forked from OSchip/llvm-project
496 lines
24 KiB
C++
496 lines
24 KiB
C++
//===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the Hexagon implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
|
|
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
|
|
|
|
#include "MCTargetDesc/HexagonBaseInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
#include "HexagonGenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
|
|
class HexagonSubtarget;
|
|
class MachineBranchProbabilityInfo;
|
|
class MachineFunction;
|
|
class MachineInstr;
|
|
class MachineOperand;
|
|
class TargetRegisterInfo;
|
|
|
|
class HexagonInstrInfo : public HexagonGenInstrInfo {
|
|
const HexagonSubtarget &Subtarget;
|
|
virtual void anchor();
|
|
|
|
public:
|
|
explicit HexagonInstrInfo(HexagonSubtarget &ST);
|
|
|
|
/// TargetInstrInfo overrides.
|
|
|
|
/// If the specified machine instruction is a direct
|
|
/// load from a stack slot, return the virtual or physical register number of
|
|
/// the destination along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than loading from the stack slot.
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
/// If the specified machine instruction is a direct
|
|
/// store to a stack slot, return the virtual or physical register number of
|
|
/// the source reg along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than storing to the stack slot.
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
/// Analyze the branching code at the end of MBB, returning
|
|
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
|
|
/// implemented for a target). Upon success, this returns false and returns
|
|
/// with the following information in various cases:
|
|
///
|
|
/// 1. If this block ends with no branches (it just falls through to its succ)
|
|
/// just return false, leaving TBB/FBB null.
|
|
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
|
|
/// the destination block.
|
|
/// 3. If this block ends with a conditional branch and it falls through to a
|
|
/// successor block, it sets TBB to be the branch destination block and a
|
|
/// list of operands that evaluate the condition. These operands can be
|
|
/// passed to other TargetInstrInfo methods to create new branches.
|
|
/// 4. If this block ends with a conditional branch followed by an
|
|
/// unconditional branch, it returns the 'true' destination in TBB, the
|
|
/// 'false' destination in FBB, and a list of operands that evaluate the
|
|
/// condition. These operands can be passed to other TargetInstrInfo
|
|
/// methods to create new branches.
|
|
///
|
|
/// Note that removeBranch and insertBranch must be implemented to support
|
|
/// cases where this method returns success.
|
|
///
|
|
/// If AllowModify is true, then this routine is allowed to modify the basic
|
|
/// block (e.g. delete instructions after the unconditional branch).
|
|
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const override;
|
|
|
|
/// Remove the branching code at the end of the specific MBB.
|
|
/// This is only invoked in cases where AnalyzeBranch returns success. It
|
|
/// returns the number of instructions that were removed.
|
|
unsigned removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved = nullptr) const override;
|
|
|
|
/// Insert branch code into the end of the specified MachineBasicBlock.
|
|
/// The operands to this method are the same as those
|
|
/// returned by AnalyzeBranch. This is only invoked in cases where
|
|
/// AnalyzeBranch returns success. It returns the number of instructions
|
|
/// inserted.
|
|
///
|
|
/// It is also invoked by tail merging to add unconditional branches in
|
|
/// cases where AnalyzeBranch doesn't apply because there was no original
|
|
/// branch to analyze. At least this much must be implemented, else tail
|
|
/// merging needs to be disabled.
|
|
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded = nullptr) const override;
|
|
|
|
/// Analyze the loop code, return true if it cannot be understood. Upon
|
|
/// success, this function returns false and returns information about the
|
|
/// induction variable and compare instruction used at the end.
|
|
bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
|
|
MachineInstr *&CmpInst) const override;
|
|
|
|
/// Generate code to reduce the loop iteration by one and check if the loop is
|
|
/// finished. Return the value/register of the the new loop count. We need
|
|
/// this function when peeling off one or more iterations of a loop. This
|
|
/// function assumes the nth iteration is peeled first.
|
|
unsigned reduceLoopCount(MachineBasicBlock &MBB,
|
|
MachineInstr *IndVar, MachineInstr &Cmp,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
SmallVectorImpl<MachineInstr *> &PrevInsts,
|
|
unsigned Iter, unsigned MaxIter) const override;
|
|
|
|
/// Return true if it's profitable to predicate
|
|
/// instructions with accumulated instruction latency of "NumCycles"
|
|
/// of the specified basic block, where the probability of the instructions
|
|
/// being executed is given by Probability, and Confidence is a measure
|
|
/// of our confidence that it will be properly predicted.
|
|
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
|
|
unsigned ExtraPredCycles,
|
|
BranchProbability Probability) const override;
|
|
|
|
/// Second variant of isProfitableToIfCvt. This one
|
|
/// checks for the case where two basic blocks from true and false path
|
|
/// of a if-then-else (diamond) are predicated on mutally exclusive
|
|
/// predicates, where the probability of the true path being taken is given
|
|
/// by Probability, and Confidence is a measure of our confidence that it
|
|
/// will be properly predicted.
|
|
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumTCycles, unsigned ExtraTCycles,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumFCycles, unsigned ExtraFCycles,
|
|
BranchProbability Probability) const override;
|
|
|
|
/// Return true if it's profitable for if-converter to duplicate instructions
|
|
/// of specified accumulated instruction latencies in the specified MBB to
|
|
/// enable if-conversion.
|
|
/// The probability of the instructions being executed is given by
|
|
/// Probability, and Confidence is a measure of our confidence that it
|
|
/// will be properly predicted.
|
|
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
|
|
BranchProbability Probability) const override;
|
|
|
|
/// Emit instructions to copy a pair of physical registers.
|
|
///
|
|
/// This function should support copies within any legal register class as
|
|
/// well as any cross-class copies created during instruction selection.
|
|
///
|
|
/// The source and destination registers may overlap, which may require a
|
|
/// careful implementation when multiple copy instructions are required for
|
|
/// large registers. See for example the ARM target.
|
|
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const override;
|
|
|
|
/// Store the specified register of the given register class to the specified
|
|
/// stack frame index. The store instruction is to be added to the given
|
|
/// machine basic block before the specified machine instruction. If isKill
|
|
/// is true, the register operand is the last use and must be marked kill.
|
|
void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned SrcReg, bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
/// Load the specified register of the given register class from the specified
|
|
/// stack frame index. The load instruction is to be added to the given
|
|
/// machine basic block before the specified machine instruction.
|
|
void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
/// This function is called for all pseudo instructions
|
|
/// that remain after register allocation. Many pseudo instructions are
|
|
/// created to help register allocation. This is the place to convert them
|
|
/// into real instructions. The target can edit MI in place, or it can insert
|
|
/// new instructions and erase MI. The function should return true if
|
|
/// anything was changed.
|
|
bool expandPostRAPseudo(MachineInstr &MI) const override;
|
|
|
|
/// \brief Get the base register and byte offset of a load/store instr.
|
|
bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
|
|
int64_t &Offset,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
/// Reverses the branch condition of the specified condition list,
|
|
/// returning false on success and true if it cannot be reversed.
|
|
bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
|
|
const override;
|
|
|
|
/// Insert a noop into the instruction stream at the specified point.
|
|
void insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const override;
|
|
|
|
/// Returns true if the instruction is already predicated.
|
|
bool isPredicated(const MachineInstr &MI) const override;
|
|
|
|
/// Return true for post-incremented instructions.
|
|
bool isPostIncrement(const MachineInstr &MI) const override;
|
|
|
|
/// Convert the instruction into a predicated instruction.
|
|
/// It returns true if the operation was successful.
|
|
bool PredicateInstruction(MachineInstr &MI,
|
|
ArrayRef<MachineOperand> Cond) const override;
|
|
|
|
/// Returns true if the first specified predicate
|
|
/// subsumes the second, e.g. GE subsumes GT.
|
|
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
|
|
ArrayRef<MachineOperand> Pred2) const override;
|
|
|
|
/// If the specified instruction defines any predicate
|
|
/// or condition code register(s) used for predication, returns true as well
|
|
/// as the definition predicate(s) by reference.
|
|
bool DefinesPredicate(MachineInstr &MI,
|
|
std::vector<MachineOperand> &Pred) const override;
|
|
|
|
/// Return true if the specified instruction can be predicated.
|
|
/// By default, this returns true for every instruction with a
|
|
/// PredicateOperand.
|
|
bool isPredicable(const MachineInstr &MI) const override;
|
|
|
|
/// Test if the given instruction should be considered a scheduling boundary.
|
|
/// This primarily includes labels and terminators.
|
|
bool isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const override;
|
|
|
|
/// Measure the specified inline asm to determine an approximation of its
|
|
/// length.
|
|
unsigned getInlineAsmLength(const char *Str,
|
|
const MCAsmInfo &MAI) const override;
|
|
|
|
/// Allocate and return a hazard recognizer to use for this target when
|
|
/// scheduling the machine instructions after register allocation.
|
|
ScheduleHazardRecognizer*
|
|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const override;
|
|
|
|
/// For a comparison instruction, return the source registers
|
|
/// in SrcReg and SrcReg2 if having two register operands, and the value it
|
|
/// compares against in CmpValue. Return true if the comparison instruction
|
|
/// can be analyzed.
|
|
bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
|
|
unsigned &SrcReg2, int &Mask, int &Value) const override;
|
|
|
|
/// Compute the instruction latency of a given instruction.
|
|
/// If the instruction has higher cost when predicated, it's returned via
|
|
/// PredCost.
|
|
unsigned getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &MI,
|
|
unsigned *PredCost = nullptr) const override;
|
|
|
|
/// Create machine specific model for scheduling.
|
|
DFAPacketizer *
|
|
CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
|
|
|
|
// Sometimes, it is possible for the target
|
|
// to tell, even without aliasing information, that two MIs access different
|
|
// memory addresses. This function returns true if two MIs access different
|
|
// memory addresses and false otherwise.
|
|
bool
|
|
areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
|
|
AliasAnalysis *AA = nullptr) const override;
|
|
|
|
/// For instructions with a base and offset, return the position of the
|
|
/// base register and offset operands.
|
|
bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
|
|
unsigned &OffsetPos) const override;
|
|
|
|
/// If the instruction is an increment of a constant value, return the amount.
|
|
bool getIncrementValue(const MachineInstr &MI, int &Value) const override;
|
|
|
|
/// getOperandLatency - Compute and return the use operand latency of a given
|
|
/// pair of def and use.
|
|
/// In most cases, the static scheduling itinerary was enough to determine the
|
|
/// operand latency. But it may not be possible for instructions with variable
|
|
/// number of defs / uses.
|
|
///
|
|
/// This is a raw interface to the itinerary that may be directly overriden by
|
|
/// a target. Use computeOperandLatency to get the best estimate of latency.
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const override;
|
|
|
|
/// Decompose the machine operand's target flags into two values - the direct
|
|
/// target flag value and any of bit flags that are applied.
|
|
std::pair<unsigned, unsigned>
|
|
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
|
|
|
|
/// Return an array that contains the direct target flag values and their
|
|
/// names.
|
|
///
|
|
/// MIR Serialization is able to serialize only the target flags that are
|
|
/// defined by this method.
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableDirectMachineOperandTargetFlags() const override;
|
|
|
|
/// Return an array that contains the bitmask target flag values and their
|
|
/// names.
|
|
///
|
|
/// MIR Serialization is able to serialize only the target flags that are
|
|
/// defined by this method.
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableBitmaskMachineOperandTargetFlags() const override;
|
|
|
|
bool isTailCall(const MachineInstr &MI) const override;
|
|
|
|
/// HexagonInstrInfo specifics.
|
|
|
|
unsigned createVR(MachineFunction* MF, MVT VT) const;
|
|
|
|
bool isAbsoluteSet(const MachineInstr &MI) const;
|
|
bool isAccumulator(const MachineInstr &MI) const;
|
|
bool isComplex(const MachineInstr &MI) const;
|
|
bool isCompoundBranchInstr(const MachineInstr &MI) const;
|
|
bool isConstExtended(const MachineInstr &MI) const;
|
|
bool isDeallocRet(const MachineInstr &MI) const;
|
|
bool isDependent(const MachineInstr &ProdMI,
|
|
const MachineInstr &ConsMI) const;
|
|
bool isDotCurInst(const MachineInstr &MI) const;
|
|
bool isDotNewInst(const MachineInstr &MI) const;
|
|
bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
|
|
bool isEarlySourceInstr(const MachineInstr &MI) const;
|
|
bool isEndLoopN(unsigned Opcode) const;
|
|
bool isExpr(unsigned OpType) const;
|
|
bool isExtendable(const MachineInstr &MI) const;
|
|
bool isExtended(const MachineInstr &MI) const;
|
|
bool isFloat(const MachineInstr &MI) const;
|
|
bool isHVXMemWithAIndirect(const MachineInstr &I,
|
|
const MachineInstr &J) const;
|
|
bool isIndirectCall(const MachineInstr &MI) const;
|
|
bool isIndirectL4Return(const MachineInstr &MI) const;
|
|
bool isJumpR(const MachineInstr &MI) const;
|
|
bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
|
|
bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
|
|
const MachineInstr &ESMI) const;
|
|
bool isLateResultInstr(const MachineInstr &MI) const;
|
|
bool isLateSourceInstr(const MachineInstr &MI) const;
|
|
bool isLoopN(const MachineInstr &MI) const;
|
|
bool isMemOp(const MachineInstr &MI) const;
|
|
bool isNewValue(const MachineInstr &MI) const;
|
|
bool isNewValue(unsigned Opcode) const;
|
|
bool isNewValueInst(const MachineInstr &MI) const;
|
|
bool isNewValueJump(const MachineInstr &MI) const;
|
|
bool isNewValueJump(unsigned Opcode) const;
|
|
bool isNewValueStore(const MachineInstr &MI) const;
|
|
bool isNewValueStore(unsigned Opcode) const;
|
|
bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
|
|
bool isPredicatedNew(const MachineInstr &MI) const;
|
|
bool isPredicatedNew(unsigned Opcode) const;
|
|
bool isPredicatedTrue(const MachineInstr &MI) const;
|
|
bool isPredicatedTrue(unsigned Opcode) const;
|
|
bool isPredicated(unsigned Opcode) const;
|
|
bool isPredicateLate(unsigned Opcode) const;
|
|
bool isPredictedTaken(unsigned Opcode) const;
|
|
bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
|
|
bool isSignExtendingLoad(const MachineInstr &MI) const;
|
|
bool isSolo(const MachineInstr &MI) const;
|
|
bool isSpillPredRegOp(const MachineInstr &MI) const;
|
|
bool isTC1(const MachineInstr &MI) const;
|
|
bool isTC2(const MachineInstr &MI) const;
|
|
bool isTC2Early(const MachineInstr &MI) const;
|
|
bool isTC4x(const MachineInstr &MI) const;
|
|
bool isToBeScheduledASAP(const MachineInstr &MI1,
|
|
const MachineInstr &MI2) const;
|
|
bool isHVXVec(const MachineInstr &MI) const;
|
|
bool isValidAutoIncImm(const EVT VT, const int Offset) const;
|
|
bool isValidOffset(unsigned Opcode, int Offset,
|
|
const TargetRegisterInfo *TRI, bool Extend = true) const;
|
|
bool isVecAcc(const MachineInstr &MI) const;
|
|
bool isVecALU(const MachineInstr &MI) const;
|
|
bool isVecUsableNextPacket(const MachineInstr &ProdMI,
|
|
const MachineInstr &ConsMI) const;
|
|
bool isZeroExtendingLoad(const MachineInstr &MI) const;
|
|
|
|
bool addLatencyToSchedule(const MachineInstr &MI1,
|
|
const MachineInstr &MI2) const;
|
|
bool canExecuteInBundle(const MachineInstr &First,
|
|
const MachineInstr &Second) const;
|
|
bool doesNotReturn(const MachineInstr &CallMI) const;
|
|
bool hasEHLabel(const MachineBasicBlock *B) const;
|
|
bool hasNonExtEquivalent(const MachineInstr &MI) const;
|
|
bool hasPseudoInstrPair(const MachineInstr &MI) const;
|
|
bool hasUncondBranch(const MachineBasicBlock *B) const;
|
|
bool mayBeCurLoad(const MachineInstr &MI) const;
|
|
bool mayBeNewStore(const MachineInstr &MI) const;
|
|
bool producesStall(const MachineInstr &ProdMI,
|
|
const MachineInstr &ConsMI) const;
|
|
bool producesStall(const MachineInstr &MI,
|
|
MachineBasicBlock::const_instr_iterator MII) const;
|
|
bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
|
|
bool PredOpcodeHasJMP_c(unsigned Opcode) const;
|
|
bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
|
|
|
|
unsigned getAddrMode(const MachineInstr &MI) const;
|
|
unsigned getBaseAndOffset(const MachineInstr &MI, int &Offset,
|
|
unsigned &AccessSize) const;
|
|
SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
|
|
unsigned getCExtOpNum(const MachineInstr &MI) const;
|
|
HexagonII::CompoundGroup
|
|
getCompoundCandidateGroup(const MachineInstr &MI) const;
|
|
unsigned getCompoundOpcode(const MachineInstr &GA,
|
|
const MachineInstr &GB) const;
|
|
int getCondOpcode(int Opc, bool sense) const;
|
|
int getDotCurOp(const MachineInstr &MI) const;
|
|
int getNonDotCurOp(const MachineInstr &MI) const;
|
|
int getDotNewOp(const MachineInstr &MI) const;
|
|
int getDotNewPredJumpOp(const MachineInstr &MI,
|
|
const MachineBranchProbabilityInfo *MBPI) const;
|
|
int getDotNewPredOp(const MachineInstr &MI,
|
|
const MachineBranchProbabilityInfo *MBPI) const;
|
|
int getDotOldOp(const MachineInstr &MI) const;
|
|
HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
|
|
const;
|
|
short getEquivalentHWInstr(const MachineInstr &MI) const;
|
|
MachineInstr *getFirstNonDbgInst(MachineBasicBlock *BB) const;
|
|
unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &MI) const;
|
|
bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
|
|
unsigned getInvertedPredicatedOpcode(const int Opc) const;
|
|
int getMaxValue(const MachineInstr &MI) const;
|
|
unsigned getMemAccessSize(const MachineInstr &MI) const;
|
|
int getMinValue(const MachineInstr &MI) const;
|
|
short getNonExtOpcode(const MachineInstr &MI) const;
|
|
bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
|
|
unsigned &PredRegPos, unsigned &PredRegFlags) const;
|
|
short getPseudoInstrPair(const MachineInstr &MI) const;
|
|
short getRegForm(const MachineInstr &MI) const;
|
|
unsigned getSize(const MachineInstr &MI) const;
|
|
uint64_t getType(const MachineInstr &MI) const;
|
|
unsigned getUnits(const MachineInstr &MI) const;
|
|
|
|
/// getInstrTimingClassLatency - Compute the instruction latency of a given
|
|
/// instruction using Timing Class information, if available.
|
|
unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
|
|
unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
|
|
|
|
void immediateExtend(MachineInstr &MI) const;
|
|
bool invertAndChangeJumpTarget(MachineInstr &MI,
|
|
MachineBasicBlock* NewTarget) const;
|
|
void genAllInsnTimingClasses(MachineFunction &MF) const;
|
|
bool reversePredSense(MachineInstr &MI) const;
|
|
unsigned reversePrediction(unsigned Opcode) const;
|
|
bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
|
|
|
|
// Addressing mode relations.
|
|
short changeAddrMode_abs_io(short Opc) const;
|
|
short changeAddrMode_io_abs(short Opc) const;
|
|
short changeAddrMode_io_rr(short Opc) const;
|
|
short changeAddrMode_rr_io(short Opc) const;
|
|
short changeAddrMode_rr_ur(short Opc) const;
|
|
short changeAddrMode_ur_rr(short Opc) const;
|
|
|
|
short changeAddrMode_abs_io(const MachineInstr &MI) const {
|
|
return changeAddrMode_abs_io(MI.getOpcode());
|
|
}
|
|
short changeAddrMode_io_abs(const MachineInstr &MI) const {
|
|
return changeAddrMode_io_abs(MI.getOpcode());
|
|
}
|
|
short changeAddrMode_io_rr(const MachineInstr &MI) const {
|
|
return changeAddrMode_io_rr(MI.getOpcode());
|
|
}
|
|
short changeAddrMode_rr_io(const MachineInstr &MI) const {
|
|
return changeAddrMode_rr_io(MI.getOpcode());
|
|
}
|
|
short changeAddrMode_rr_ur(const MachineInstr &MI) const {
|
|
return changeAddrMode_rr_ur(MI.getOpcode());
|
|
}
|
|
short changeAddrMode_ur_rr(const MachineInstr &MI) const {
|
|
return changeAddrMode_ur_rr(MI.getOpcode());
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
|