forked from OSchip/llvm-project
540 lines
20 KiB
C++
540 lines
20 KiB
C++
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lcg"
|
|
|
|
static void findCallees(
|
|
SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
|
|
SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
|
|
DenseMap<Function *, size_t> &CalleeIndexMap) {
|
|
while (!Worklist.empty()) {
|
|
Constant *C = Worklist.pop_back_val();
|
|
|
|
if (Function *F = dyn_cast<Function>(C)) {
|
|
// Note that we consider *any* function with a definition to be a viable
|
|
// edge. Even if the function's definition is subject to replacement by
|
|
// some other module (say, a weak definition) there may still be
|
|
// optimizations which essentially speculate based on the definition and
|
|
// a way to check that the specific definition is in fact the one being
|
|
// used. For example, this could be done by moving the weak definition to
|
|
// a strong (internal) definition and making the weak definition be an
|
|
// alias. Then a test of the address of the weak function against the new
|
|
// strong definition's address would be an effective way to determine the
|
|
// safety of optimizing a direct call edge.
|
|
if (!F->isDeclaration() &&
|
|
CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
|
|
DEBUG(dbgs() << " Added callable function: " << F->getName()
|
|
<< "\n");
|
|
Callees.push_back(F);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (Value *Op : C->operand_values())
|
|
if (Visited.insert(cast<Constant>(Op)))
|
|
Worklist.push_back(cast<Constant>(Op));
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
|
|
: G(&G), F(F), DFSNumber(0), LowLink(0) {
|
|
DEBUG(dbgs() << " Adding functions called by '" << F.getName()
|
|
<< "' to the graph.\n");
|
|
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
// Find all the potential callees in this function. First walk the
|
|
// instructions and add every operand which is a constant to the worklist.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C))
|
|
Worklist.push_back(C);
|
|
|
|
// We've collected all the constant (and thus potentially function or
|
|
// function containing) operands to all of the instructions in the function.
|
|
// Process them (recursively) collecting every function found.
|
|
findCallees(Worklist, Visited, Callees, CalleeIndexMap);
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
|
|
DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
|
|
<< "\n");
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !F.hasLocalLinkage())
|
|
if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
|
|
DEBUG(dbgs() << " Adding '" << F.getName()
|
|
<< "' to entry set of the graph.\n");
|
|
EntryNodes.push_back(&F);
|
|
}
|
|
|
|
// Now add entry nodes for functions reachable via initializers to globals.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasInitializer())
|
|
if (Visited.insert(GV.getInitializer()))
|
|
Worklist.push_back(GV.getInitializer());
|
|
|
|
DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
|
|
"entry set.\n");
|
|
findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
|
|
|
|
for (auto &Entry : EntryNodes)
|
|
if (Function *F = Entry.dyn_cast<Function *>())
|
|
SCCEntryNodes.insert(F);
|
|
else
|
|
SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction());
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
|
: BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
|
|
EntryNodes(std::move(G.EntryNodes)),
|
|
EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
|
|
SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
|
|
DFSStack(std::move(G.DFSStack)),
|
|
SCCEntryNodes(std::move(G.SCCEntryNodes)),
|
|
NextDFSNumber(G.NextDFSNumber) {
|
|
updateGraphPtrs();
|
|
}
|
|
|
|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
|
BPA = std::move(G.BPA);
|
|
NodeMap = std::move(G.NodeMap);
|
|
EntryNodes = std::move(G.EntryNodes);
|
|
EntryIndexMap = std::move(G.EntryIndexMap);
|
|
SCCBPA = std::move(G.SCCBPA);
|
|
SCCMap = std::move(G.SCCMap);
|
|
LeafSCCs = std::move(G.LeafSCCs);
|
|
DFSStack = std::move(G.DFSStack);
|
|
SCCEntryNodes = std::move(G.SCCEntryNodes);
|
|
NextDFSNumber = G.NextDFSNumber;
|
|
updateGraphPtrs();
|
|
return *this;
|
|
}
|
|
|
|
void LazyCallGraph::SCC::removeEdge(LazyCallGraph &G, Function &Caller,
|
|
Function &Callee, SCC &CalleeC) {
|
|
assert(std::find(G.LeafSCCs.begin(), G.LeafSCCs.end(), this) ==
|
|
G.LeafSCCs.end() &&
|
|
"Cannot have a leaf SCC caller with a different SCC callee.");
|
|
|
|
bool HasOtherCallToCalleeC = false;
|
|
bool HasOtherCallOutsideSCC = false;
|
|
for (Node *N : *this) {
|
|
for (Node &Callee : *N) {
|
|
SCC &OtherCalleeC = *G.SCCMap.lookup(&Callee);
|
|
if (&OtherCalleeC == &CalleeC) {
|
|
HasOtherCallToCalleeC = true;
|
|
break;
|
|
}
|
|
if (&OtherCalleeC != this)
|
|
HasOtherCallOutsideSCC = true;
|
|
}
|
|
if (HasOtherCallToCalleeC)
|
|
break;
|
|
}
|
|
// Because the SCCs form a DAG, deleting such an edge cannot change the set
|
|
// of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
|
|
// the caller no longer a parent of the callee. Walk the other call edges
|
|
// in the caller to tell.
|
|
if (!HasOtherCallToCalleeC) {
|
|
bool Removed = CalleeC.ParentSCCs.erase(this);
|
|
(void)Removed;
|
|
assert(Removed &&
|
|
"Did not find the caller SCC in the callee SCC's parent list!");
|
|
|
|
// It may orphan an SCC if it is the last edge reaching it, but that does
|
|
// not violate any invariants of the graph.
|
|
if (CalleeC.ParentSCCs.empty())
|
|
DEBUG(dbgs() << "LCG: Update removing " << Caller.getName() << " -> "
|
|
<< Callee.getName() << " edge orphaned the callee's SCC!\n");
|
|
}
|
|
|
|
// It may make the Caller SCC a leaf SCC.
|
|
if (!HasOtherCallOutsideSCC)
|
|
G.LeafSCCs.push_back(this);
|
|
}
|
|
|
|
SmallVector<LazyCallGraph::SCC *, 1>
|
|
LazyCallGraph::SCC::removeInternalEdge(LazyCallGraph &G, Node &Caller,
|
|
Node &Callee) {
|
|
// We return a list of the resulting SCCs, where 'this' is always the first
|
|
// element.
|
|
SmallVector<SCC *, 1> ResultSCCs;
|
|
ResultSCCs.push_back(this);
|
|
|
|
// We're going to do a full mini-Tarjan's walk using a local stack here.
|
|
int NextDFSNumber;
|
|
SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
|
|
SmallVector<Node *, 4> PendingSCCStack;
|
|
|
|
// The worklist is every node in the original SCC. FIXME: switch the SCC to
|
|
// use a SmallSetVector and swap here.
|
|
SmallSetVector<Node *, 1> Worklist;
|
|
for (Node *N : Nodes) {
|
|
// Clear these to 0 while we re-run Tarjan's over the SCC.
|
|
N->DFSNumber = 0;
|
|
N->LowLink = 0;
|
|
Worklist.insert(N);
|
|
}
|
|
|
|
// The callee can already reach every node in this SCC (by definition). It is
|
|
// the only node we know will stay inside this SCC. Everything which
|
|
// transitively reaches Callee will also remain in the SCC. To model this we
|
|
// incrementally add any chain of nodes which reaches something in the new
|
|
// node set to the new node set. This short circuits one side of the Tarjan's
|
|
// walk.
|
|
SmallSetVector<Node *, 1> NewNodes;
|
|
NewNodes.insert(&Callee);
|
|
|
|
for (;;) {
|
|
if (DFSStack.empty()) {
|
|
if (Worklist.empty())
|
|
break;
|
|
Node *N = Worklist.pop_back_val();
|
|
N->LowLink = N->DFSNumber = 1;
|
|
NextDFSNumber = 2;
|
|
DFSStack.push_back(std::make_pair(N, N->begin()));
|
|
assert(PendingSCCStack.empty() && "Cannot start a fresh DFS walk with "
|
|
"pending nodes from a prior walk.");
|
|
}
|
|
|
|
Node *N = DFSStack.back().first;
|
|
assert(N->DFSNumber != 0 && "We should always assign a DFS number "
|
|
"before placing a node onto the stack.");
|
|
|
|
// We simulate recursion by popping out of the nested loop and continuing.
|
|
bool Recurse = false;
|
|
for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) {
|
|
Node &ChildN = *I;
|
|
// If this child isn't currently in this SCC, no need to process it.
|
|
// However, we do need to remove this SCC from its SCC's parent set.
|
|
SCC &ChildSCC = *G.SCCMap.lookup(&ChildN);
|
|
if (&ChildSCC != this) {
|
|
ChildSCC.ParentSCCs.erase(this);
|
|
continue;
|
|
}
|
|
|
|
// Check if we have reached a node in the new (known connected) set. If
|
|
// so, the entire stack is necessarily in that set and we can re-start.
|
|
if (NewNodes.count(&ChildN)) {
|
|
while (!PendingSCCStack.empty())
|
|
NewNodes.insert(PendingSCCStack.pop_back_val());
|
|
while (!DFSStack.empty())
|
|
NewNodes.insert(DFSStack.pop_back_val().first);
|
|
Recurse = true;
|
|
break;
|
|
}
|
|
|
|
if (ChildN.DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
DFSStack.back().second = I;
|
|
|
|
// Recurse onto this node via a tail call.
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
Worklist.remove(&ChildN);
|
|
DFSStack.push_back(std::make_pair(&ChildN, ChildN.begin()));
|
|
Recurse = true;
|
|
break;
|
|
}
|
|
|
|
// Track the lowest link of the childen, if any are still in the stack.
|
|
// Any child not on the stack will have a LowLink of -1.
|
|
assert(ChildN.LowLink != 0 &&
|
|
"Low-link must not be zero with a non-zero DFS number.");
|
|
if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
}
|
|
if (Recurse)
|
|
continue;
|
|
|
|
// No more children to process, pop it off the core DFS stack.
|
|
DFSStack.pop_back();
|
|
|
|
if (N->LowLink == N->DFSNumber) {
|
|
ResultSCCs.push_back(G.formSCC(N, PendingSCCStack));
|
|
continue;
|
|
}
|
|
|
|
assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
|
|
|
|
// At this point we know that N cannot ever be an SCC root. Its low-link
|
|
// is not its dfs-number, and we've processed all of its children. It is
|
|
// just sitting here waiting until some node further down the stack gets
|
|
// low-link == dfs-number and pops it off as well. Move it to the pending
|
|
// stack which is pulled into the next SCC to be formed.
|
|
PendingSCCStack.push_back(N);
|
|
}
|
|
|
|
// Replace this SCC with the NewNodes we collected above.
|
|
// FIXME: Simplify this when the SCC's datastructure is just a list.
|
|
Nodes.clear();
|
|
|
|
// Now we need to reconnect the current SCC to the graph.
|
|
bool IsLeafSCC = true;
|
|
for (Node *N : NewNodes) {
|
|
N->DFSNumber = -1;
|
|
N->LowLink = -1;
|
|
Nodes.push_back(N);
|
|
for (Node &ChildN : *N) {
|
|
if (NewNodes.count(&ChildN))
|
|
continue;
|
|
SCC &ChildSCC = *G.SCCMap.lookup(&ChildN);
|
|
ChildSCC.ParentSCCs.insert(this);
|
|
IsLeafSCC = false;
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
if (ResultSCCs.size() > 1)
|
|
assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
|
|
"SCCs by removing this edge.");
|
|
if (!std::any_of(G.LeafSCCs.begin(), G.LeafSCCs.end(),
|
|
[&](SCC *C) { return C == this; }))
|
|
assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
|
|
"SCCs before we removed this edge.");
|
|
#endif
|
|
// If this SCC stopped being a leaf through this edge removal, remove it from
|
|
// the leaf SCC list.
|
|
if (!IsLeafSCC && ResultSCCs.size() > 1)
|
|
G.LeafSCCs.erase(std::remove(G.LeafSCCs.begin(), G.LeafSCCs.end(), this),
|
|
G.LeafSCCs.end());
|
|
|
|
// Return the new list of SCCs.
|
|
return ResultSCCs;
|
|
}
|
|
|
|
void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
|
|
auto IndexMapI = CallerN.CalleeIndexMap.find(&Callee);
|
|
assert(IndexMapI != CallerN.CalleeIndexMap.end() &&
|
|
"Callee not in the callee set for the caller?");
|
|
|
|
Node *CalleeN = CallerN.Callees[IndexMapI->second].dyn_cast<Node *>();
|
|
CallerN.Callees.erase(CallerN.Callees.begin() + IndexMapI->second);
|
|
CallerN.CalleeIndexMap.erase(IndexMapI);
|
|
|
|
SCC *CallerC = SCCMap.lookup(&CallerN);
|
|
if (!CallerC) {
|
|
// We can only remove edges when the edge isn't actively participating in
|
|
// a DFS walk. Either it must have been popped into an SCC, or it must not
|
|
// yet have been reached by the DFS walk. Assert the latter here.
|
|
assert(std::all_of(DFSStack.begin(), DFSStack.end(),
|
|
[&](const std::pair<Node *, iterator> &StackEntry) {
|
|
return StackEntry.first != &CallerN;
|
|
}) &&
|
|
"Found the caller on the DFSStack!");
|
|
return;
|
|
}
|
|
|
|
assert(CalleeN && "If the caller is in an SCC, we have to have explored all "
|
|
"its transitively called functions.");
|
|
|
|
SCC *CalleeC = SCCMap.lookup(CalleeN);
|
|
assert(CalleeC &&
|
|
"The caller has an SCC, and thus by necessity so does the callee.");
|
|
|
|
// The easy case is when they are different SCCs.
|
|
if (CallerC != CalleeC) {
|
|
CallerC->removeEdge(*this, CallerN.getFunction(), Callee, *CalleeC);
|
|
return;
|
|
}
|
|
|
|
// The hard case is when we remove an edge within a SCC. This may cause new
|
|
// SCCs to need to be added to the graph.
|
|
CallerC->removeInternalEdge(*this, CallerN, *CalleeN);
|
|
}
|
|
|
|
LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
|
return *new (MappedN = BPA.Allocate()) Node(*this, F);
|
|
}
|
|
|
|
void LazyCallGraph::updateGraphPtrs() {
|
|
// Process all nodes updating the graph pointers.
|
|
SmallVector<Node *, 16> Worklist;
|
|
for (auto &Entry : EntryNodes)
|
|
if (Node *EntryN = Entry.dyn_cast<Node *>())
|
|
Worklist.push_back(EntryN);
|
|
|
|
while (!Worklist.empty()) {
|
|
Node *N = Worklist.pop_back_val();
|
|
N->G = this;
|
|
for (auto &Callee : N->Callees)
|
|
if (Node *CalleeN = Callee.dyn_cast<Node *>())
|
|
Worklist.push_back(CalleeN);
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
|
|
SmallVectorImpl<Node *> &NodeStack) {
|
|
// The tail of the stack is the new SCC. Allocate the SCC and pop the stack
|
|
// into it.
|
|
SCC *NewSCC = new (SCCBPA.Allocate()) SCC();
|
|
|
|
SCCMap[RootN] = NewSCC;
|
|
NewSCC->Nodes.push_back(RootN);
|
|
|
|
while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
|
|
Node *SCCN = NodeStack.pop_back_val();
|
|
assert(SCCN->LowLink >= RootN->LowLink &&
|
|
"We cannot have a low link in an SCC lower than its root on the "
|
|
"stack!");
|
|
SCCN->DFSNumber = SCCN->LowLink = -1;
|
|
|
|
SCCMap[SCCN] = NewSCC;
|
|
NewSCC->Nodes.push_back(SCCN);
|
|
}
|
|
RootN->DFSNumber = RootN->LowLink = -1;
|
|
|
|
// A final pass over all edges in the SCC (this remains linear as we only
|
|
// do this once when we build the SCC) to connect it to the parent sets of
|
|
// its children.
|
|
bool IsLeafSCC = true;
|
|
for (Node *SCCN : NewSCC->Nodes)
|
|
for (Node &SCCChildN : *SCCN) {
|
|
if (SCCMap.lookup(&SCCChildN) == NewSCC)
|
|
continue;
|
|
SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
|
|
ChildSCC.ParentSCCs.insert(NewSCC);
|
|
IsLeafSCC = false;
|
|
}
|
|
|
|
// For the SCCs where we fine no child SCCs, add them to the leaf list.
|
|
if (IsLeafSCC)
|
|
LeafSCCs.push_back(NewSCC);
|
|
|
|
return NewSCC;
|
|
}
|
|
|
|
LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
|
|
// When the stack is empty, there are no more SCCs to walk in this graph.
|
|
if (DFSStack.empty()) {
|
|
// If we've handled all candidate entry nodes to the SCC forest, we're done.
|
|
if (SCCEntryNodes.empty())
|
|
return nullptr;
|
|
|
|
Node &N = get(*SCCEntryNodes.pop_back_val());
|
|
N.LowLink = N.DFSNumber = 1;
|
|
NextDFSNumber = 2;
|
|
DFSStack.push_back(std::make_pair(&N, N.begin()));
|
|
}
|
|
|
|
for (;;) {
|
|
Node *N = DFSStack.back().first;
|
|
assert(N->DFSNumber != 0 && "We should always assign a DFS number "
|
|
"before placing a node onto the stack.");
|
|
|
|
bool Recurse = false; // Used to simulate recursing onto a child.
|
|
for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) {
|
|
Node &ChildN = *I;
|
|
if (ChildN.DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
DFSStack.back().second = I;
|
|
|
|
// Recurse onto this node via a tail call.
|
|
assert(!SCCMap.count(&ChildN) &&
|
|
"Found a node with 0 DFS number but already in an SCC!");
|
|
ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
|
|
SCCEntryNodes.remove(&ChildN.getFunction());
|
|
DFSStack.push_back(std::make_pair(&ChildN, ChildN.begin()));
|
|
Recurse = true;
|
|
break;
|
|
}
|
|
|
|
// Track the lowest link of the childen, if any are still in the stack.
|
|
assert(ChildN.LowLink != 0 &&
|
|
"Low-link must not be zero with a non-zero DFS number.");
|
|
if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
|
|
N->LowLink = ChildN.LowLink;
|
|
}
|
|
if (Recurse)
|
|
// Continue the outer loop when we exit the inner loop in order to
|
|
// recurse onto a child.
|
|
continue;
|
|
|
|
// No more children to process here, pop the node off the stack.
|
|
DFSStack.pop_back();
|
|
|
|
if (N->LowLink == N->DFSNumber)
|
|
// Form the new SCC out of the top of the DFS stack.
|
|
return formSCC(N, PendingSCCStack);
|
|
|
|
assert(!DFSStack.empty() && "We never found a viable root!");
|
|
|
|
// At this point we know that N cannot ever be an SCC root. Its low-link
|
|
// is not its dfs-number, and we've processed all of its children. It is
|
|
// just sitting here waiting until some node further down the stack gets
|
|
// low-link == dfs-number and pops it off as well. Move it to the pending
|
|
// stack which is pulled into the next SCC to be formed.
|
|
PendingSCCStack.push_back(N);
|
|
}
|
|
}
|
|
|
|
char LazyCallGraphAnalysis::PassID;
|
|
|
|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
|
|
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
|
|
// Recurse depth first through the nodes.
|
|
for (LazyCallGraph::Node &ChildN : N)
|
|
if (Printed.insert(&ChildN))
|
|
printNodes(OS, ChildN, Printed);
|
|
|
|
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
|
|
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
|
|
OS << " -> " << I->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
|
|
ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
|
|
OS << " SCC with " << SCCSize << " functions:\n";
|
|
|
|
for (LazyCallGraph::Node *N : SCC)
|
|
OS << " " << N->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
|
|
ModuleAnalysisManager *AM) {
|
|
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
OS << "Printing the call graph for module: " << M->getModuleIdentifier()
|
|
<< "\n\n";
|
|
|
|
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
|
|
for (LazyCallGraph::Node &N : G)
|
|
if (Printed.insert(&N))
|
|
printNodes(OS, N, Printed);
|
|
|
|
for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
|
|
printSCC(OS, SCC);
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|