
|
|
|
constexpr scudo::uptr MaxSize = Config::Primary::SizeClassMap::MaxSize;
|
|
|
|
// Reallocate a large chunk all the way down to a byte, verifying that we
|
|
// preserve the data in the process.
|
|
scudo::uptr Size = MaxSize * 2;
|
|
const scudo::uptr DataSize = 2048U;
|
|
void *P = Allocator->allocate(Size, Origin);
|
|
const char Marker = 0xab;
|
|
memset(P, Marker, scudo::Min(Size, DataSize));
|
|
while (Size > 1U) {
|
|
Size /= 2U;
|
|
void *NewP = Allocator->reallocate(P, Size);
|
|
EXPECT_NE(NewP, nullptr);
|
|
for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
|
|
EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
|
|
P = NewP;
|
|
}
|
|
Allocator->deallocate(P, Origin);
|
|
|
|
// Check that reallocating a chunk to a slightly smaller or larger size
|
|
// returns the same chunk. This requires that all the sizes we iterate on use
|
|
// the same block size, but that should be the case for 2048 with our default
|
|
// class size maps.
|
|
P = Allocator->allocate(DataSize, Origin);
|
|
memset(P, Marker, DataSize);
|
|
for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) {
|
|
const scudo::uptr NewSize = DataSize + Delta;
|
|
void *NewP = Allocator->reallocate(P, NewSize);
|
|
EXPECT_EQ(NewP, P);
|
|
for (scudo::uptr I = 0; I < scudo::Min(DataSize, NewSize); I++)
|
|
EXPECT_EQ((reinterpret_cast<char *>(NewP))[I], Marker);
|
|
}
|
|
Allocator->deallocate(P, Origin);
|
|
|
|
// Allocates a bunch of chunks, then iterate over all the chunks, ensuring
|
|
// they are the ones we allocated. This requires the allocator to not have any
|
|
// other allocated chunk at this point (eg: won't work with the Quarantine).
|
|
if (!UseQuarantine) {
|
|
std::vector<void *> V;
|
|
for (scudo::uptr I = 0; I < 64U; I++)
|
|
V.push_back(Allocator->allocate(rand() % (MaxSize / 2U), Origin));
|
|
Allocator->disable();
|
|
Allocator->iterateOverChunks(
|
|
0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
|
|
[](uintptr_t Base, size_t Size, void *Arg) {
|
|
std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
|
|
void *P = reinterpret_cast<void *>(Base);
|
|
EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
|
|
},
|
|
reinterpret_cast<void *>(&V));
|
|
Allocator->enable();
|
|
while (!V.empty()) {
|
|
Allocator->deallocate(V.back(), Origin);
|
|
V.pop_back();
|
|
}
|
|
}
|
|
|
|
Allocator->releaseToOS();
|
|
|
|
scudo::uptr BufferSize = 8192;
|
|
std::vector<char> Buffer(BufferSize);
|
|
scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
|
|
while (ActualSize > BufferSize) {
|
|
BufferSize = ActualSize + 1024;
|
|
Buffer.resize(BufferSize);
|
|
ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
|
|
}
|
|
std::string Stats(Buffer.begin(), Buffer.end());
|
|
// Basic checks on the contents of the statistics output, which also allows us
|
|
// to verify that we got it all.
|
|
EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos);
|
|
EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos);
|
|
EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos);
|
|
}
|
|
|
|
TEST(ScudoCombinedTest, BasicCombined) {
|
|
UseQuarantine = false;
|
|
testAllocator<scudo::AndroidSvelteConfig>();
|
|
#if SCUDO_FUCHSIA
|
|
testAllocator<scudo::FuchsiaConfig>();
|
|
#else
|
|
testAllocator<scudo::DefaultConfig>();
|
|
UseQuarantine = true;
|
|
testAllocator<scudo::AndroidConfig>();
|
|
#endif
|
|
}
|
|
|
|
template <typename AllocatorT> static void stressAllocator(AllocatorT *A) {
|
|
{
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
while (!Ready)
|
|
Cv.wait(Lock);
|
|
}
|
|
std::vector<std::pair<void *, scudo::uptr>> V;
|
|
for (scudo::uptr I = 0; I < 256U; I++) {
|
|
const scudo::uptr Size = std::rand() % 4096U;
|
|
void *P = A->allocate(Size, Origin);
|
|
// A region could have ran out of memory, resulting in a null P.
|
|
if (P)
|
|
V.push_back(std::make_pair(P, Size));
|
|
}
|
|
while (!V.empty()) {
|
|
auto Pair = V.back();
|
|
A->deallocate(Pair.first, Origin, Pair.second);
|
|
V.pop_back();
|
|
}
|
|
}
|
|
|
|
template <class Config> static void testAllocatorThreaded() {
|
|
using AllocatorT = scudo::Allocator<Config>;
|
|
auto Deleter = [](AllocatorT *A) {
|
|
A->unmapTestOnly();
|
|
delete A;
|
|
};
|
|
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
|
|
Deleter);
|
|
Allocator->reset();
|
|
std::thread Threads[32];
|
|
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
|
|
Threads[I] = std::thread(stressAllocator<AllocatorT>, Allocator.get());
|
|
{
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
Ready = true;
|
|
Cv.notify_all();
|
|
}
|
|
for (auto &T : Threads)
|
|
T.join();
|
|
Allocator->releaseToOS();
|
|
}
|
|
|
|
TEST(ScudoCombinedTest, ThreadedCombined) {
|
|
UseQuarantine = false;
|
|
testAllocatorThreaded<scudo::AndroidSvelteConfig>();
|
|
#if SCUDO_FUCHSIA
|
|
testAllocatorThreaded<scudo::FuchsiaConfig>();
|
|
#else
|
|
testAllocatorThreaded<scudo::DefaultConfig>();
|
|
UseQuarantine = true;
|
|
testAllocatorThreaded<scudo::AndroidConfig>();
|
|
#endif
|
|
}
|
|
|
|
struct DeathConfig {
|
|
// Tiny allocator, its Primary only serves chunks of 1024 bytes.
|
|
using DeathSizeClassMap = scudo::SizeClassMap<1U, 10U, 10U, 10U, 1U, 10U>;
|
|
typedef scudo::SizeClassAllocator64<DeathSizeClassMap, 20U> Primary;
|
|
typedef scudo::MapAllocator<0U> Secondary;
|
|
template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U>;
|
|
};
|
|
|
|
TEST(ScudoCombinedTest, DeathCombined) {
|
|
using AllocatorT = scudo::Allocator<DeathConfig>;
|
|
auto Deleter = [](AllocatorT *A) {
|
|
A->unmapTestOnly();
|
|
delete A;
|
|
};
|
|
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
|
|
Deleter);
|
|
Allocator->reset();
|
|
|
|
const scudo::uptr Size = 1000U;
|
|
void *P = Allocator->allocate(Size, Origin);
|
|
EXPECT_NE(P, nullptr);
|
|
|
|
// Invalid sized deallocation.
|
|
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");
|
|
|
|
// Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available.
|
|
UNUSED void *MisalignedP =
|
|
reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
|
|
EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
|
|
EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");
|
|
|
|
// Header corruption.
|
|
scudo::u64 *H =
|
|
reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
|
|
*H ^= 0x42U;
|
|
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
|
|
*H ^= 0x420042U;
|
|
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
|
|
*H ^= 0x420000U;
|
|
|
|
// Invalid chunk state.
|
|
Allocator->deallocate(P, Origin, Size);
|
|
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
|
|
EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
|
|
EXPECT_DEATH(Allocator->getUsableSize(P), "");
|
|
}
|
|
|
|
// Ensure that releaseToOS can be called prior to any other allocator
|
|
// operation without issue.
|
|
TEST(ScudoCombinedTest, ReleaseToOS) {
|
|
using AllocatorT = scudo::Allocator<DeathConfig>;
|
|
auto Deleter = [](AllocatorT *A) {
|
|
A->unmapTestOnly();
|
|
delete A;
|
|
};
|
|
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
|
|
Deleter);
|
|
Allocator->reset();
|
|
|
|
Allocator->releaseToOS();
|
|
}
|