forked from OSchip/llvm-project
7679 lines
270 KiB
C++
7679 lines
270 KiB
C++
//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements decl-related attribute processing.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/DelayedDiagnostic.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
namespace AttributeLangSupport {
|
|
enum LANG {
|
|
C,
|
|
Cpp,
|
|
ObjC
|
|
};
|
|
} // end namespace AttributeLangSupport
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isFunctionOrMethod - Return true if the given decl has function
|
|
/// type (function or function-typed variable) or an Objective-C
|
|
/// method.
|
|
static bool isFunctionOrMethod(const Decl *D) {
|
|
return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
|
|
}
|
|
|
|
/// \brief Return true if the given decl has function type (function or
|
|
/// function-typed variable) or an Objective-C method or a block.
|
|
static bool isFunctionOrMethodOrBlock(const Decl *D) {
|
|
return isFunctionOrMethod(D) || isa<BlockDecl>(D);
|
|
}
|
|
|
|
/// Return true if the given decl has a declarator that should have
|
|
/// been processed by Sema::GetTypeForDeclarator.
|
|
static bool hasDeclarator(const Decl *D) {
|
|
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
|
|
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
|
|
isa<ObjCPropertyDecl>(D);
|
|
}
|
|
|
|
/// hasFunctionProto - Return true if the given decl has a argument
|
|
/// information. This decl should have already passed
|
|
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
|
|
static bool hasFunctionProto(const Decl *D) {
|
|
if (const FunctionType *FnTy = D->getFunctionType())
|
|
return isa<FunctionProtoType>(FnTy);
|
|
return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
|
|
}
|
|
|
|
/// getFunctionOrMethodNumParams - Return number of function or method
|
|
/// parameters. It is an error to call this on a K&R function (use
|
|
/// hasFunctionProto first).
|
|
static unsigned getFunctionOrMethodNumParams(const Decl *D) {
|
|
if (const FunctionType *FnTy = D->getFunctionType())
|
|
return cast<FunctionProtoType>(FnTy)->getNumParams();
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
return BD->getNumParams();
|
|
return cast<ObjCMethodDecl>(D)->param_size();
|
|
}
|
|
|
|
static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
|
|
if (const FunctionType *FnTy = D->getFunctionType())
|
|
return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
return BD->getParamDecl(Idx)->getType();
|
|
|
|
return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
|
|
}
|
|
|
|
static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->getParamDecl(Idx)->getSourceRange();
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
return MD->parameters()[Idx]->getSourceRange();
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
return BD->getParamDecl(Idx)->getSourceRange();
|
|
return SourceRange();
|
|
}
|
|
|
|
static QualType getFunctionOrMethodResultType(const Decl *D) {
|
|
if (const FunctionType *FnTy = D->getFunctionType())
|
|
return FnTy->getReturnType();
|
|
return cast<ObjCMethodDecl>(D)->getReturnType();
|
|
}
|
|
|
|
static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->getReturnTypeSourceRange();
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
return MD->getReturnTypeSourceRange();
|
|
return SourceRange();
|
|
}
|
|
|
|
static bool isFunctionOrMethodVariadic(const Decl *D) {
|
|
if (const FunctionType *FnTy = D->getFunctionType())
|
|
return cast<FunctionProtoType>(FnTy)->isVariadic();
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
return BD->isVariadic();
|
|
return cast<ObjCMethodDecl>(D)->isVariadic();
|
|
}
|
|
|
|
static bool isInstanceMethod(const Decl *D) {
|
|
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
|
|
return MethodDecl->isInstance();
|
|
return false;
|
|
}
|
|
|
|
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
|
|
const auto *PT = T->getAs<ObjCObjectPointerType>();
|
|
if (!PT)
|
|
return false;
|
|
|
|
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
|
|
if (!Cls)
|
|
return false;
|
|
|
|
IdentifierInfo* ClsName = Cls->getIdentifier();
|
|
|
|
// FIXME: Should we walk the chain of classes?
|
|
return ClsName == &Ctx.Idents.get("NSString") ||
|
|
ClsName == &Ctx.Idents.get("NSMutableString");
|
|
}
|
|
|
|
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
|
|
const auto *PT = T->getAs<PointerType>();
|
|
if (!PT)
|
|
return false;
|
|
|
|
const auto *RT = PT->getPointeeType()->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->getTagKind() != TTK_Struct)
|
|
return false;
|
|
|
|
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
|
|
}
|
|
|
|
static unsigned getNumAttributeArgs(const AttributeList &AL) {
|
|
// FIXME: Include the type in the argument list.
|
|
return AL.getNumArgs() + AL.hasParsedType();
|
|
}
|
|
|
|
template <typename Compare>
|
|
static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &AL,
|
|
unsigned Num, unsigned Diag,
|
|
Compare Comp) {
|
|
if (Comp(getNumAttributeArgs(AL), Num)) {
|
|
S.Diag(AL.getLoc(), Diag) << AL.getName() << Num;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if the attribute has exactly as many args as Num. May
|
|
/// output an error.
|
|
static bool checkAttributeNumArgs(Sema &S, const AttributeList &AL,
|
|
unsigned Num) {
|
|
return checkAttributeNumArgsImpl(S, AL, Num,
|
|
diag::err_attribute_wrong_number_arguments,
|
|
std::not_equal_to<unsigned>());
|
|
}
|
|
|
|
/// \brief Check if the attribute has at least as many args as Num. May
|
|
/// output an error.
|
|
static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &AL,
|
|
unsigned Num) {
|
|
return checkAttributeNumArgsImpl(S, AL, Num,
|
|
diag::err_attribute_too_few_arguments,
|
|
std::less<unsigned>());
|
|
}
|
|
|
|
/// \brief Check if the attribute has at most as many args as Num. May
|
|
/// output an error.
|
|
static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &AL,
|
|
unsigned Num) {
|
|
return checkAttributeNumArgsImpl(S, AL, Num,
|
|
diag::err_attribute_too_many_arguments,
|
|
std::greater<unsigned>());
|
|
}
|
|
|
|
/// \brief A helper function to provide Attribute Location for the Attr types
|
|
/// AND the AttributeList.
|
|
template <typename AttrInfo>
|
|
static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value,
|
|
SourceLocation>::type
|
|
getAttrLoc(const AttrInfo &AL) {
|
|
return AL.getLocation();
|
|
}
|
|
static SourceLocation getAttrLoc(const AttributeList &AL) {
|
|
return AL.getLoc();
|
|
}
|
|
|
|
/// \brief A helper function to provide Attribute Name for the Attr types
|
|
/// AND the AttributeList.
|
|
template <typename AttrInfo>
|
|
static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value,
|
|
const AttrInfo *>::type
|
|
getAttrName(const AttrInfo &AL) {
|
|
return &AL;
|
|
}
|
|
static const IdentifierInfo *getAttrName(const AttributeList &AL) {
|
|
return AL.getName();
|
|
}
|
|
|
|
/// \brief If Expr is a valid integer constant, get the value of the integer
|
|
/// expression and return success or failure. May output an error.
|
|
template <typename AttrInfo>
|
|
static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
|
|
uint32_t &Val, unsigned Idx = UINT_MAX) {
|
|
llvm::APSInt I(32);
|
|
if (Expr->isTypeDependent() || Expr->isValueDependent() ||
|
|
!Expr->isIntegerConstantExpr(I, S.Context)) {
|
|
if (Idx != UINT_MAX)
|
|
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
|
|
<< getAttrName(AI) << Idx << AANT_ArgumentIntegerConstant
|
|
<< Expr->getSourceRange();
|
|
else
|
|
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
|
|
<< getAttrName(AI) << AANT_ArgumentIntegerConstant
|
|
<< Expr->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
if (!I.isIntN(32)) {
|
|
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
|
|
<< I.toString(10, false) << 32 << /* Unsigned */ 1;
|
|
return false;
|
|
}
|
|
|
|
Val = (uint32_t)I.getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// \brief Wrapper around checkUInt32Argument, with an extra check to be sure
|
|
/// that the result will fit into a regular (signed) int. All args have the same
|
|
/// purpose as they do in checkUInt32Argument.
|
|
template <typename AttrInfo>
|
|
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
|
|
int &Val, unsigned Idx = UINT_MAX) {
|
|
uint32_t UVal;
|
|
if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
|
|
return false;
|
|
|
|
if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
|
|
llvm::APSInt I(32); // for toString
|
|
I = UVal;
|
|
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
|
|
<< I.toString(10, false) << 32 << /* Unsigned */ 0;
|
|
return false;
|
|
}
|
|
|
|
Val = UVal;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Diagnose mutually exclusive attributes when present on a given
|
|
/// declaration. Returns true if diagnosed.
|
|
template <typename AttrTy>
|
|
static bool checkAttrMutualExclusion(Sema &S, Decl *D, SourceRange Range,
|
|
IdentifierInfo *Ident) {
|
|
if (const auto *A = D->getAttr<AttrTy>()) {
|
|
S.Diag(Range.getBegin(), diag::err_attributes_are_not_compatible) << Ident
|
|
<< A;
|
|
S.Diag(A->getLocation(), diag::note_conflicting_attribute);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check if IdxExpr is a valid parameter index for a function or
|
|
/// instance method D. May output an error.
|
|
///
|
|
/// \returns true if IdxExpr is a valid index.
|
|
template <typename AttrInfo>
|
|
static bool checkFunctionOrMethodParameterIndex(
|
|
Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
|
|
const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
|
|
assert(isFunctionOrMethodOrBlock(D));
|
|
|
|
// In C++ the implicit 'this' function parameter also counts.
|
|
// Parameters are counted from one.
|
|
bool HP = hasFunctionProto(D);
|
|
bool HasImplicitThisParam = isInstanceMethod(D);
|
|
bool IV = HP && isFunctionOrMethodVariadic(D);
|
|
unsigned NumParams =
|
|
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
|
|
|
|
llvm::APSInt IdxInt;
|
|
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
|
|
!IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
|
|
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
|
|
<< getAttrName(AI) << AttrArgNum << AANT_ArgumentIntegerConstant
|
|
<< IdxExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX);
|
|
if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
|
|
S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
|
|
<< getAttrName(AI) << AttrArgNum << IdxExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
if (HasImplicitThisParam && !CanIndexImplicitThis) {
|
|
if (IdxSource == 1) {
|
|
S.Diag(getAttrLoc(AI),
|
|
diag::err_attribute_invalid_implicit_this_argument)
|
|
<< getAttrName(AI) << IdxExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Idx = ParamIdx(IdxSource, D);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
|
|
/// If not emit an error and return false. If the argument is an identifier it
|
|
/// will emit an error with a fixit hint and treat it as if it was a string
|
|
/// literal.
|
|
bool Sema::checkStringLiteralArgumentAttr(const AttributeList &AL,
|
|
unsigned ArgNum, StringRef &Str,
|
|
SourceLocation *ArgLocation) {
|
|
// Look for identifiers. If we have one emit a hint to fix it to a literal.
|
|
if (AL.isArgIdent(ArgNum)) {
|
|
IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
|
|
Diag(Loc->Loc, diag::err_attribute_argument_type)
|
|
<< AL.getName() << AANT_ArgumentString
|
|
<< FixItHint::CreateInsertion(Loc->Loc, "\"")
|
|
<< FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
|
|
Str = Loc->Ident->getName();
|
|
if (ArgLocation)
|
|
*ArgLocation = Loc->Loc;
|
|
return true;
|
|
}
|
|
|
|
// Now check for an actual string literal.
|
|
Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
|
|
const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
|
|
if (ArgLocation)
|
|
*ArgLocation = ArgExpr->getLocStart();
|
|
|
|
if (!Literal || !Literal->isAscii()) {
|
|
Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
|
|
<< AL.getName() << AANT_ArgumentString;
|
|
return false;
|
|
}
|
|
|
|
Str = Literal->getString();
|
|
return true;
|
|
}
|
|
|
|
/// \brief Applies the given attribute to the Decl without performing any
|
|
/// additional semantic checking.
|
|
template <typename AttrType>
|
|
static void handleSimpleAttribute(Sema &S, Decl *D, const AttributeList &AL) {
|
|
D->addAttr(::new (S.Context) AttrType(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
template <typename AttrType>
|
|
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
handleSimpleAttribute<AttrType>(S, D, AL);
|
|
}
|
|
|
|
/// \brief Applies the given attribute to the Decl so long as the Decl doesn't
|
|
/// already have one of the given incompatible attributes.
|
|
template <typename AttrType, typename IncompatibleAttrType,
|
|
typename... IncompatibleAttrTypes>
|
|
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL.getRange(),
|
|
AL.getName()))
|
|
return;
|
|
handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
|
|
AL);
|
|
}
|
|
|
|
/// \brief Check if the passed-in expression is of type int or bool.
|
|
static bool isIntOrBool(Expr *Exp) {
|
|
QualType QT = Exp->getType();
|
|
return QT->isBooleanType() || QT->isIntegerType();
|
|
}
|
|
|
|
|
|
// Check to see if the type is a smart pointer of some kind. We assume
|
|
// it's a smart pointer if it defines both operator-> and operator*.
|
|
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
|
|
DeclContextLookupResult Res1 = RT->getDecl()->lookup(
|
|
S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
|
|
if (Res1.empty())
|
|
return false;
|
|
|
|
DeclContextLookupResult Res2 = RT->getDecl()->lookup(
|
|
S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
|
|
if (Res2.empty())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if passed in Decl is a pointer type.
|
|
/// Note that this function may produce an error message.
|
|
/// \return true if the Decl is a pointer type; false otherwise
|
|
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
|
|
const AttributeList &AL) {
|
|
const auto *VD = cast<ValueDecl>(D);
|
|
QualType QT = VD->getType();
|
|
if (QT->isAnyPointerType())
|
|
return true;
|
|
|
|
if (const auto *RT = QT->getAs<RecordType>()) {
|
|
// If it's an incomplete type, it could be a smart pointer; skip it.
|
|
// (We don't want to force template instantiation if we can avoid it,
|
|
// since that would alter the order in which templates are instantiated.)
|
|
if (RT->isIncompleteType())
|
|
return true;
|
|
|
|
if (threadSafetyCheckIsSmartPointer(S, RT))
|
|
return true;
|
|
}
|
|
|
|
S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
|
|
<< AL.getName() << QT;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Checks that the passed in QualType either is of RecordType or points
|
|
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
|
|
static const RecordType *getRecordType(QualType QT) {
|
|
if (const auto *RT = QT->getAs<RecordType>())
|
|
return RT;
|
|
|
|
// Now check if we point to record type.
|
|
if (const auto *PT = QT->getAs<PointerType>())
|
|
return PT->getPointeeType()->getAs<RecordType>();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
|
|
const RecordType *RT = getRecordType(Ty);
|
|
|
|
if (!RT)
|
|
return false;
|
|
|
|
// Don't check for the capability if the class hasn't been defined yet.
|
|
if (RT->isIncompleteType())
|
|
return true;
|
|
|
|
// Allow smart pointers to be used as capability objects.
|
|
// FIXME -- Check the type that the smart pointer points to.
|
|
if (threadSafetyCheckIsSmartPointer(S, RT))
|
|
return true;
|
|
|
|
// Check if the record itself has a capability.
|
|
RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasAttr<CapabilityAttr>())
|
|
return true;
|
|
|
|
// Else check if any base classes have a capability.
|
|
if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
CXXBasePaths BPaths(false, false);
|
|
if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &) {
|
|
const auto *Type = BS->getType()->getAs<RecordType>();
|
|
return Type->getDecl()->hasAttr<CapabilityAttr>();
|
|
}, BPaths))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool checkTypedefTypeForCapability(QualType Ty) {
|
|
const auto *TD = Ty->getAs<TypedefType>();
|
|
if (!TD)
|
|
return false;
|
|
|
|
TypedefNameDecl *TN = TD->getDecl();
|
|
if (!TN)
|
|
return false;
|
|
|
|
return TN->hasAttr<CapabilityAttr>();
|
|
}
|
|
|
|
static bool typeHasCapability(Sema &S, QualType Ty) {
|
|
if (checkTypedefTypeForCapability(Ty))
|
|
return true;
|
|
|
|
if (checkRecordTypeForCapability(S, Ty))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
|
|
// Capability expressions are simple expressions involving the boolean logic
|
|
// operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
|
|
// a DeclRefExpr is found, its type should be checked to determine whether it
|
|
// is a capability or not.
|
|
|
|
if (const auto *E = dyn_cast<CastExpr>(Ex))
|
|
return isCapabilityExpr(S, E->getSubExpr());
|
|
else if (const auto *E = dyn_cast<ParenExpr>(Ex))
|
|
return isCapabilityExpr(S, E->getSubExpr());
|
|
else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
|
|
if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
|
|
E->getOpcode() == UO_Deref)
|
|
return isCapabilityExpr(S, E->getSubExpr());
|
|
return false;
|
|
} else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
|
|
if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
|
|
return isCapabilityExpr(S, E->getLHS()) &&
|
|
isCapabilityExpr(S, E->getRHS());
|
|
return false;
|
|
}
|
|
|
|
return typeHasCapability(S, Ex->getType());
|
|
}
|
|
|
|
/// \brief Checks that all attribute arguments, starting from Sidx, resolve to
|
|
/// a capability object.
|
|
/// \param Sidx The attribute argument index to start checking with.
|
|
/// \param ParamIdxOk Whether an argument can be indexing into a function
|
|
/// parameter list.
|
|
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
|
|
const AttributeList &AL,
|
|
SmallVectorImpl<Expr *> &Args,
|
|
int Sidx = 0,
|
|
bool ParamIdxOk = false) {
|
|
for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
|
|
Expr *ArgExp = AL.getArgAsExpr(Idx);
|
|
|
|
if (ArgExp->isTypeDependent()) {
|
|
// FIXME -- need to check this again on template instantiation
|
|
Args.push_back(ArgExp);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
|
|
if (StrLit->getLength() == 0 ||
|
|
(StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
|
|
// Pass empty strings to the analyzer without warnings.
|
|
// Treat "*" as the universal lock.
|
|
Args.push_back(ArgExp);
|
|
continue;
|
|
}
|
|
|
|
// We allow constant strings to be used as a placeholder for expressions
|
|
// that are not valid C++ syntax, but warn that they are ignored.
|
|
S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL.getName();
|
|
Args.push_back(ArgExp);
|
|
continue;
|
|
}
|
|
|
|
QualType ArgTy = ArgExp->getType();
|
|
|
|
// A pointer to member expression of the form &MyClass::mu is treated
|
|
// specially -- we need to look at the type of the member.
|
|
if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
|
|
if (UOp->getOpcode() == UO_AddrOf)
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
|
|
if (DRE->getDecl()->isCXXInstanceMember())
|
|
ArgTy = DRE->getDecl()->getType();
|
|
|
|
// First see if we can just cast to record type, or pointer to record type.
|
|
const RecordType *RT = getRecordType(ArgTy);
|
|
|
|
// Now check if we index into a record type function param.
|
|
if(!RT && ParamIdxOk) {
|
|
const auto *FD = dyn_cast<FunctionDecl>(D);
|
|
const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
|
|
if(FD && IL) {
|
|
unsigned int NumParams = FD->getNumParams();
|
|
llvm::APInt ArgValue = IL->getValue();
|
|
uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
|
|
uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
|
|
if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
|
|
<< AL.getName() << Idx + 1 << NumParams;
|
|
continue;
|
|
}
|
|
ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
|
|
}
|
|
}
|
|
|
|
// If the type does not have a capability, see if the components of the
|
|
// expression have capabilities. This allows for writing C code where the
|
|
// capability may be on the type, and the expression is a capability
|
|
// boolean logic expression. Eg) requires_capability(A || B && !C)
|
|
if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
|
|
S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
|
|
<< AL.getName() << ArgTy;
|
|
|
|
Args.push_back(ArgExp);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void handlePtGuardedVarAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!threadSafetyCheckIsPointer(S, D, AL))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
PtGuardedVarAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const AttributeList &AL,
|
|
Expr *&Arg) {
|
|
SmallVector<Expr *, 1> Args;
|
|
// check that all arguments are lockable objects
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
|
|
unsigned Size = Args.size();
|
|
if (Size != 1)
|
|
return false;
|
|
|
|
Arg = Args[0];
|
|
|
|
return true;
|
|
}
|
|
|
|
static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
Expr *Arg = nullptr;
|
|
if (!checkGuardedByAttrCommon(S, D, AL, Arg))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) GuardedByAttr(
|
|
AL.getRange(), S.Context, Arg, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handlePtGuardedByAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
Expr *Arg = nullptr;
|
|
if (!checkGuardedByAttrCommon(S, D, AL, Arg))
|
|
return;
|
|
|
|
if (!threadSafetyCheckIsPointer(S, D, AL))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) PtGuardedByAttr(
|
|
AL.getRange(), S.Context, Arg, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
|
|
const AttributeList &AL,
|
|
SmallVectorImpl<Expr *> &Args) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return false;
|
|
|
|
// Check that this attribute only applies to lockable types.
|
|
QualType QT = cast<ValueDecl>(D)->getType();
|
|
if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
|
|
S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
|
|
<< AL.getName();
|
|
return false;
|
|
}
|
|
|
|
// Check that all arguments are lockable objects.
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
|
|
if (Args.empty())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void handleAcquiredAfterAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr *, 1> Args;
|
|
if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
Expr **StartArg = &Args[0];
|
|
D->addAttr(::new (S.Context) AcquiredAfterAttr(
|
|
AL.getRange(), S.Context, StartArg, Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr *, 1> Args;
|
|
if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
Expr **StartArg = &Args[0];
|
|
D->addAttr(::new (S.Context) AcquiredBeforeAttr(
|
|
AL.getRange(), S.Context, StartArg, Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkLockFunAttrCommon(Sema &S, Decl *D,
|
|
const AttributeList &AL,
|
|
SmallVectorImpl<Expr *> &Args) {
|
|
// zero or more arguments ok
|
|
// check that all arguments are lockable objects
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void handleAssertSharedLockAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr *, 1> Args;
|
|
if (!checkLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
unsigned Size = Args.size();
|
|
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
|
|
D->addAttr(::new (S.Context)
|
|
AssertSharedLockAttr(AL.getRange(), S.Context, StartArg, Size,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr *, 1> Args;
|
|
if (!checkLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
unsigned Size = Args.size();
|
|
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
|
|
D->addAttr(::new (S.Context) AssertExclusiveLockAttr(
|
|
AL.getRange(), S.Context, StartArg, Size,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
/// \brief Checks to be sure that the given parameter number is in bounds, and
|
|
/// is an integral type. Will emit appropriate diagnostics if this returns
|
|
/// false.
|
|
///
|
|
/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
|
|
template <typename AttrInfo>
|
|
static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
|
|
const AttrInfo &AI, unsigned AttrArgNo) {
|
|
assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
|
|
Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
|
|
ParamIdx Idx;
|
|
if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
|
|
Idx))
|
|
return false;
|
|
|
|
const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
|
|
if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
|
|
SourceLocation SrcLoc = AttrArg->getLocStart();
|
|
S.Diag(SrcLoc, diag::err_attribute_integers_only)
|
|
<< getAttrName(AI) << Param->getSourceRange();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
|
|
!checkAttributeAtMostNumArgs(S, AL, 2))
|
|
return;
|
|
|
|
const auto *FD = cast<FunctionDecl>(D);
|
|
if (!FD->getReturnType()->isPointerType()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
|
|
<< AL.getName();
|
|
return;
|
|
}
|
|
|
|
const Expr *SizeExpr = AL.getArgAsExpr(0);
|
|
int SizeArgNoVal;
|
|
// Parameter indices are 1-indexed, hence Index=1
|
|
if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Index=*/1))
|
|
return;
|
|
if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
|
|
return;
|
|
ParamIdx SizeArgNo(SizeArgNoVal, D);
|
|
|
|
ParamIdx NumberArgNo;
|
|
if (AL.getNumArgs() == 2) {
|
|
const Expr *NumberExpr = AL.getArgAsExpr(1);
|
|
int Val;
|
|
// Parameter indices are 1-based, hence Index=2
|
|
if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Index=*/2))
|
|
return;
|
|
if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
|
|
return;
|
|
NumberArgNo = ParamIdx(Val, D);
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AllocSizeAttr(AL.getRange(), S.Context, SizeArgNo, NumberArgNo,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
|
|
const AttributeList &AL,
|
|
SmallVectorImpl<Expr *> &Args) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return false;
|
|
|
|
if (!isIntOrBool(AL.getArgAsExpr(0))) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIntOrBool;
|
|
return false;
|
|
}
|
|
|
|
// check that all arguments are lockable objects
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr*, 2> Args;
|
|
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
|
|
AL.getRange(), S.Context, AL.getArgAsExpr(0), Args.data(), Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr*, 2> Args;
|
|
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
|
|
AL.getRange(), S.Context, AL.getArgAsExpr(0), Args.data(),
|
|
Args.size(), AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleLockReturnedAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// check that the argument is lockable object
|
|
SmallVector<Expr*, 1> Args;
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
|
|
unsigned Size = Args.size();
|
|
if (Size == 0)
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
LockReturnedAttr(AL.getRange(), S.Context, Args[0],
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleLocksExcludedAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
// check that all arguments are lockable objects
|
|
SmallVector<Expr*, 1> Args;
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
|
|
unsigned Size = Args.size();
|
|
if (Size == 0)
|
|
return;
|
|
Expr **StartArg = &Args[0];
|
|
|
|
D->addAttr(::new (S.Context)
|
|
LocksExcludedAttr(AL.getRange(), S.Context, StartArg, Size,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkFunctionConditionAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL,
|
|
Expr *&Cond, StringRef &Msg) {
|
|
Cond = AL.getArgAsExpr(0);
|
|
if (!Cond->isTypeDependent()) {
|
|
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
|
|
if (Converted.isInvalid())
|
|
return false;
|
|
Cond = Converted.get();
|
|
}
|
|
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
|
|
return false;
|
|
|
|
if (Msg.empty())
|
|
Msg = "<no message provided>";
|
|
|
|
SmallVector<PartialDiagnosticAt, 8> Diags;
|
|
if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
|
|
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
|
|
Diags)) {
|
|
S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr)
|
|
<< AL.getName();
|
|
for (const PartialDiagnosticAt &PDiag : Diags)
|
|
S.Diag(PDiag.first, PDiag.second);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
|
|
|
|
Expr *Cond;
|
|
StringRef Msg;
|
|
if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
|
|
D->addAttr(::new (S.Context)
|
|
EnableIfAttr(AL.getRange(), S.Context, Cond, Msg,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
namespace {
|
|
/// Determines if a given Expr references any of the given function's
|
|
/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
|
|
class ArgumentDependenceChecker
|
|
: public RecursiveASTVisitor<ArgumentDependenceChecker> {
|
|
#ifndef NDEBUG
|
|
const CXXRecordDecl *ClassType;
|
|
#endif
|
|
llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
|
|
bool Result;
|
|
|
|
public:
|
|
ArgumentDependenceChecker(const FunctionDecl *FD) {
|
|
#ifndef NDEBUG
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
ClassType = MD->getParent();
|
|
else
|
|
ClassType = nullptr;
|
|
#endif
|
|
Parms.insert(FD->param_begin(), FD->param_end());
|
|
}
|
|
|
|
bool referencesArgs(Expr *E) {
|
|
Result = false;
|
|
TraverseStmt(E);
|
|
return Result;
|
|
}
|
|
|
|
bool VisitCXXThisExpr(CXXThisExpr *E) {
|
|
assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
|
|
"`this` doesn't refer to the enclosing class?");
|
|
Result = true;
|
|
return false;
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
|
|
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
|
|
if (Parms.count(PVD)) {
|
|
Result = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
|
|
|
|
Expr *Cond;
|
|
StringRef Msg;
|
|
if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
|
|
return;
|
|
|
|
StringRef DiagTypeStr;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
|
|
return;
|
|
|
|
DiagnoseIfAttr::DiagnosticType DiagType;
|
|
if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
|
|
S.Diag(AL.getArgAsExpr(2)->getLocStart(),
|
|
diag::err_diagnose_if_invalid_diagnostic_type);
|
|
return;
|
|
}
|
|
|
|
bool ArgDependent = false;
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
|
|
D->addAttr(::new (S.Context) DiagnoseIfAttr(
|
|
AL.getRange(), S.Context, Cond, Msg, DiagType, ArgDependent,
|
|
cast<NamedDecl>(D), AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handlePassObjectSizeAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (D->hasAttr<PassObjectSizeAttr>()) {
|
|
S.Diag(D->getLocStart(), diag::err_attribute_only_once_per_parameter)
|
|
<< AL.getName();
|
|
return;
|
|
}
|
|
|
|
Expr *E = AL.getArgAsExpr(0);
|
|
uint32_t Type;
|
|
if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
|
|
return;
|
|
|
|
// pass_object_size's argument is passed in as the second argument of
|
|
// __builtin_object_size. So, it has the same constraints as that second
|
|
// argument; namely, it must be in the range [0, 3].
|
|
if (Type > 3) {
|
|
S.Diag(E->getLocStart(), diag::err_attribute_argument_outof_range)
|
|
<< AL.getName() << 0 << 3 << E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// pass_object_size is only supported on constant pointer parameters; as a
|
|
// kindness to users, we allow the parameter to be non-const for declarations.
|
|
// At this point, we have no clue if `D` belongs to a function declaration or
|
|
// definition, so we defer the constness check until later.
|
|
if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
|
|
S.Diag(D->getLocStart(), diag::err_attribute_pointers_only)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) PassObjectSizeAttr(
|
|
AL.getRange(), S.Context, (int)Type, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
ConsumableAttr::ConsumedState DefaultState;
|
|
|
|
if (AL.isArgIdent(0)) {
|
|
IdentifierLoc *IL = AL.getArgAsIdent(0);
|
|
if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
|
|
DefaultState)) {
|
|
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << IL->Ident;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
|
|
<< AL.getName() << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ConsumableAttr(AL.getRange(), S.Context, DefaultState,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
|
|
const AttributeList &AL) {
|
|
ASTContext &CurrContext = S.getASTContext();
|
|
QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
|
|
|
|
if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
|
|
if (!RD->hasAttr<ConsumableAttr>()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) <<
|
|
RD->getNameAsString();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void handleCallableWhenAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
|
|
return;
|
|
|
|
SmallVector<CallableWhenAttr::ConsumedState, 3> States;
|
|
for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
|
|
CallableWhenAttr::ConsumedState CallableState;
|
|
|
|
StringRef StateString;
|
|
SourceLocation Loc;
|
|
if (AL.isArgIdent(ArgIndex)) {
|
|
IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
|
|
StateString = Ident->Ident->getName();
|
|
Loc = Ident->Loc;
|
|
} else {
|
|
if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
|
|
return;
|
|
}
|
|
|
|
if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
|
|
CallableState)) {
|
|
S.Diag(Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << StateString;
|
|
return;
|
|
}
|
|
|
|
States.push_back(CallableState);
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
CallableWhenAttr(AL.getRange(), S.Context, States.data(),
|
|
States.size(), AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleParamTypestateAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
ParamTypestateAttr::ConsumedState ParamState;
|
|
|
|
if (AL.isArgIdent(0)) {
|
|
IdentifierLoc *Ident = AL.getArgAsIdent(0);
|
|
StringRef StateString = Ident->Ident->getName();
|
|
|
|
if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
|
|
ParamState)) {
|
|
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << StateString;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
|
|
AL.getName() << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
// FIXME: This check is currently being done in the analysis. It can be
|
|
// enabled here only after the parser propagates attributes at
|
|
// template specialization definition, not declaration.
|
|
//QualType ReturnType = cast<ParmVarDecl>(D)->getType();
|
|
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
|
|
//
|
|
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
|
|
// S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
|
|
// ReturnType.getAsString();
|
|
// return;
|
|
//}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ParamTypestateAttr(AL.getRange(), S.Context, ParamState,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleReturnTypestateAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
ReturnTypestateAttr::ConsumedState ReturnState;
|
|
|
|
if (AL.isArgIdent(0)) {
|
|
IdentifierLoc *IL = AL.getArgAsIdent(0);
|
|
if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
|
|
ReturnState)) {
|
|
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << IL->Ident;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
|
|
AL.getName() << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
// FIXME: This check is currently being done in the analysis. It can be
|
|
// enabled here only after the parser propagates attributes at
|
|
// template specialization definition, not declaration.
|
|
//QualType ReturnType;
|
|
//
|
|
//if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
|
|
// ReturnType = Param->getType();
|
|
//
|
|
//} else if (const CXXConstructorDecl *Constructor =
|
|
// dyn_cast<CXXConstructorDecl>(D)) {
|
|
// ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
|
|
//
|
|
//} else {
|
|
//
|
|
// ReturnType = cast<FunctionDecl>(D)->getCallResultType();
|
|
//}
|
|
//
|
|
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
|
|
//
|
|
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
|
|
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
|
|
// ReturnType.getAsString();
|
|
// return;
|
|
//}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ReturnTypestateAttr(AL.getRange(), S.Context, ReturnState,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
|
|
return;
|
|
|
|
SetTypestateAttr::ConsumedState NewState;
|
|
if (AL.isArgIdent(0)) {
|
|
IdentifierLoc *Ident = AL.getArgAsIdent(0);
|
|
StringRef Param = Ident->Ident->getName();
|
|
if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
|
|
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << Param;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
|
|
AL.getName() << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
SetTypestateAttr(AL.getRange(), S.Context, NewState,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleTestTypestateAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
|
|
return;
|
|
|
|
TestTypestateAttr::ConsumedState TestState;
|
|
if (AL.isArgIdent(0)) {
|
|
IdentifierLoc *Ident = AL.getArgAsIdent(0);
|
|
StringRef Param = Ident->Ident->getName();
|
|
if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
|
|
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << Param;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
|
|
AL.getName() << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
TestTypestateAttr(AL.getRange(), S.Context, TestState,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// Remember this typedef decl, we will need it later for diagnostics.
|
|
S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
|
|
}
|
|
|
|
static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (auto *TD = dyn_cast<TagDecl>(D))
|
|
TD->addAttr(::new (S.Context) PackedAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
else if (auto *FD = dyn_cast<FieldDecl>(D)) {
|
|
bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
|
|
!FD->getType()->isIncompleteType() &&
|
|
FD->isBitField() &&
|
|
S.Context.getTypeAlign(FD->getType()) <= 8);
|
|
|
|
if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
|
|
if (BitfieldByteAligned)
|
|
// The PS4 target needs to maintain ABI backwards compatibility.
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
|
|
<< AL.getName() << FD->getType();
|
|
else
|
|
FD->addAttr(::new (S.Context) PackedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
} else {
|
|
// Report warning about changed offset in the newer compiler versions.
|
|
if (BitfieldByteAligned)
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
|
|
|
|
FD->addAttr(::new (S.Context) PackedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
} else
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL.getName();
|
|
}
|
|
|
|
static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// The IBOutlet/IBOutletCollection attributes only apply to instance
|
|
// variables or properties of Objective-C classes. The outlet must also
|
|
// have an object reference type.
|
|
if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
|
|
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
|
|
S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
|
|
<< AL.getName() << VD->getType() << 0;
|
|
return false;
|
|
}
|
|
}
|
|
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
|
|
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
|
|
S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
|
|
<< AL.getName() << PD->getType() << 1;
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL.getName();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!checkIBOutletCommon(S, D, AL))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
IBOutletAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleIBOutletCollection(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
|
|
// The iboutletcollection attribute can have zero or one arguments.
|
|
if (AL.getNumArgs() > 1) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
if (!checkIBOutletCommon(S, D, AL))
|
|
return;
|
|
|
|
ParsedType PT;
|
|
|
|
if (AL.hasParsedType())
|
|
PT = AL.getTypeArg();
|
|
else {
|
|
PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
|
|
S.getScopeForContext(D->getDeclContext()->getParent()));
|
|
if (!PT) {
|
|
S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
|
|
return;
|
|
}
|
|
}
|
|
|
|
TypeSourceInfo *QTLoc = nullptr;
|
|
QualType QT = S.GetTypeFromParser(PT, &QTLoc);
|
|
if (!QTLoc)
|
|
QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
|
|
|
|
// Diagnose use of non-object type in iboutletcollection attribute.
|
|
// FIXME. Gnu attribute extension ignores use of builtin types in
|
|
// attributes. So, __attribute__((iboutletcollection(char))) will be
|
|
// treated as __attribute__((iboutletcollection())).
|
|
if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
|
|
S.Diag(AL.getLoc(),
|
|
QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
|
|
: diag::err_iboutletcollection_type) << QT;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
IBOutletCollectionAttr(AL.getRange(), S.Context, QTLoc,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
|
|
if (RefOkay) {
|
|
if (T->isReferenceType())
|
|
return true;
|
|
} else {
|
|
T = T.getNonReferenceType();
|
|
}
|
|
|
|
// The nonnull attribute, and other similar attributes, can be applied to a
|
|
// transparent union that contains a pointer type.
|
|
if (const RecordType *UT = T->getAsUnionType()) {
|
|
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
|
|
RecordDecl *UD = UT->getDecl();
|
|
for (const auto *I : UD->fields()) {
|
|
QualType QT = I->getType();
|
|
if (QT->isAnyPointerType() || QT->isBlockPointerType())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return T->isAnyPointerType() || T->isBlockPointerType();
|
|
}
|
|
|
|
static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &AL,
|
|
SourceRange AttrParmRange,
|
|
SourceRange TypeRange,
|
|
bool isReturnValue = false) {
|
|
if (!S.isValidPointerAttrType(T)) {
|
|
if (isReturnValue)
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
|
|
<< AL.getName() << AttrParmRange << TypeRange;
|
|
else
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
|
|
<< AL.getName() << AttrParmRange << TypeRange << 0;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
SmallVector<ParamIdx, 8> NonNullArgs;
|
|
for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
|
|
Expr *Ex = AL.getArgAsExpr(I);
|
|
ParamIdx Idx;
|
|
if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
|
|
return;
|
|
|
|
// Is the function argument a pointer type?
|
|
if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
|
|
!attrNonNullArgCheck(
|
|
S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
|
|
Ex->getSourceRange(),
|
|
getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
|
|
continue;
|
|
|
|
NonNullArgs.push_back(Idx);
|
|
}
|
|
|
|
// If no arguments were specified to __attribute__((nonnull)) then all pointer
|
|
// arguments have a nonnull attribute; warn if there aren't any. Skip this
|
|
// check if the attribute came from a macro expansion or a template
|
|
// instantiation.
|
|
if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
|
|
!S.inTemplateInstantiation()) {
|
|
bool AnyPointers = isFunctionOrMethodVariadic(D);
|
|
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
|
|
I != E && !AnyPointers; ++I) {
|
|
QualType T = getFunctionOrMethodParamType(D, I);
|
|
if (T->isDependentType() || S.isValidPointerAttrType(T))
|
|
AnyPointers = true;
|
|
}
|
|
|
|
if (!AnyPointers)
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
|
|
}
|
|
|
|
ParamIdx *Start = NonNullArgs.data();
|
|
unsigned Size = NonNullArgs.size();
|
|
llvm::array_pod_sort(Start, Start + Size);
|
|
D->addAttr(::new (S.Context)
|
|
NonNullAttr(AL.getRange(), S.Context, Start, Size,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
|
|
const AttributeList &AL) {
|
|
if (AL.getNumArgs() > 0) {
|
|
if (D->getFunctionType()) {
|
|
handleNonNullAttr(S, D, AL);
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
|
|
<< D->getSourceRange();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Is the argument a pointer type?
|
|
if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
|
|
D->getSourceRange()))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
NonNullAttr(AL.getRange(), S.Context, nullptr, 0,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleReturnsNonNullAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
QualType ResultType = getFunctionOrMethodResultType(D);
|
|
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
|
|
if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
|
|
/* isReturnValue */ true))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ReturnsNonNullAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleNoEscapeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (D->isInvalidDecl())
|
|
return;
|
|
|
|
// noescape only applies to pointer types.
|
|
QualType T = cast<ParmVarDecl>(D)->getType();
|
|
if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
|
|
<< AL.getName() << AL.getRange() << 0;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) NoEscapeAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAssumeAlignedAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
Expr *E = AL.getArgAsExpr(0),
|
|
*OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
|
|
S.AddAssumeAlignedAttr(AL.getRange(), D, E, OE,
|
|
AL.getAttributeSpellingListIndex());
|
|
}
|
|
|
|
static void handleAllocAlignAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
S.AddAllocAlignAttr(AL.getRange(), D, AL.getArgAsExpr(0),
|
|
AL.getAttributeSpellingListIndex());
|
|
}
|
|
|
|
void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
|
|
Expr *OE, unsigned SpellingListIndex) {
|
|
QualType ResultType = getFunctionOrMethodResultType(D);
|
|
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
|
|
|
|
AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
|
|
SourceLocation AttrLoc = AttrRange.getBegin();
|
|
|
|
if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
|
|
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
|
|
<< &TmpAttr << AttrRange << SR;
|
|
return;
|
|
}
|
|
|
|
if (!E->isValueDependent()) {
|
|
llvm::APSInt I(64);
|
|
if (!E->isIntegerConstantExpr(I, Context)) {
|
|
if (OE)
|
|
Diag(AttrLoc, diag::err_attribute_argument_n_type)
|
|
<< &TmpAttr << 1 << AANT_ArgumentIntegerConstant
|
|
<< E->getSourceRange();
|
|
else
|
|
Diag(AttrLoc, diag::err_attribute_argument_type)
|
|
<< &TmpAttr << AANT_ArgumentIntegerConstant
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (!I.isPowerOf2()) {
|
|
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (OE) {
|
|
if (!OE->isValueDependent()) {
|
|
llvm::APSInt I(64);
|
|
if (!OE->isIntegerConstantExpr(I, Context)) {
|
|
Diag(AttrLoc, diag::err_attribute_argument_n_type)
|
|
<< &TmpAttr << 2 << AANT_ArgumentIntegerConstant
|
|
<< OE->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (Context)
|
|
AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
|
|
}
|
|
|
|
void Sema::AddAllocAlignAttr(SourceRange AttrRange, Decl *D, Expr *ParamExpr,
|
|
unsigned SpellingListIndex) {
|
|
QualType ResultType = getFunctionOrMethodResultType(D);
|
|
|
|
AllocAlignAttr TmpAttr(AttrRange, Context, ParamIdx(), SpellingListIndex);
|
|
SourceLocation AttrLoc = AttrRange.getBegin();
|
|
|
|
if (!ResultType->isDependentType() &&
|
|
!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
|
|
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
|
|
<< &TmpAttr << AttrRange << getFunctionOrMethodResultSourceRange(D);
|
|
return;
|
|
}
|
|
|
|
ParamIdx Idx;
|
|
const auto *FuncDecl = cast<FunctionDecl>(D);
|
|
if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
|
|
/*AttrArgNo=*/1, ParamExpr, Idx))
|
|
return;
|
|
|
|
QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
|
|
if (!Ty->isDependentType() && !Ty->isIntegralType(Context)) {
|
|
Diag(ParamExpr->getLocStart(), diag::err_attribute_integers_only)
|
|
<< &TmpAttr
|
|
<< FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (Context)
|
|
AllocAlignAttr(AttrRange, Context, Idx, SpellingListIndex));
|
|
}
|
|
|
|
/// Normalize the attribute, __foo__ becomes foo.
|
|
/// Returns true if normalization was applied.
|
|
static bool normalizeName(StringRef &AttrName) {
|
|
if (AttrName.size() > 4 && AttrName.startswith("__") &&
|
|
AttrName.endswith("__")) {
|
|
AttrName = AttrName.drop_front(2).drop_back(2);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// This attribute must be applied to a function declaration. The first
|
|
// argument to the attribute must be an identifier, the name of the resource,
|
|
// for example: malloc. The following arguments must be argument indexes, the
|
|
// arguments must be of integer type for Returns, otherwise of pointer type.
|
|
// The difference between Holds and Takes is that a pointer may still be used
|
|
// after being held. free() should be __attribute((ownership_takes)), whereas
|
|
// a list append function may well be __attribute((ownership_holds)).
|
|
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
// Figure out our Kind.
|
|
OwnershipAttr::OwnershipKind K =
|
|
OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
|
|
AL.getAttributeSpellingListIndex()).getOwnKind();
|
|
|
|
// Check arguments.
|
|
switch (K) {
|
|
case OwnershipAttr::Takes:
|
|
case OwnershipAttr::Holds:
|
|
if (AL.getNumArgs() < 2) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
|
|
<< AL.getName() << 2;
|
|
return;
|
|
}
|
|
break;
|
|
case OwnershipAttr::Returns:
|
|
if (AL.getNumArgs() > 2) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
|
|
|
|
StringRef ModuleName = Module->getName();
|
|
if (normalizeName(ModuleName)) {
|
|
Module = &S.PP.getIdentifierTable().get(ModuleName);
|
|
}
|
|
|
|
SmallVector<ParamIdx, 8> OwnershipArgs;
|
|
for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
|
|
Expr *Ex = AL.getArgAsExpr(i);
|
|
ParamIdx Idx;
|
|
if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
|
|
return;
|
|
|
|
// Is the function argument a pointer type?
|
|
QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
|
|
int Err = -1; // No error
|
|
switch (K) {
|
|
case OwnershipAttr::Takes:
|
|
case OwnershipAttr::Holds:
|
|
if (!T->isAnyPointerType() && !T->isBlockPointerType())
|
|
Err = 0;
|
|
break;
|
|
case OwnershipAttr::Returns:
|
|
if (!T->isIntegerType())
|
|
Err = 1;
|
|
break;
|
|
}
|
|
if (-1 != Err) {
|
|
S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
|
|
<< Ex->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Check we don't have a conflict with another ownership attribute.
|
|
for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
|
|
// Cannot have two ownership attributes of different kinds for the same
|
|
// index.
|
|
if (I->getOwnKind() != K && I->args_end() !=
|
|
std::find(I->args_begin(), I->args_end(), Idx)) {
|
|
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< AL.getName() << I;
|
|
return;
|
|
} else if (K == OwnershipAttr::Returns &&
|
|
I->getOwnKind() == OwnershipAttr::Returns) {
|
|
// A returns attribute conflicts with any other returns attribute using
|
|
// a different index.
|
|
if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
|
|
S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
|
|
<< I->args_begin()->getSourceIndex();
|
|
if (I->args_size())
|
|
S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
|
|
<< Idx.getSourceIndex() << Ex->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
OwnershipArgs.push_back(Idx);
|
|
}
|
|
|
|
ParamIdx *Start = OwnershipArgs.data();
|
|
unsigned Size = OwnershipArgs.size();
|
|
llvm::array_pod_sort(Start, Start + Size);
|
|
D->addAttr(::new (S.Context)
|
|
OwnershipAttr(AL.getLoc(), S.Context, Module, Start, Size,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// Check the attribute arguments.
|
|
if (AL.getNumArgs() > 1) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
// gcc rejects
|
|
// class c {
|
|
// static int a __attribute__((weakref ("v2")));
|
|
// static int b() __attribute__((weakref ("f3")));
|
|
// };
|
|
// and ignores the attributes of
|
|
// void f(void) {
|
|
// static int a __attribute__((weakref ("v2")));
|
|
// }
|
|
// we reject them
|
|
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
|
|
if (!Ctx->isFileContext()) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
|
|
<< cast<NamedDecl>(D);
|
|
return;
|
|
}
|
|
|
|
// The GCC manual says
|
|
//
|
|
// At present, a declaration to which `weakref' is attached can only
|
|
// be `static'.
|
|
//
|
|
// It also says
|
|
//
|
|
// Without a TARGET,
|
|
// given as an argument to `weakref' or to `alias', `weakref' is
|
|
// equivalent to `weak'.
|
|
//
|
|
// gcc 4.4.1 will accept
|
|
// int a7 __attribute__((weakref));
|
|
// as
|
|
// int a7 __attribute__((weak));
|
|
// This looks like a bug in gcc. We reject that for now. We should revisit
|
|
// it if this behaviour is actually used.
|
|
|
|
// GCC rejects
|
|
// static ((alias ("y"), weakref)).
|
|
// Should we? How to check that weakref is before or after alias?
|
|
|
|
// FIXME: it would be good for us to keep the WeakRefAttr as-written instead
|
|
// of transforming it into an AliasAttr. The WeakRefAttr never uses the
|
|
// StringRef parameter it was given anyway.
|
|
StringRef Str;
|
|
if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
|
|
// GCC will accept anything as the argument of weakref. Should we
|
|
// check for an existing decl?
|
|
D->addAttr(::new (S.Context) AliasAttr(AL.getRange(), S.Context, Str,
|
|
AL.getAttributeSpellingListIndex()));
|
|
|
|
D->addAttr(::new (S.Context)
|
|
WeakRefAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleIFuncAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
StringRef Str;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
|
|
return;
|
|
|
|
// Aliases should be on declarations, not definitions.
|
|
const auto *FD = cast<FunctionDecl>(D);
|
|
if (FD->isThisDeclarationADefinition()) {
|
|
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) IFuncAttr(AL.getRange(), S.Context, Str,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
StringRef Str;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
|
|
return;
|
|
|
|
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
|
|
S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
|
|
return;
|
|
}
|
|
if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
|
|
S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
|
|
}
|
|
|
|
// Aliases should be on declarations, not definitions.
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isThisDeclarationADefinition()) {
|
|
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
|
|
return;
|
|
}
|
|
} else {
|
|
const auto *VD = cast<VarDecl>(D);
|
|
if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
|
|
S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// FIXME: check if target symbol exists in current file
|
|
|
|
D->addAttr(::new (S.Context) AliasAttr(AL.getRange(), S.Context, Str,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleTLSModelAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
StringRef Model;
|
|
SourceLocation LiteralLoc;
|
|
// Check that it is a string.
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
|
|
return;
|
|
|
|
// Check that the value.
|
|
if (Model != "global-dynamic" && Model != "local-dynamic"
|
|
&& Model != "initial-exec" && Model != "local-exec") {
|
|
S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
TLSModelAttr(AL.getRange(), S.Context, Model,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleRestrictAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
QualType ResultType = getFunctionOrMethodResultType(D);
|
|
if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
|
|
D->addAttr(::new (S.Context) RestrictAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
}
|
|
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
|
|
<< AL.getName() << getFunctionOrMethodResultSourceRange(D);
|
|
}
|
|
|
|
static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (S.LangOpts.CPlusPlus) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
|
|
<< AL.getName() << AttributeLangSupport::Cpp;
|
|
return;
|
|
}
|
|
|
|
if (CommonAttr *CA = S.mergeCommonAttr(D, AL.getRange(), AL.getName(),
|
|
AL.getAttributeSpellingListIndex()))
|
|
D->addAttr(CA);
|
|
}
|
|
|
|
static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL.getRange(),
|
|
AL.getName()))
|
|
return;
|
|
|
|
if (AL.isDeclspecAttribute()) {
|
|
const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
|
|
const auto &Arch = Triple.getArch();
|
|
if (Arch != llvm::Triple::x86 &&
|
|
(Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
|
|
<< AL.getName() << Triple.getArchName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) NakedAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &Attrs) {
|
|
if (hasDeclarator(D)) return;
|
|
|
|
if (!isa<ObjCMethodDecl>(D)) {
|
|
S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< Attrs.getName() << ExpectedFunctionOrMethod;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) NoReturnAttr(
|
|
Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleNoCfCheckAttr(Sema &S, Decl *D, const AttributeList &Attrs) {
|
|
if (!S.getLangOpts().CFProtectionBranch)
|
|
S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
|
|
else
|
|
handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
|
|
}
|
|
|
|
bool Sema::CheckAttrNoArgs(const AttributeList &Attrs) {
|
|
if (!checkAttributeNumArgs(*this, Attrs, 0)) {
|
|
Attrs.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckAttrTarget(const AttributeList &AL) {
|
|
// Check whether the attribute is valid on the current target.
|
|
if (!AL.existsInTarget(Context.getTargetInfo())) {
|
|
Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL.getName();
|
|
AL.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
|
|
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
|
|
// because 'analyzer_noreturn' does not impact the type.
|
|
if (!isFunctionOrMethodOrBlock(D)) {
|
|
ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD || (!VD->getType()->isBlockPointerType() &&
|
|
!VD->getType()->isFunctionPointerType())) {
|
|
S.Diag(AL.getLoc(),
|
|
AL.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
|
|
: diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunctionMethodOrBlock;
|
|
return;
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AnalyzerNoReturnAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
// PS3 PPU-specific.
|
|
static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
/*
|
|
Returning a Vector Class in Registers
|
|
|
|
According to the PPU ABI specifications, a class with a single member of
|
|
vector type is returned in memory when used as the return value of a function.
|
|
This results in inefficient code when implementing vector classes. To return
|
|
the value in a single vector register, add the vecreturn attribute to the
|
|
class definition. This attribute is also applicable to struct types.
|
|
|
|
Example:
|
|
|
|
struct Vector
|
|
{
|
|
__vector float xyzw;
|
|
} __attribute__((vecreturn));
|
|
|
|
Vector Add(Vector lhs, Vector rhs)
|
|
{
|
|
Vector result;
|
|
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
|
|
return result; // This will be returned in a register
|
|
}
|
|
*/
|
|
if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
|
|
S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
|
|
return;
|
|
}
|
|
|
|
const auto *R = cast<RecordDecl>(D);
|
|
int count = 0;
|
|
|
|
if (!isa<CXXRecordDecl>(R)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
|
|
return;
|
|
}
|
|
|
|
if (!cast<CXXRecordDecl>(R)->isPOD()) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
|
|
return;
|
|
}
|
|
|
|
for (const auto *I : R->fields()) {
|
|
if ((count == 1) || !I->getType()->isVectorType()) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
|
|
return;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) VecReturnAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (isa<ParmVarDecl>(D)) {
|
|
// [[carries_dependency]] can only be applied to a parameter if it is a
|
|
// parameter of a function declaration or lambda.
|
|
if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
|
|
S.Diag(AL.getLoc(),
|
|
diag::err_carries_dependency_param_not_function_decl);
|
|
return;
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) CarriesDependencyAttr(
|
|
AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
|
|
|
|
if (IsCXX17Attr && isa<VarDecl>(D)) {
|
|
// The C++17 spelling of this attribute cannot be applied to a static data
|
|
// member per [dcl.attr.unused]p2.
|
|
if (cast<VarDecl>(D)->isStaticDataMember()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedForMaybeUnused;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If this is spelled as the standard C++17 attribute, but not in C++17, warn
|
|
// about using it as an extension.
|
|
if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
|
|
S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL.getName();
|
|
|
|
D->addAttr(::new (S.Context) UnusedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
uint32_t priority = ConstructorAttr::DefaultPriority;
|
|
if (AL.getNumArgs() &&
|
|
!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ConstructorAttr(AL.getRange(), S.Context, priority,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
uint32_t priority = DestructorAttr::DefaultPriority;
|
|
if (AL.getNumArgs() &&
|
|
!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
DestructorAttr(AL.getRange(), S.Context, priority,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
template <typename AttrTy>
|
|
static void handleAttrWithMessage(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Handle the case where the attribute has a text message.
|
|
StringRef Str;
|
|
if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) AttrTy(AL.getRange(), S.Context, Str,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
|
|
S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
|
|
<< AL.getName() << AL.getRange();
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ObjCExplicitProtocolImplAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
|
|
IdentifierInfo *Platform,
|
|
VersionTuple Introduced,
|
|
VersionTuple Deprecated,
|
|
VersionTuple Obsoleted) {
|
|
StringRef PlatformName
|
|
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
|
|
if (PlatformName.empty())
|
|
PlatformName = Platform->getName();
|
|
|
|
// Ensure that Introduced <= Deprecated <= Obsoleted (although not all
|
|
// of these steps are needed).
|
|
if (!Introduced.empty() && !Deprecated.empty() &&
|
|
!(Introduced <= Deprecated)) {
|
|
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
|
|
<< 1 << PlatformName << Deprecated.getAsString()
|
|
<< 0 << Introduced.getAsString();
|
|
return true;
|
|
}
|
|
|
|
if (!Introduced.empty() && !Obsoleted.empty() &&
|
|
!(Introduced <= Obsoleted)) {
|
|
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
|
|
<< 2 << PlatformName << Obsoleted.getAsString()
|
|
<< 0 << Introduced.getAsString();
|
|
return true;
|
|
}
|
|
|
|
if (!Deprecated.empty() && !Obsoleted.empty() &&
|
|
!(Deprecated <= Obsoleted)) {
|
|
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
|
|
<< 2 << PlatformName << Obsoleted.getAsString()
|
|
<< 1 << Deprecated.getAsString();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check whether the two versions match.
|
|
///
|
|
/// If either version tuple is empty, then they are assumed to match. If
|
|
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
|
|
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
|
|
bool BeforeIsOkay) {
|
|
if (X.empty() || Y.empty())
|
|
return true;
|
|
|
|
if (X == Y)
|
|
return true;
|
|
|
|
if (BeforeIsOkay && X < Y)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
|
|
IdentifierInfo *Platform,
|
|
bool Implicit,
|
|
VersionTuple Introduced,
|
|
VersionTuple Deprecated,
|
|
VersionTuple Obsoleted,
|
|
bool IsUnavailable,
|
|
StringRef Message,
|
|
bool IsStrict,
|
|
StringRef Replacement,
|
|
AvailabilityMergeKind AMK,
|
|
unsigned AttrSpellingListIndex) {
|
|
VersionTuple MergedIntroduced = Introduced;
|
|
VersionTuple MergedDeprecated = Deprecated;
|
|
VersionTuple MergedObsoleted = Obsoleted;
|
|
bool FoundAny = false;
|
|
bool OverrideOrImpl = false;
|
|
switch (AMK) {
|
|
case AMK_None:
|
|
case AMK_Redeclaration:
|
|
OverrideOrImpl = false;
|
|
break;
|
|
|
|
case AMK_Override:
|
|
case AMK_ProtocolImplementation:
|
|
OverrideOrImpl = true;
|
|
break;
|
|
}
|
|
|
|
if (D->hasAttrs()) {
|
|
AttrVec &Attrs = D->getAttrs();
|
|
for (unsigned i = 0, e = Attrs.size(); i != e;) {
|
|
const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
|
|
if (!OldAA) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
IdentifierInfo *OldPlatform = OldAA->getPlatform();
|
|
if (OldPlatform != Platform) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
// If there is an existing availability attribute for this platform that
|
|
// is explicit and the new one is implicit use the explicit one and
|
|
// discard the new implicit attribute.
|
|
if (!OldAA->isImplicit() && Implicit) {
|
|
return nullptr;
|
|
}
|
|
|
|
// If there is an existing attribute for this platform that is implicit
|
|
// and the new attribute is explicit then erase the old one and
|
|
// continue processing the attributes.
|
|
if (!Implicit && OldAA->isImplicit()) {
|
|
Attrs.erase(Attrs.begin() + i);
|
|
--e;
|
|
continue;
|
|
}
|
|
|
|
FoundAny = true;
|
|
VersionTuple OldIntroduced = OldAA->getIntroduced();
|
|
VersionTuple OldDeprecated = OldAA->getDeprecated();
|
|
VersionTuple OldObsoleted = OldAA->getObsoleted();
|
|
bool OldIsUnavailable = OldAA->getUnavailable();
|
|
|
|
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
|
|
!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
|
|
!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
|
|
!(OldIsUnavailable == IsUnavailable ||
|
|
(OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
|
|
if (OverrideOrImpl) {
|
|
int Which = -1;
|
|
VersionTuple FirstVersion;
|
|
VersionTuple SecondVersion;
|
|
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
|
|
Which = 0;
|
|
FirstVersion = OldIntroduced;
|
|
SecondVersion = Introduced;
|
|
} else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
|
|
Which = 1;
|
|
FirstVersion = Deprecated;
|
|
SecondVersion = OldDeprecated;
|
|
} else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
|
|
Which = 2;
|
|
FirstVersion = Obsoleted;
|
|
SecondVersion = OldObsoleted;
|
|
}
|
|
|
|
if (Which == -1) {
|
|
Diag(OldAA->getLocation(),
|
|
diag::warn_mismatched_availability_override_unavail)
|
|
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
|
|
<< (AMK == AMK_Override);
|
|
} else {
|
|
Diag(OldAA->getLocation(),
|
|
diag::warn_mismatched_availability_override)
|
|
<< Which
|
|
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
|
|
<< FirstVersion.getAsString() << SecondVersion.getAsString()
|
|
<< (AMK == AMK_Override);
|
|
}
|
|
if (AMK == AMK_Override)
|
|
Diag(Range.getBegin(), diag::note_overridden_method);
|
|
else
|
|
Diag(Range.getBegin(), diag::note_protocol_method);
|
|
} else {
|
|
Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
|
|
Diag(Range.getBegin(), diag::note_previous_attribute);
|
|
}
|
|
|
|
Attrs.erase(Attrs.begin() + i);
|
|
--e;
|
|
continue;
|
|
}
|
|
|
|
VersionTuple MergedIntroduced2 = MergedIntroduced;
|
|
VersionTuple MergedDeprecated2 = MergedDeprecated;
|
|
VersionTuple MergedObsoleted2 = MergedObsoleted;
|
|
|
|
if (MergedIntroduced2.empty())
|
|
MergedIntroduced2 = OldIntroduced;
|
|
if (MergedDeprecated2.empty())
|
|
MergedDeprecated2 = OldDeprecated;
|
|
if (MergedObsoleted2.empty())
|
|
MergedObsoleted2 = OldObsoleted;
|
|
|
|
if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
|
|
MergedIntroduced2, MergedDeprecated2,
|
|
MergedObsoleted2)) {
|
|
Attrs.erase(Attrs.begin() + i);
|
|
--e;
|
|
continue;
|
|
}
|
|
|
|
MergedIntroduced = MergedIntroduced2;
|
|
MergedDeprecated = MergedDeprecated2;
|
|
MergedObsoleted = MergedObsoleted2;
|
|
++i;
|
|
}
|
|
}
|
|
|
|
if (FoundAny &&
|
|
MergedIntroduced == Introduced &&
|
|
MergedDeprecated == Deprecated &&
|
|
MergedObsoleted == Obsoleted)
|
|
return nullptr;
|
|
|
|
// Only create a new attribute if !OverrideOrImpl, but we want to do
|
|
// the checking.
|
|
if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
|
|
MergedDeprecated, MergedObsoleted) &&
|
|
!OverrideOrImpl) {
|
|
auto *Avail = ::new (Context) AvailabilityAttr(Range, Context, Platform,
|
|
Introduced, Deprecated,
|
|
Obsoleted, IsUnavailable, Message,
|
|
IsStrict, Replacement,
|
|
AttrSpellingListIndex);
|
|
Avail->setImplicit(Implicit);
|
|
return Avail;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void handleAvailabilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeNumArgs(S, AL, 1))
|
|
return;
|
|
IdentifierLoc *Platform = AL.getArgAsIdent(0);
|
|
unsigned Index = AL.getAttributeSpellingListIndex();
|
|
|
|
IdentifierInfo *II = Platform->Ident;
|
|
if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
|
|
S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
|
|
<< Platform->Ident;
|
|
|
|
auto *ND = dyn_cast<NamedDecl>(D);
|
|
if (!ND) // We warned about this already, so just return.
|
|
return;
|
|
|
|
AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
|
|
AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
|
|
AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
|
|
bool IsUnavailable = AL.getUnavailableLoc().isValid();
|
|
bool IsStrict = AL.getStrictLoc().isValid();
|
|
StringRef Str;
|
|
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
|
|
Str = SE->getString();
|
|
StringRef Replacement;
|
|
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
|
|
Replacement = SE->getString();
|
|
|
|
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, AL.getRange(), II,
|
|
false/*Implicit*/,
|
|
Introduced.Version,
|
|
Deprecated.Version,
|
|
Obsoleted.Version,
|
|
IsUnavailable, Str,
|
|
IsStrict, Replacement,
|
|
Sema::AMK_None,
|
|
Index);
|
|
if (NewAttr)
|
|
D->addAttr(NewAttr);
|
|
|
|
// Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
|
|
// matches before the start of the watchOS platform.
|
|
if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
|
|
IdentifierInfo *NewII = nullptr;
|
|
if (II->getName() == "ios")
|
|
NewII = &S.Context.Idents.get("watchos");
|
|
else if (II->getName() == "ios_app_extension")
|
|
NewII = &S.Context.Idents.get("watchos_app_extension");
|
|
|
|
if (NewII) {
|
|
auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
|
|
if (Version.empty())
|
|
return Version;
|
|
auto Major = Version.getMajor();
|
|
auto NewMajor = Major >= 9 ? Major - 7 : 0;
|
|
if (NewMajor >= 2) {
|
|
if (Version.getMinor().hasValue()) {
|
|
if (Version.getSubminor().hasValue())
|
|
return VersionTuple(NewMajor, Version.getMinor().getValue(),
|
|
Version.getSubminor().getValue());
|
|
else
|
|
return VersionTuple(NewMajor, Version.getMinor().getValue());
|
|
}
|
|
}
|
|
|
|
return VersionTuple(2, 0);
|
|
};
|
|
|
|
auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
|
|
auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
|
|
auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
|
|
|
|
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
|
|
AL.getRange(),
|
|
NewII,
|
|
true/*Implicit*/,
|
|
NewIntroduced,
|
|
NewDeprecated,
|
|
NewObsoleted,
|
|
IsUnavailable, Str,
|
|
IsStrict,
|
|
Replacement,
|
|
Sema::AMK_None,
|
|
Index);
|
|
if (NewAttr)
|
|
D->addAttr(NewAttr);
|
|
}
|
|
} else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
|
|
// Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
|
|
// matches before the start of the tvOS platform.
|
|
IdentifierInfo *NewII = nullptr;
|
|
if (II->getName() == "ios")
|
|
NewII = &S.Context.Idents.get("tvos");
|
|
else if (II->getName() == "ios_app_extension")
|
|
NewII = &S.Context.Idents.get("tvos_app_extension");
|
|
|
|
if (NewII) {
|
|
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
|
|
AL.getRange(),
|
|
NewII,
|
|
true/*Implicit*/,
|
|
Introduced.Version,
|
|
Deprecated.Version,
|
|
Obsoleted.Version,
|
|
IsUnavailable, Str,
|
|
IsStrict,
|
|
Replacement,
|
|
Sema::AMK_None,
|
|
Index);
|
|
if (NewAttr)
|
|
D->addAttr(NewAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
assert(checkAttributeAtMostNumArgs(S, AL, 3) &&
|
|
"Invalid number of arguments in an external_source_symbol attribute");
|
|
|
|
StringRef Language;
|
|
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
|
|
Language = SE->getString();
|
|
StringRef DefinedIn;
|
|
if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
|
|
DefinedIn = SE->getString();
|
|
bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
|
|
|
|
D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
|
|
AL.getRange(), S.Context, Language, DefinedIn, IsGeneratedDeclaration,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
template <class T>
|
|
static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
|
|
typename T::VisibilityType value,
|
|
unsigned attrSpellingListIndex) {
|
|
T *existingAttr = D->getAttr<T>();
|
|
if (existingAttr) {
|
|
typename T::VisibilityType existingValue = existingAttr->getVisibility();
|
|
if (existingValue == value)
|
|
return nullptr;
|
|
S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
|
|
S.Diag(range.getBegin(), diag::note_previous_attribute);
|
|
D->dropAttr<T>();
|
|
}
|
|
return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
|
|
}
|
|
|
|
VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
|
|
VisibilityAttr::VisibilityType Vis,
|
|
unsigned AttrSpellingListIndex) {
|
|
return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
|
|
AttrSpellingListIndex);
|
|
}
|
|
|
|
TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
|
|
TypeVisibilityAttr::VisibilityType Vis,
|
|
unsigned AttrSpellingListIndex) {
|
|
return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
|
|
AttrSpellingListIndex);
|
|
}
|
|
|
|
static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &AL,
|
|
bool isTypeVisibility) {
|
|
// Visibility attributes don't mean anything on a typedef.
|
|
if (isa<TypedefNameDecl>(D)) {
|
|
S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored)
|
|
<< AL.getName();
|
|
return;
|
|
}
|
|
|
|
// 'type_visibility' can only go on a type or namespace.
|
|
if (isTypeVisibility &&
|
|
!(isa<TagDecl>(D) ||
|
|
isa<ObjCInterfaceDecl>(D) ||
|
|
isa<NamespaceDecl>(D))) {
|
|
S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedTypeOrNamespace;
|
|
return;
|
|
}
|
|
|
|
// Check that the argument is a string literal.
|
|
StringRef TypeStr;
|
|
SourceLocation LiteralLoc;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
|
|
return;
|
|
|
|
VisibilityAttr::VisibilityType type;
|
|
if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
|
|
S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << TypeStr;
|
|
return;
|
|
}
|
|
|
|
// Complain about attempts to use protected visibility on targets
|
|
// (like Darwin) that don't support it.
|
|
if (type == VisibilityAttr::Protected &&
|
|
!S.Context.getTargetInfo().hasProtectedVisibility()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
|
|
type = VisibilityAttr::Default;
|
|
}
|
|
|
|
unsigned Index = AL.getAttributeSpellingListIndex();
|
|
Attr *newAttr;
|
|
if (isTypeVisibility) {
|
|
newAttr = S.mergeTypeVisibilityAttr(D, AL.getRange(),
|
|
(TypeVisibilityAttr::VisibilityType) type,
|
|
Index);
|
|
} else {
|
|
newAttr = S.mergeVisibilityAttr(D, AL.getRange(), type, Index);
|
|
}
|
|
if (newAttr)
|
|
D->addAttr(newAttr);
|
|
}
|
|
|
|
static void handleObjCMethodFamilyAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
const auto *M = cast<ObjCMethodDecl>(D);
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
IdentifierLoc *IL = AL.getArgAsIdent(0);
|
|
ObjCMethodFamilyAttr::FamilyKind F;
|
|
if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
|
|
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << IL->Ident;
|
|
return;
|
|
}
|
|
|
|
if (F == ObjCMethodFamilyAttr::OMF_init &&
|
|
!M->getReturnType()->isObjCObjectPointerType()) {
|
|
S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
|
|
<< M->getReturnType();
|
|
// Ignore the attribute.
|
|
return;
|
|
}
|
|
|
|
D->addAttr(new (S.Context) ObjCMethodFamilyAttr(
|
|
AL.getRange(), S.Context, F, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
QualType T = TD->getUnderlyingType();
|
|
if (!T->isCARCBridgableType()) {
|
|
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
|
|
return;
|
|
}
|
|
}
|
|
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
|
|
QualType T = PD->getType();
|
|
if (!T->isCARCBridgableType()) {
|
|
S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
// It is okay to include this attribute on properties, e.g.:
|
|
//
|
|
// @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
|
|
//
|
|
// In this case it follows tradition and suppresses an error in the above
|
|
// case.
|
|
S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
|
|
}
|
|
D->addAttr(::new (S.Context)
|
|
ObjCNSObjectAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCIndependentClass(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
QualType T = TD->getUnderlyingType();
|
|
if (!T->isObjCObjectPointerType()) {
|
|
S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
|
|
return;
|
|
}
|
|
D->addAttr(::new (S.Context)
|
|
ObjCIndependentClassAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
|
|
BlocksAttr::BlockType type;
|
|
if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << II;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
BlocksAttr(AL.getRange(), S.Context, type,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
|
|
if (AL.getNumArgs() > 0) {
|
|
Expr *E = AL.getArgAsExpr(0);
|
|
llvm::APSInt Idx(32);
|
|
if (E->isTypeDependent() || E->isValueDependent() ||
|
|
!E->isIntegerConstantExpr(Idx, S.Context)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIntegerConstant
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (Idx.isSigned() && Idx.isNegative()) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
sentinel = Idx.getZExtValue();
|
|
}
|
|
|
|
unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
|
|
if (AL.getNumArgs() > 1) {
|
|
Expr *E = AL.getArgAsExpr(1);
|
|
llvm::APSInt Idx(32);
|
|
if (E->isTypeDependent() || E->isValueDependent() ||
|
|
!E->isIntegerConstantExpr(Idx, S.Context)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 2 << AANT_ArgumentIntegerConstant
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
nullPos = Idx.getZExtValue();
|
|
|
|
if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
|
|
// FIXME: This error message could be improved, it would be nice
|
|
// to say what the bounds actually are.
|
|
S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
const FunctionType *FT = FD->getType()->castAs<FunctionType>();
|
|
if (isa<FunctionNoProtoType>(FT)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
|
|
return;
|
|
}
|
|
|
|
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
|
|
return;
|
|
}
|
|
} else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
if (!MD->isVariadic()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
|
|
return;
|
|
}
|
|
} else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
|
|
if (!BD->isVariadic()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
|
|
return;
|
|
}
|
|
} else if (const auto *V = dyn_cast<VarDecl>(D)) {
|
|
QualType Ty = V->getType();
|
|
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
|
|
const FunctionType *FT = Ty->isFunctionPointerType()
|
|
? D->getFunctionType()
|
|
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
|
|
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
|
|
int m = Ty->isFunctionPointerType() ? 0 : 1;
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunctionMethodOrBlock;
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunctionMethodOrBlock;
|
|
return;
|
|
}
|
|
D->addAttr(::new (S.Context)
|
|
SentinelAttr(AL.getRange(), S.Context, sentinel, nullPos,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (D->getFunctionType() &&
|
|
D->getFunctionType()->getReturnType()->isVoidType()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method)
|
|
<< AL.getName() << 0;
|
|
return;
|
|
}
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
if (MD->getReturnType()->isVoidType()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
// If this is spelled as the standard C++17 attribute, but not in C++17, warn
|
|
// about using it as an extension.
|
|
if (!S.getLangOpts().CPlusPlus17 && AL.isCXX11Attribute() &&
|
|
!AL.getScopeName())
|
|
S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL.getName();
|
|
|
|
D->addAttr(::new (S.Context)
|
|
WarnUnusedResultAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// weak_import only applies to variable & function declarations.
|
|
bool isDef = false;
|
|
if (!D->canBeWeakImported(isDef)) {
|
|
if (isDef)
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
|
|
<< "weak_import";
|
|
else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
|
|
(S.Context.getTargetInfo().getTriple().isOSDarwin() &&
|
|
(isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
|
|
// Nothing to warn about here.
|
|
} else
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedVariableOrFunction;
|
|
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
WeakImportAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
// Handles reqd_work_group_size and work_group_size_hint.
|
|
template <typename WorkGroupAttr>
|
|
static void handleWorkGroupSize(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
uint32_t WGSize[3];
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
const Expr *E = AL.getArgAsExpr(i);
|
|
if (!checkUInt32Argument(S, AL, E, WGSize[i], i))
|
|
return;
|
|
if (WGSize[i] == 0) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
|
|
<< AL.getName() << E->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
|
|
WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
|
|
if (Existing && !(Existing->getXDim() == WGSize[0] &&
|
|
Existing->getYDim() == WGSize[1] &&
|
|
Existing->getZDim() == WGSize[2]))
|
|
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
|
|
|
|
D->addAttr(::new (S.Context) WorkGroupAttr(AL.getRange(), S.Context,
|
|
WGSize[0], WGSize[1], WGSize[2],
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
// Handles intel_reqd_sub_group_size.
|
|
static void handleSubGroupSize(Sema &S, Decl *D, const AttributeList &AL) {
|
|
uint32_t SGSize;
|
|
const Expr *E = AL.getArgAsExpr(0);
|
|
if (!checkUInt32Argument(S, AL, E, SGSize))
|
|
return;
|
|
if (SGSize == 0) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
|
|
<< AL.getName() << E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
OpenCLIntelReqdSubGroupSizeAttr *Existing =
|
|
D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
|
|
if (Existing && Existing->getSubGroupSize() != SGSize)
|
|
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
|
|
|
|
D->addAttr(::new (S.Context) OpenCLIntelReqdSubGroupSizeAttr(
|
|
AL.getRange(), S.Context, SGSize,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!AL.hasParsedType()) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
TypeSourceInfo *ParmTSI = nullptr;
|
|
QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
|
|
assert(ParmTSI && "no type source info for attribute argument");
|
|
|
|
if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
|
|
(ParmType->isBooleanType() ||
|
|
!ParmType->isIntegralType(S.getASTContext()))) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_vec_type_hint)
|
|
<< ParmType;
|
|
return;
|
|
}
|
|
|
|
if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
|
|
if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
|
|
S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) VecTypeHintAttr(AL.getLoc(), S.Context,
|
|
ParmTSI,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
|
|
StringRef Name,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
|
|
if (ExistingAttr->getName() == Name)
|
|
return nullptr;
|
|
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
|
|
Diag(Range.getBegin(), diag::note_previous_attribute);
|
|
return nullptr;
|
|
}
|
|
return ::new (Context) SectionAttr(Range, Context, Name,
|
|
AttrSpellingListIndex);
|
|
}
|
|
|
|
bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
|
|
std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
|
|
if (!Error.empty()) {
|
|
Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// Make sure that there is a string literal as the sections's single
|
|
// argument.
|
|
StringRef Str;
|
|
SourceLocation LiteralLoc;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
|
|
return;
|
|
|
|
if (!S.checkSectionName(LiteralLoc, Str))
|
|
return;
|
|
|
|
// If the target wants to validate the section specifier, make it happen.
|
|
std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
|
|
if (!Error.empty()) {
|
|
S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
|
|
<< Error;
|
|
return;
|
|
}
|
|
|
|
unsigned Index = AL.getAttributeSpellingListIndex();
|
|
SectionAttr *NewAttr = S.mergeSectionAttr(D, AL.getRange(), Str, Index);
|
|
if (NewAttr)
|
|
D->addAttr(NewAttr);
|
|
}
|
|
|
|
// Check for things we'd like to warn about. Multiversioning issues are
|
|
// handled later in the process, once we know how many exist.
|
|
bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
|
|
enum FirstParam { Unsupported, Duplicate };
|
|
enum SecondParam { None, Architecture };
|
|
for (auto Str : {"tune=", "fpmath="})
|
|
if (AttrStr.find(Str) != StringRef::npos)
|
|
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
|
|
<< Unsupported << None << Str;
|
|
|
|
TargetAttr::ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
|
|
|
|
if (!ParsedAttrs.Architecture.empty() &&
|
|
!Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
|
|
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
|
|
<< Unsupported << Architecture << ParsedAttrs.Architecture;
|
|
|
|
if (ParsedAttrs.DuplicateArchitecture)
|
|
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
|
|
<< Duplicate << None << "arch=";
|
|
|
|
for (const auto &Feature : ParsedAttrs.Features) {
|
|
auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
|
|
if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
|
|
return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
|
|
<< Unsupported << None << CurFeature;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void handleTargetAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
StringRef Str;
|
|
SourceLocation LiteralLoc;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
|
|
S.checkTargetAttr(LiteralLoc, Str))
|
|
return;
|
|
|
|
unsigned Index = AL.getAttributeSpellingListIndex();
|
|
TargetAttr *NewAttr =
|
|
::new (S.Context) TargetAttr(AL.getRange(), S.Context, Str, Index);
|
|
D->addAttr(NewAttr);
|
|
}
|
|
|
|
static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
Expr *E = AL.getArgAsExpr(0);
|
|
SourceLocation Loc = E->getExprLoc();
|
|
FunctionDecl *FD = nullptr;
|
|
DeclarationNameInfo NI;
|
|
|
|
// gcc only allows for simple identifiers. Since we support more than gcc, we
|
|
// will warn the user.
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (DRE->hasQualifier())
|
|
S.Diag(Loc, diag::warn_cleanup_ext);
|
|
FD = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
NI = DRE->getNameInfo();
|
|
if (!FD) {
|
|
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
|
|
<< NI.getName();
|
|
return;
|
|
}
|
|
} else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
|
|
if (ULE->hasExplicitTemplateArgs())
|
|
S.Diag(Loc, diag::warn_cleanup_ext);
|
|
FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
|
|
NI = ULE->getNameInfo();
|
|
if (!FD) {
|
|
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
|
|
<< NI.getName();
|
|
if (ULE->getType() == S.Context.OverloadTy)
|
|
S.NoteAllOverloadCandidates(ULE);
|
|
return;
|
|
}
|
|
} else {
|
|
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
|
|
return;
|
|
}
|
|
|
|
if (FD->getNumParams() != 1) {
|
|
S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
|
|
<< NI.getName();
|
|
return;
|
|
}
|
|
|
|
// We're currently more strict than GCC about what function types we accept.
|
|
// If this ever proves to be a problem it should be easy to fix.
|
|
QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
|
|
QualType ParamTy = FD->getParamDecl(0)->getType();
|
|
if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
|
|
ParamTy, Ty) != Sema::Compatible) {
|
|
S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
|
|
<< NI.getName() << ParamTy << Ty;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
CleanupAttr(AL.getRange(), S.Context, FD,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 0 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
EnumExtensibilityAttr::Kind ExtensibilityKind;
|
|
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
|
|
if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
|
|
ExtensibilityKind)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << II;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) EnumExtensibilityAttr(
|
|
AL.getRange(), S.Context, ExtensibilityKind,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
/// Handle __attribute__((format_arg((idx)))) attribute based on
|
|
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
|
|
static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
Expr *IdxExpr = AL.getArgAsExpr(0);
|
|
ParamIdx Idx;
|
|
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
|
|
return;
|
|
|
|
// Make sure the format string is really a string.
|
|
QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
|
|
|
|
bool NotNSStringTy = !isNSStringType(Ty, S.Context);
|
|
if (NotNSStringTy &&
|
|
!isCFStringType(Ty, S.Context) &&
|
|
(!Ty->isPointerType() ||
|
|
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
|
|
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
|
|
<< "a string type" << IdxExpr->getSourceRange()
|
|
<< getFunctionOrMethodParamRange(D, 0);
|
|
return;
|
|
}
|
|
Ty = getFunctionOrMethodResultType(D);
|
|
if (!isNSStringType(Ty, S.Context) &&
|
|
!isCFStringType(Ty, S.Context) &&
|
|
(!Ty->isPointerType() ||
|
|
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
|
|
S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
|
|
<< (NotNSStringTy ? "string type" : "NSString")
|
|
<< IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) FormatArgAttr(
|
|
AL.getRange(), S.Context, Idx, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
enum FormatAttrKind {
|
|
CFStringFormat,
|
|
NSStringFormat,
|
|
StrftimeFormat,
|
|
SupportedFormat,
|
|
IgnoredFormat,
|
|
InvalidFormat
|
|
};
|
|
|
|
/// getFormatAttrKind - Map from format attribute names to supported format
|
|
/// types.
|
|
static FormatAttrKind getFormatAttrKind(StringRef Format) {
|
|
return llvm::StringSwitch<FormatAttrKind>(Format)
|
|
// Check for formats that get handled specially.
|
|
.Case("NSString", NSStringFormat)
|
|
.Case("CFString", CFStringFormat)
|
|
.Case("strftime", StrftimeFormat)
|
|
|
|
// Otherwise, check for supported formats.
|
|
.Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
|
|
.Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
|
|
.Case("kprintf", SupportedFormat) // OpenBSD.
|
|
.Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
|
|
.Case("os_trace", SupportedFormat)
|
|
.Case("os_log", SupportedFormat)
|
|
|
|
.Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
|
|
.Default(InvalidFormat);
|
|
}
|
|
|
|
/// Handle __attribute__((init_priority(priority))) attributes based on
|
|
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
|
|
static void handleInitPriorityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL.getName();
|
|
return;
|
|
}
|
|
|
|
if (S.getCurFunctionOrMethodDecl()) {
|
|
S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
|
|
AL.setInvalid();
|
|
return;
|
|
}
|
|
QualType T = cast<VarDecl>(D)->getType();
|
|
if (S.Context.getAsArrayType(T))
|
|
T = S.Context.getBaseElementType(T);
|
|
if (!T->getAs<RecordType>()) {
|
|
S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
|
|
AL.setInvalid();
|
|
return;
|
|
}
|
|
|
|
Expr *E = AL.getArgAsExpr(0);
|
|
uint32_t prioritynum;
|
|
if (!checkUInt32Argument(S, AL, E, prioritynum)) {
|
|
AL.setInvalid();
|
|
return;
|
|
}
|
|
|
|
if (prioritynum < 101 || prioritynum > 65535) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_outof_range)
|
|
<< E->getSourceRange() << AL.getName() << 101 << 65535;
|
|
AL.setInvalid();
|
|
return;
|
|
}
|
|
D->addAttr(::new (S.Context)
|
|
InitPriorityAttr(AL.getRange(), S.Context, prioritynum,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
|
|
IdentifierInfo *Format, int FormatIdx,
|
|
int FirstArg,
|
|
unsigned AttrSpellingListIndex) {
|
|
// Check whether we already have an equivalent format attribute.
|
|
for (auto *F : D->specific_attrs<FormatAttr>()) {
|
|
if (F->getType() == Format &&
|
|
F->getFormatIdx() == FormatIdx &&
|
|
F->getFirstArg() == FirstArg) {
|
|
// If we don't have a valid location for this attribute, adopt the
|
|
// location.
|
|
if (F->getLocation().isInvalid())
|
|
F->setRange(Range);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
|
|
FirstArg, AttrSpellingListIndex);
|
|
}
|
|
|
|
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
|
|
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
|
|
static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
// In C++ the implicit 'this' function parameter also counts, and they are
|
|
// counted from one.
|
|
bool HasImplicitThisParam = isInstanceMethod(D);
|
|
unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
|
|
|
|
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
|
|
StringRef Format = II->getName();
|
|
|
|
if (normalizeName(Format)) {
|
|
// If we've modified the string name, we need a new identifier for it.
|
|
II = &S.Context.Idents.get(Format);
|
|
}
|
|
|
|
// Check for supported formats.
|
|
FormatAttrKind Kind = getFormatAttrKind(Format);
|
|
|
|
if (Kind == IgnoredFormat)
|
|
return;
|
|
|
|
if (Kind == InvalidFormat) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << II->getName();
|
|
return;
|
|
}
|
|
|
|
// checks for the 2nd argument
|
|
Expr *IdxExpr = AL.getArgAsExpr(1);
|
|
uint32_t Idx;
|
|
if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
|
|
return;
|
|
|
|
if (Idx < 1 || Idx > NumArgs) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
|
|
<< AL.getName() << 2 << IdxExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// FIXME: Do we need to bounds check?
|
|
unsigned ArgIdx = Idx - 1;
|
|
|
|
if (HasImplicitThisParam) {
|
|
if (ArgIdx == 0) {
|
|
S.Diag(AL.getLoc(),
|
|
diag::err_format_attribute_implicit_this_format_string)
|
|
<< IdxExpr->getSourceRange();
|
|
return;
|
|
}
|
|
ArgIdx--;
|
|
}
|
|
|
|
// make sure the format string is really a string
|
|
QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
|
|
|
|
if (Kind == CFStringFormat) {
|
|
if (!isCFStringType(Ty, S.Context)) {
|
|
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
|
|
<< "a CFString" << IdxExpr->getSourceRange()
|
|
<< getFunctionOrMethodParamRange(D, ArgIdx);
|
|
return;
|
|
}
|
|
} else if (Kind == NSStringFormat) {
|
|
// FIXME: do we need to check if the type is NSString*? What are the
|
|
// semantics?
|
|
if (!isNSStringType(Ty, S.Context)) {
|
|
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
|
|
<< "an NSString" << IdxExpr->getSourceRange()
|
|
<< getFunctionOrMethodParamRange(D, ArgIdx);
|
|
return;
|
|
}
|
|
} else if (!Ty->isPointerType() ||
|
|
!Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
|
|
S.Diag(AL.getLoc(), diag::err_format_attribute_not)
|
|
<< "a string type" << IdxExpr->getSourceRange()
|
|
<< getFunctionOrMethodParamRange(D, ArgIdx);
|
|
return;
|
|
}
|
|
|
|
// check the 3rd argument
|
|
Expr *FirstArgExpr = AL.getArgAsExpr(2);
|
|
uint32_t FirstArg;
|
|
if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
|
|
return;
|
|
|
|
// check if the function is variadic if the 3rd argument non-zero
|
|
if (FirstArg != 0) {
|
|
if (isFunctionOrMethodVariadic(D)) {
|
|
++NumArgs; // +1 for ...
|
|
} else {
|
|
S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// strftime requires FirstArg to be 0 because it doesn't read from any
|
|
// variable the input is just the current time + the format string.
|
|
if (Kind == StrftimeFormat) {
|
|
if (FirstArg != 0) {
|
|
S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
|
|
<< FirstArgExpr->getSourceRange();
|
|
return;
|
|
}
|
|
// if 0 it disables parameter checking (to use with e.g. va_list)
|
|
} else if (FirstArg != 0 && FirstArg != NumArgs) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
|
|
<< AL.getName() << 3 << FirstArgExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
FormatAttr *NewAttr = S.mergeFormatAttr(D, AL.getRange(), II,
|
|
Idx, FirstArg,
|
|
AL.getAttributeSpellingListIndex());
|
|
if (NewAttr)
|
|
D->addAttr(NewAttr);
|
|
}
|
|
|
|
static void handleTransparentUnionAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Try to find the underlying union declaration.
|
|
RecordDecl *RD = nullptr;
|
|
const auto *TD = dyn_cast<TypedefNameDecl>(D);
|
|
if (TD && TD->getUnderlyingType()->isUnionType())
|
|
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
|
|
else
|
|
RD = dyn_cast<RecordDecl>(D);
|
|
|
|
if (!RD || !RD->isUnion()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedUnion;
|
|
return;
|
|
}
|
|
|
|
if (!RD->isCompleteDefinition()) {
|
|
if (!RD->isBeingDefined())
|
|
S.Diag(AL.getLoc(),
|
|
diag::warn_transparent_union_attribute_not_definition);
|
|
return;
|
|
}
|
|
|
|
RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
if (Field == FieldEnd) {
|
|
S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
|
|
return;
|
|
}
|
|
|
|
FieldDecl *FirstField = *Field;
|
|
QualType FirstType = FirstField->getType();
|
|
if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
|
|
S.Diag(FirstField->getLocation(),
|
|
diag::warn_transparent_union_attribute_floating)
|
|
<< FirstType->isVectorType() << FirstType;
|
|
return;
|
|
}
|
|
|
|
if (FirstType->isIncompleteType())
|
|
return;
|
|
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
|
|
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
|
|
for (; Field != FieldEnd; ++Field) {
|
|
QualType FieldType = Field->getType();
|
|
if (FieldType->isIncompleteType())
|
|
return;
|
|
// FIXME: this isn't fully correct; we also need to test whether the
|
|
// members of the union would all have the same calling convention as the
|
|
// first member of the union. Checking just the size and alignment isn't
|
|
// sufficient (consider structs passed on the stack instead of in registers
|
|
// as an example).
|
|
if (S.Context.getTypeSize(FieldType) != FirstSize ||
|
|
S.Context.getTypeAlign(FieldType) > FirstAlign) {
|
|
// Warn if we drop the attribute.
|
|
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
|
|
unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
|
|
: S.Context.getTypeAlign(FieldType);
|
|
S.Diag(Field->getLocation(),
|
|
diag::warn_transparent_union_attribute_field_size_align)
|
|
<< isSize << Field->getDeclName() << FieldBits;
|
|
unsigned FirstBits = isSize? FirstSize : FirstAlign;
|
|
S.Diag(FirstField->getLocation(),
|
|
diag::note_transparent_union_first_field_size_align)
|
|
<< isSize << FirstBits;
|
|
return;
|
|
}
|
|
}
|
|
|
|
RD->addAttr(::new (S.Context)
|
|
TransparentUnionAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// Make sure that there is a string literal as the annotation's single
|
|
// argument.
|
|
StringRef Str;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
|
|
return;
|
|
|
|
// Don't duplicate annotations that are already set.
|
|
for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
|
|
if (I->getAnnotation() == Str)
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AnnotateAttr(AL.getRange(), S.Context, Str,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAlignValueAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
S.AddAlignValueAttr(AL.getRange(), D, AL.getArgAsExpr(0),
|
|
AL.getAttributeSpellingListIndex());
|
|
}
|
|
|
|
void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
|
|
unsigned SpellingListIndex) {
|
|
AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
|
|
SourceLocation AttrLoc = AttrRange.getBegin();
|
|
|
|
QualType T;
|
|
if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
|
|
T = TD->getUnderlyingType();
|
|
else if (const auto *VD = dyn_cast<ValueDecl>(D))
|
|
T = VD->getType();
|
|
else
|
|
llvm_unreachable("Unknown decl type for align_value");
|
|
|
|
if (!T->isDependentType() && !T->isAnyPointerType() &&
|
|
!T->isReferenceType() && !T->isMemberPointerType()) {
|
|
Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
|
|
<< &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (!E->isValueDependent()) {
|
|
llvm::APSInt Alignment;
|
|
ExprResult ICE
|
|
= VerifyIntegerConstantExpression(E, &Alignment,
|
|
diag::err_align_value_attribute_argument_not_int,
|
|
/*AllowFold*/ false);
|
|
if (ICE.isInvalid())
|
|
return;
|
|
|
|
if (!Alignment.isPowerOf2()) {
|
|
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (Context)
|
|
AlignValueAttr(AttrRange, Context, ICE.get(),
|
|
SpellingListIndex));
|
|
return;
|
|
}
|
|
|
|
// Save dependent expressions in the AST to be instantiated.
|
|
D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
|
|
}
|
|
|
|
static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// check the attribute arguments.
|
|
if (AL.getNumArgs() > 1) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
if (AL.getNumArgs() == 0) {
|
|
D->addAttr(::new (S.Context) AlignedAttr(AL.getRange(), S.Context,
|
|
true, nullptr, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
}
|
|
|
|
Expr *E = AL.getArgAsExpr(0);
|
|
if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
|
|
S.Diag(AL.getEllipsisLoc(),
|
|
diag::err_pack_expansion_without_parameter_packs);
|
|
return;
|
|
}
|
|
|
|
if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
|
|
return;
|
|
|
|
if (E->isValueDependent()) {
|
|
if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
|
|
if (!TND->getUnderlyingType()->isDependentType()) {
|
|
S.Diag(AL.getLoc(), diag::err_alignment_dependent_typedef_name)
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
S.AddAlignedAttr(AL.getRange(), D, E, AL.getAttributeSpellingListIndex(),
|
|
AL.isPackExpansion());
|
|
}
|
|
|
|
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
|
|
unsigned SpellingListIndex, bool IsPackExpansion) {
|
|
AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
|
|
SourceLocation AttrLoc = AttrRange.getBegin();
|
|
|
|
// C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
|
|
if (TmpAttr.isAlignas()) {
|
|
// C++11 [dcl.align]p1:
|
|
// An alignment-specifier may be applied to a variable or to a class
|
|
// data member, but it shall not be applied to a bit-field, a function
|
|
// parameter, the formal parameter of a catch clause, or a variable
|
|
// declared with the register storage class specifier. An
|
|
// alignment-specifier may also be applied to the declaration of a class
|
|
// or enumeration type.
|
|
// C11 6.7.5/2:
|
|
// An alignment attribute shall not be specified in a declaration of
|
|
// a typedef, or a bit-field, or a function, or a parameter, or an
|
|
// object declared with the register storage-class specifier.
|
|
int DiagKind = -1;
|
|
if (isa<ParmVarDecl>(D)) {
|
|
DiagKind = 0;
|
|
} else if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->getStorageClass() == SC_Register)
|
|
DiagKind = 1;
|
|
if (VD->isExceptionVariable())
|
|
DiagKind = 2;
|
|
} else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
|
|
if (FD->isBitField())
|
|
DiagKind = 3;
|
|
} else if (!isa<TagDecl>(D)) {
|
|
Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
|
|
<< (TmpAttr.isC11() ? ExpectedVariableOrField
|
|
: ExpectedVariableFieldOrTag);
|
|
return;
|
|
}
|
|
if (DiagKind != -1) {
|
|
Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
|
|
<< &TmpAttr << DiagKind;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (E->isTypeDependent() || E->isValueDependent()) {
|
|
// Save dependent expressions in the AST to be instantiated.
|
|
AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
|
|
AA->setPackExpansion(IsPackExpansion);
|
|
D->addAttr(AA);
|
|
return;
|
|
}
|
|
|
|
// FIXME: Cache the number on the AL object?
|
|
llvm::APSInt Alignment;
|
|
ExprResult ICE
|
|
= VerifyIntegerConstantExpression(E, &Alignment,
|
|
diag::err_aligned_attribute_argument_not_int,
|
|
/*AllowFold*/ false);
|
|
if (ICE.isInvalid())
|
|
return;
|
|
|
|
uint64_t AlignVal = Alignment.getZExtValue();
|
|
|
|
// C++11 [dcl.align]p2:
|
|
// -- if the constant expression evaluates to zero, the alignment
|
|
// specifier shall have no effect
|
|
// C11 6.7.5p6:
|
|
// An alignment specification of zero has no effect.
|
|
if (!(TmpAttr.isAlignas() && !Alignment)) {
|
|
if (!llvm::isPowerOf2_64(AlignVal)) {
|
|
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Alignment calculations can wrap around if it's greater than 2**28.
|
|
unsigned MaxValidAlignment =
|
|
Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192
|
|
: 268435456;
|
|
if (AlignVal > MaxValidAlignment) {
|
|
Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
|
|
<< E->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (Context.getTargetInfo().isTLSSupported()) {
|
|
unsigned MaxTLSAlign =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
|
|
.getQuantity();
|
|
const auto *VD = dyn_cast<VarDecl>(D);
|
|
if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
|
|
VD->getTLSKind() != VarDecl::TLS_None) {
|
|
Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
|
|
<< (unsigned)AlignVal << VD << MaxTLSAlign;
|
|
return;
|
|
}
|
|
}
|
|
|
|
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
|
|
ICE.get(), SpellingListIndex);
|
|
AA->setPackExpansion(IsPackExpansion);
|
|
D->addAttr(AA);
|
|
}
|
|
|
|
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
|
|
unsigned SpellingListIndex, bool IsPackExpansion) {
|
|
// FIXME: Cache the number on the AL object if non-dependent?
|
|
// FIXME: Perform checking of type validity
|
|
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
|
|
SpellingListIndex);
|
|
AA->setPackExpansion(IsPackExpansion);
|
|
D->addAttr(AA);
|
|
}
|
|
|
|
void Sema::CheckAlignasUnderalignment(Decl *D) {
|
|
assert(D->hasAttrs() && "no attributes on decl");
|
|
|
|
QualType UnderlyingTy, DiagTy;
|
|
if (const auto *VD = dyn_cast<ValueDecl>(D)) {
|
|
UnderlyingTy = DiagTy = VD->getType();
|
|
} else {
|
|
UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
|
|
if (const auto *ED = dyn_cast<EnumDecl>(D))
|
|
UnderlyingTy = ED->getIntegerType();
|
|
}
|
|
if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
|
|
return;
|
|
|
|
// C++11 [dcl.align]p5, C11 6.7.5/4:
|
|
// The combined effect of all alignment attributes in a declaration shall
|
|
// not specify an alignment that is less strict than the alignment that
|
|
// would otherwise be required for the entity being declared.
|
|
AlignedAttr *AlignasAttr = nullptr;
|
|
unsigned Align = 0;
|
|
for (auto *I : D->specific_attrs<AlignedAttr>()) {
|
|
if (I->isAlignmentDependent())
|
|
return;
|
|
if (I->isAlignas())
|
|
AlignasAttr = I;
|
|
Align = std::max(Align, I->getAlignment(Context));
|
|
}
|
|
|
|
if (AlignasAttr && Align) {
|
|
CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
|
|
CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
|
|
if (NaturalAlign > RequestedAlign)
|
|
Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
|
|
<< DiagTy << (unsigned)NaturalAlign.getQuantity();
|
|
}
|
|
}
|
|
|
|
bool Sema::checkMSInheritanceAttrOnDefinition(
|
|
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
|
|
MSInheritanceAttr::Spelling SemanticSpelling) {
|
|
assert(RD->hasDefinition() && "RD has no definition!");
|
|
|
|
// We may not have seen base specifiers or any virtual methods yet. We will
|
|
// have to wait until the record is defined to catch any mismatches.
|
|
if (!RD->getDefinition()->isCompleteDefinition())
|
|
return false;
|
|
|
|
// The unspecified model never matches what a definition could need.
|
|
if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
|
|
return false;
|
|
|
|
if (BestCase) {
|
|
if (RD->calculateInheritanceModel() == SemanticSpelling)
|
|
return false;
|
|
} else {
|
|
if (RD->calculateInheritanceModel() <= SemanticSpelling)
|
|
return false;
|
|
}
|
|
|
|
Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
|
|
<< 0 /*definition*/;
|
|
Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
|
|
<< RD->getNameAsString();
|
|
return true;
|
|
}
|
|
|
|
/// parseModeAttrArg - Parses attribute mode string and returns parsed type
|
|
/// attribute.
|
|
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
|
|
bool &IntegerMode, bool &ComplexMode) {
|
|
IntegerMode = true;
|
|
ComplexMode = false;
|
|
switch (Str.size()) {
|
|
case 2:
|
|
switch (Str[0]) {
|
|
case 'Q':
|
|
DestWidth = 8;
|
|
break;
|
|
case 'H':
|
|
DestWidth = 16;
|
|
break;
|
|
case 'S':
|
|
DestWidth = 32;
|
|
break;
|
|
case 'D':
|
|
DestWidth = 64;
|
|
break;
|
|
case 'X':
|
|
DestWidth = 96;
|
|
break;
|
|
case 'T':
|
|
DestWidth = 128;
|
|
break;
|
|
}
|
|
if (Str[1] == 'F') {
|
|
IntegerMode = false;
|
|
} else if (Str[1] == 'C') {
|
|
IntegerMode = false;
|
|
ComplexMode = true;
|
|
} else if (Str[1] != 'I') {
|
|
DestWidth = 0;
|
|
}
|
|
break;
|
|
case 4:
|
|
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
|
|
// pointer on PIC16 and other embedded platforms.
|
|
if (Str == "word")
|
|
DestWidth = S.Context.getTargetInfo().getRegisterWidth();
|
|
else if (Str == "byte")
|
|
DestWidth = S.Context.getTargetInfo().getCharWidth();
|
|
break;
|
|
case 7:
|
|
if (Str == "pointer")
|
|
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
|
|
break;
|
|
case 11:
|
|
if (Str == "unwind_word")
|
|
DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// handleModeAttr - This attribute modifies the width of a decl with primitive
|
|
/// type.
|
|
///
|
|
/// Despite what would be logical, the mode attribute is a decl attribute, not a
|
|
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
|
|
/// HImode, not an intermediate pointer.
|
|
static void handleModeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// This attribute isn't documented, but glibc uses it. It changes
|
|
// the width of an int or unsigned int to the specified size.
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL.getName()
|
|
<< AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
|
|
|
|
S.AddModeAttr(AL.getRange(), D, Name, AL.getAttributeSpellingListIndex());
|
|
}
|
|
|
|
void Sema::AddModeAttr(SourceRange AttrRange, Decl *D, IdentifierInfo *Name,
|
|
unsigned SpellingListIndex, bool InInstantiation) {
|
|
StringRef Str = Name->getName();
|
|
normalizeName(Str);
|
|
SourceLocation AttrLoc = AttrRange.getBegin();
|
|
|
|
unsigned DestWidth = 0;
|
|
bool IntegerMode = true;
|
|
bool ComplexMode = false;
|
|
llvm::APInt VectorSize(64, 0);
|
|
if (Str.size() >= 4 && Str[0] == 'V') {
|
|
// Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
|
|
size_t StrSize = Str.size();
|
|
size_t VectorStringLength = 0;
|
|
while ((VectorStringLength + 1) < StrSize &&
|
|
isdigit(Str[VectorStringLength + 1]))
|
|
++VectorStringLength;
|
|
if (VectorStringLength &&
|
|
!Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
|
|
VectorSize.isPowerOf2()) {
|
|
parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
|
|
IntegerMode, ComplexMode);
|
|
// Avoid duplicate warning from template instantiation.
|
|
if (!InInstantiation)
|
|
Diag(AttrLoc, diag::warn_vector_mode_deprecated);
|
|
} else {
|
|
VectorSize = 0;
|
|
}
|
|
}
|
|
|
|
if (!VectorSize)
|
|
parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
|
|
|
|
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
|
|
// and friends, at least with glibc.
|
|
// FIXME: Make sure floating-point mappings are accurate
|
|
// FIXME: Support XF and TF types
|
|
if (!DestWidth) {
|
|
Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
|
|
return;
|
|
}
|
|
|
|
QualType OldTy;
|
|
if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
|
|
OldTy = TD->getUnderlyingType();
|
|
else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
|
|
// Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
|
|
// Try to get type from enum declaration, default to int.
|
|
OldTy = ED->getIntegerType();
|
|
if (OldTy.isNull())
|
|
OldTy = Context.IntTy;
|
|
} else
|
|
OldTy = cast<ValueDecl>(D)->getType();
|
|
|
|
if (OldTy->isDependentType()) {
|
|
D->addAttr(::new (Context)
|
|
ModeAttr(AttrRange, Context, Name, SpellingListIndex));
|
|
return;
|
|
}
|
|
|
|
// Base type can also be a vector type (see PR17453).
|
|
// Distinguish between base type and base element type.
|
|
QualType OldElemTy = OldTy;
|
|
if (const auto *VT = OldTy->getAs<VectorType>())
|
|
OldElemTy = VT->getElementType();
|
|
|
|
// GCC allows 'mode' attribute on enumeration types (even incomplete), except
|
|
// for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
|
|
// type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
|
|
if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
|
|
VectorSize.getBoolValue()) {
|
|
Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << AttrRange;
|
|
return;
|
|
}
|
|
bool IntegralOrAnyEnumType =
|
|
OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
|
|
|
|
if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
|
|
!IntegralOrAnyEnumType)
|
|
Diag(AttrLoc, diag::err_mode_not_primitive);
|
|
else if (IntegerMode) {
|
|
if (!IntegralOrAnyEnumType)
|
|
Diag(AttrLoc, diag::err_mode_wrong_type);
|
|
} else if (ComplexMode) {
|
|
if (!OldElemTy->isComplexType())
|
|
Diag(AttrLoc, diag::err_mode_wrong_type);
|
|
} else {
|
|
if (!OldElemTy->isFloatingType())
|
|
Diag(AttrLoc, diag::err_mode_wrong_type);
|
|
}
|
|
|
|
QualType NewElemTy;
|
|
|
|
if (IntegerMode)
|
|
NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
|
|
OldElemTy->isSignedIntegerType());
|
|
else
|
|
NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
|
|
|
|
if (NewElemTy.isNull()) {
|
|
Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
|
|
return;
|
|
}
|
|
|
|
if (ComplexMode) {
|
|
NewElemTy = Context.getComplexType(NewElemTy);
|
|
}
|
|
|
|
QualType NewTy = NewElemTy;
|
|
if (VectorSize.getBoolValue()) {
|
|
NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
|
|
VectorType::GenericVector);
|
|
} else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
|
|
// Complex machine mode does not support base vector types.
|
|
if (ComplexMode) {
|
|
Diag(AttrLoc, diag::err_complex_mode_vector_type);
|
|
return;
|
|
}
|
|
unsigned NumElements = Context.getTypeSize(OldElemTy) *
|
|
OldVT->getNumElements() /
|
|
Context.getTypeSize(NewElemTy);
|
|
NewTy =
|
|
Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
|
|
}
|
|
|
|
if (NewTy.isNull()) {
|
|
Diag(AttrLoc, diag::err_mode_wrong_type);
|
|
return;
|
|
}
|
|
|
|
// Install the new type.
|
|
if (auto *TD = dyn_cast<TypedefNameDecl>(D))
|
|
TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
|
|
else if (auto *ED = dyn_cast<EnumDecl>(D))
|
|
ED->setIntegerType(NewTy);
|
|
else
|
|
cast<ValueDecl>(D)->setType(NewTy);
|
|
|
|
D->addAttr(::new (Context)
|
|
ModeAttr(AttrRange, Context, Name, SpellingListIndex));
|
|
}
|
|
|
|
static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
D->addAttr(::new (S.Context)
|
|
NoDebugAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
|
|
IdentifierInfo *Ident,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
|
|
Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
|
|
Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
|
|
return nullptr;
|
|
}
|
|
|
|
if (D->hasAttr<AlwaysInlineAttr>())
|
|
return nullptr;
|
|
|
|
return ::new (Context) AlwaysInlineAttr(Range, Context,
|
|
AttrSpellingListIndex);
|
|
}
|
|
|
|
CommonAttr *Sema::mergeCommonAttr(Decl *D, SourceRange Range,
|
|
IdentifierInfo *Ident,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, Range, Ident))
|
|
return nullptr;
|
|
|
|
return ::new (Context) CommonAttr(Range, Context, AttrSpellingListIndex);
|
|
}
|
|
|
|
InternalLinkageAttr *
|
|
Sema::mergeInternalLinkageAttr(Decl *D, SourceRange Range,
|
|
IdentifierInfo *Ident,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
// Attribute applies to Var but not any subclass of it (like ParmVar,
|
|
// ImplicitParm or VarTemplateSpecialization).
|
|
if (VD->getKind() != Decl::Var) {
|
|
Diag(Range.getBegin(), diag::warn_attribute_wrong_decl_type)
|
|
<< Ident << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
|
|
: ExpectedVariableOrFunction);
|
|
return nullptr;
|
|
}
|
|
// Attribute does not apply to non-static local variables.
|
|
if (VD->hasLocalStorage()) {
|
|
Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (checkAttrMutualExclusion<CommonAttr>(*this, D, Range, Ident))
|
|
return nullptr;
|
|
|
|
return ::new (Context)
|
|
InternalLinkageAttr(Range, Context, AttrSpellingListIndex);
|
|
}
|
|
|
|
MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
|
|
Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
|
|
Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
|
|
return nullptr;
|
|
}
|
|
|
|
if (D->hasAttr<MinSizeAttr>())
|
|
return nullptr;
|
|
|
|
return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
|
|
}
|
|
|
|
OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
|
|
Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
|
|
Diag(Range.getBegin(), diag::note_conflicting_attribute);
|
|
D->dropAttr<AlwaysInlineAttr>();
|
|
}
|
|
if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
|
|
Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
|
|
Diag(Range.getBegin(), diag::note_conflicting_attribute);
|
|
D->dropAttr<MinSizeAttr>();
|
|
}
|
|
|
|
if (D->hasAttr<OptimizeNoneAttr>())
|
|
return nullptr;
|
|
|
|
return ::new (Context) OptimizeNoneAttr(Range, Context,
|
|
AttrSpellingListIndex);
|
|
}
|
|
|
|
static void handleAlwaysInlineAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL.getRange(),
|
|
AL.getName()))
|
|
return;
|
|
|
|
if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
|
|
D, AL.getRange(), AL.getName(),
|
|
AL.getAttributeSpellingListIndex()))
|
|
D->addAttr(Inline);
|
|
}
|
|
|
|
static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
|
|
D, AL.getRange(), AL.getAttributeSpellingListIndex()))
|
|
D->addAttr(MinSize);
|
|
}
|
|
|
|
static void handleOptimizeNoneAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
|
|
D, AL.getRange(), AL.getAttributeSpellingListIndex()))
|
|
D->addAttr(Optnone);
|
|
}
|
|
|
|
static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL.getRange(),
|
|
AL.getName()))
|
|
return;
|
|
const auto *VD = cast<VarDecl>(D);
|
|
if (!VD->hasGlobalStorage()) {
|
|
S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant);
|
|
return;
|
|
}
|
|
D->addAttr(::new (S.Context) CUDAConstantAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL.getRange(),
|
|
AL.getName()))
|
|
return;
|
|
const auto *VD = cast<VarDecl>(D);
|
|
// extern __shared__ is only allowed on arrays with no length (e.g.
|
|
// "int x[]").
|
|
if (!S.getLangOpts().CUDARelocatableDeviceCode && VD->hasExternalStorage() &&
|
|
!isa<IncompleteArrayType>(VD->getType())) {
|
|
S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
|
|
return;
|
|
}
|
|
if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
|
|
S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
|
|
<< S.CurrentCUDATarget())
|
|
return;
|
|
D->addAttr(::new (S.Context) CUDASharedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL.getRange(),
|
|
AL.getName()) ||
|
|
checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL.getRange(),
|
|
AL.getName())) {
|
|
return;
|
|
}
|
|
const auto *FD = cast<FunctionDecl>(D);
|
|
if (!FD->getReturnType()->isVoidType()) {
|
|
SourceRange RTRange = FD->getReturnTypeSourceRange();
|
|
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
|
|
<< FD->getType()
|
|
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
|
|
: FixItHint());
|
|
return;
|
|
}
|
|
if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (Method->isInstance()) {
|
|
S.Diag(Method->getLocStart(), diag::err_kern_is_nonstatic_method)
|
|
<< Method;
|
|
return;
|
|
}
|
|
S.Diag(Method->getLocStart(), diag::warn_kern_is_method) << Method;
|
|
}
|
|
// Only warn for "inline" when compiling for host, to cut down on noise.
|
|
if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
|
|
S.Diag(FD->getLocStart(), diag::warn_kern_is_inline) << FD;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
CUDAGlobalAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
const auto *Fn = cast<FunctionDecl>(D);
|
|
if (!Fn->isInlineSpecified()) {
|
|
S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
GNUInlineAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (hasDeclarator(D)) return;
|
|
|
|
// Diagnostic is emitted elsewhere: here we store the (valid) AL
|
|
// in the Decl node for syntactic reasoning, e.g., pretty-printing.
|
|
CallingConv CC;
|
|
if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
|
|
return;
|
|
|
|
if (!isa<ObjCMethodDecl>(D)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunctionOrMethod;
|
|
return;
|
|
}
|
|
|
|
switch (AL.getKind()) {
|
|
case AttributeList::AT_FastCall:
|
|
D->addAttr(::new (S.Context)
|
|
FastCallAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_StdCall:
|
|
D->addAttr(::new (S.Context)
|
|
StdCallAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_ThisCall:
|
|
D->addAttr(::new (S.Context)
|
|
ThisCallAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_CDecl:
|
|
D->addAttr(::new (S.Context)
|
|
CDeclAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_Pascal:
|
|
D->addAttr(::new (S.Context)
|
|
PascalAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_SwiftCall:
|
|
D->addAttr(::new (S.Context)
|
|
SwiftCallAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_VectorCall:
|
|
D->addAttr(::new (S.Context)
|
|
VectorCallAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_MSABI:
|
|
D->addAttr(::new (S.Context)
|
|
MSABIAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_SysVABI:
|
|
D->addAttr(::new (S.Context)
|
|
SysVABIAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_RegCall:
|
|
D->addAttr(::new (S.Context) RegCallAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_Pcs: {
|
|
PcsAttr::PCSType PCS;
|
|
switch (CC) {
|
|
case CC_AAPCS:
|
|
PCS = PcsAttr::AAPCS;
|
|
break;
|
|
case CC_AAPCS_VFP:
|
|
PCS = PcsAttr::AAPCS_VFP;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected calling convention in pcs attribute");
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
PcsAttr(AL.getRange(), S.Context, PCS,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
}
|
|
case AttributeList::AT_IntelOclBicc:
|
|
D->addAttr(::new (S.Context)
|
|
IntelOclBiccAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_PreserveMost:
|
|
D->addAttr(::new (S.Context) PreserveMostAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_PreserveAll:
|
|
D->addAttr(::new (S.Context) PreserveAllAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
default:
|
|
llvm_unreachable("unexpected attribute kind");
|
|
}
|
|
}
|
|
|
|
static void handleSuppressAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
std::vector<StringRef> DiagnosticIdentifiers;
|
|
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
|
|
StringRef RuleName;
|
|
|
|
if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
|
|
return;
|
|
|
|
// FIXME: Warn if the rule name is unknown. This is tricky because only
|
|
// clang-tidy knows about available rules.
|
|
DiagnosticIdentifiers.push_back(RuleName);
|
|
}
|
|
D->addAttr(::new (S.Context) SuppressAttr(
|
|
AL.getRange(), S.Context, DiagnosticIdentifiers.data(),
|
|
DiagnosticIdentifiers.size(), AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
bool Sema::CheckCallingConvAttr(const AttributeList &Attrs, CallingConv &CC,
|
|
const FunctionDecl *FD) {
|
|
if (Attrs.isInvalid())
|
|
return true;
|
|
|
|
if (Attrs.hasProcessingCache()) {
|
|
CC = (CallingConv) Attrs.getProcessingCache();
|
|
return false;
|
|
}
|
|
|
|
unsigned ReqArgs = Attrs.getKind() == AttributeList::AT_Pcs ? 1 : 0;
|
|
if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
|
|
Attrs.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// TODO: diagnose uses of these conventions on the wrong target.
|
|
switch (Attrs.getKind()) {
|
|
case AttributeList::AT_CDecl: CC = CC_C; break;
|
|
case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
|
|
case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
|
|
case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
|
|
case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
|
|
case AttributeList::AT_SwiftCall: CC = CC_Swift; break;
|
|
case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
|
|
case AttributeList::AT_RegCall: CC = CC_X86RegCall; break;
|
|
case AttributeList::AT_MSABI:
|
|
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
|
|
CC_Win64;
|
|
break;
|
|
case AttributeList::AT_SysVABI:
|
|
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
|
|
CC_C;
|
|
break;
|
|
case AttributeList::AT_Pcs: {
|
|
StringRef StrRef;
|
|
if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
|
|
Attrs.setInvalid();
|
|
return true;
|
|
}
|
|
if (StrRef == "aapcs") {
|
|
CC = CC_AAPCS;
|
|
break;
|
|
} else if (StrRef == "aapcs-vfp") {
|
|
CC = CC_AAPCS_VFP;
|
|
break;
|
|
}
|
|
|
|
Attrs.setInvalid();
|
|
Diag(Attrs.getLoc(), diag::err_invalid_pcs);
|
|
return true;
|
|
}
|
|
case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
|
|
case AttributeList::AT_PreserveMost: CC = CC_PreserveMost; break;
|
|
case AttributeList::AT_PreserveAll: CC = CC_PreserveAll; break;
|
|
default: llvm_unreachable("unexpected attribute kind");
|
|
}
|
|
|
|
const TargetInfo &TI = Context.getTargetInfo();
|
|
TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
|
|
if (A != TargetInfo::CCCR_OK) {
|
|
if (A == TargetInfo::CCCR_Warning)
|
|
Diag(Attrs.getLoc(), diag::warn_cconv_ignored) << Attrs.getName();
|
|
|
|
// This convention is not valid for the target. Use the default function or
|
|
// method calling convention.
|
|
bool IsCXXMethod = false, IsVariadic = false;
|
|
if (FD) {
|
|
IsCXXMethod = FD->isCXXInstanceMember();
|
|
IsVariadic = FD->isVariadic();
|
|
}
|
|
CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
|
|
}
|
|
|
|
Attrs.setProcessingCache((unsigned) CC);
|
|
return false;
|
|
}
|
|
|
|
/// Pointer-like types in the default address space.
|
|
static bool isValidSwiftContextType(QualType Ty) {
|
|
if (!Ty->hasPointerRepresentation())
|
|
return Ty->isDependentType();
|
|
return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
|
|
}
|
|
|
|
/// Pointers and references in the default address space.
|
|
static bool isValidSwiftIndirectResultType(QualType Ty) {
|
|
if (const auto *PtrType = Ty->getAs<PointerType>()) {
|
|
Ty = PtrType->getPointeeType();
|
|
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
|
|
Ty = RefType->getPointeeType();
|
|
} else {
|
|
return Ty->isDependentType();
|
|
}
|
|
return Ty.getAddressSpace() == LangAS::Default;
|
|
}
|
|
|
|
/// Pointers and references to pointers in the default address space.
|
|
static bool isValidSwiftErrorResultType(QualType Ty) {
|
|
if (const auto *PtrType = Ty->getAs<PointerType>()) {
|
|
Ty = PtrType->getPointeeType();
|
|
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
|
|
Ty = RefType->getPointeeType();
|
|
} else {
|
|
return Ty->isDependentType();
|
|
}
|
|
if (!Ty.getQualifiers().empty())
|
|
return false;
|
|
return isValidSwiftContextType(Ty);
|
|
}
|
|
|
|
static void handleParameterABIAttr(Sema &S, Decl *D, const AttributeList &Attrs,
|
|
ParameterABI Abi) {
|
|
S.AddParameterABIAttr(Attrs.getRange(), D, Abi,
|
|
Attrs.getAttributeSpellingListIndex());
|
|
}
|
|
|
|
void Sema::AddParameterABIAttr(SourceRange range, Decl *D, ParameterABI abi,
|
|
unsigned spellingIndex) {
|
|
|
|
QualType type = cast<ParmVarDecl>(D)->getType();
|
|
|
|
if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
|
|
if (existingAttr->getABI() != abi) {
|
|
Diag(range.getBegin(), diag::err_attributes_are_not_compatible)
|
|
<< getParameterABISpelling(abi) << existingAttr;
|
|
Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (abi) {
|
|
case ParameterABI::Ordinary:
|
|
llvm_unreachable("explicit attribute for ordinary parameter ABI?");
|
|
|
|
case ParameterABI::SwiftContext:
|
|
if (!isValidSwiftContextType(type)) {
|
|
Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
|
|
<< getParameterABISpelling(abi)
|
|
<< /*pointer to pointer */ 0 << type;
|
|
}
|
|
D->addAttr(::new (Context)
|
|
SwiftContextAttr(range, Context, spellingIndex));
|
|
return;
|
|
|
|
case ParameterABI::SwiftErrorResult:
|
|
if (!isValidSwiftErrorResultType(type)) {
|
|
Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
|
|
<< getParameterABISpelling(abi)
|
|
<< /*pointer to pointer */ 1 << type;
|
|
}
|
|
D->addAttr(::new (Context)
|
|
SwiftErrorResultAttr(range, Context, spellingIndex));
|
|
return;
|
|
|
|
case ParameterABI::SwiftIndirectResult:
|
|
if (!isValidSwiftIndirectResultType(type)) {
|
|
Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
|
|
<< getParameterABISpelling(abi)
|
|
<< /*pointer*/ 0 << type;
|
|
}
|
|
D->addAttr(::new (Context)
|
|
SwiftIndirectResultAttr(range, Context, spellingIndex));
|
|
return;
|
|
}
|
|
llvm_unreachable("bad parameter ABI attribute");
|
|
}
|
|
|
|
/// Checks a regparm attribute, returning true if it is ill-formed and
|
|
/// otherwise setting numParams to the appropriate value.
|
|
bool Sema::CheckRegparmAttr(const AttributeList &AL, unsigned &numParams) {
|
|
if (AL.isInvalid())
|
|
return true;
|
|
|
|
if (!checkAttributeNumArgs(*this, AL, 1)) {
|
|
AL.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
uint32_t NP;
|
|
Expr *NumParamsExpr = AL.getArgAsExpr(0);
|
|
if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
|
|
AL.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
if (Context.getTargetInfo().getRegParmMax() == 0) {
|
|
Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
|
|
<< NumParamsExpr->getSourceRange();
|
|
AL.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
numParams = NP;
|
|
if (numParams > Context.getTargetInfo().getRegParmMax()) {
|
|
Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
|
|
<< Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
|
|
AL.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Checks whether an argument of launch_bounds attribute is
|
|
// acceptable, performs implicit conversion to Rvalue, and returns
|
|
// non-nullptr Expr result on success. Otherwise, it returns nullptr
|
|
// and may output an error.
|
|
static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
|
|
const CUDALaunchBoundsAttr &AL,
|
|
const unsigned Idx) {
|
|
if (S.DiagnoseUnexpandedParameterPack(E))
|
|
return nullptr;
|
|
|
|
// Accept template arguments for now as they depend on something else.
|
|
// We'll get to check them when they eventually get instantiated.
|
|
if (E->isValueDependent())
|
|
return E;
|
|
|
|
llvm::APSInt I(64);
|
|
if (!E->isIntegerConstantExpr(I, S.Context)) {
|
|
S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
|
|
<< &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
|
|
return nullptr;
|
|
}
|
|
// Make sure we can fit it in 32 bits.
|
|
if (!I.isIntN(32)) {
|
|
S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
|
|
<< 32 << /* Unsigned */ 1;
|
|
return nullptr;
|
|
}
|
|
if (I < 0)
|
|
S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
|
|
<< &AL << Idx << E->getSourceRange();
|
|
|
|
// We may need to perform implicit conversion of the argument.
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(
|
|
S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
|
|
ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
|
|
assert(!ValArg.isInvalid() &&
|
|
"Unexpected PerformCopyInitialization() failure.");
|
|
|
|
return ValArg.getAs<Expr>();
|
|
}
|
|
|
|
void Sema::AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads,
|
|
Expr *MinBlocks, unsigned SpellingListIndex) {
|
|
CUDALaunchBoundsAttr TmpAttr(AttrRange, Context, MaxThreads, MinBlocks,
|
|
SpellingListIndex);
|
|
MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
|
|
if (MaxThreads == nullptr)
|
|
return;
|
|
|
|
if (MinBlocks) {
|
|
MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
|
|
if (MinBlocks == nullptr)
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (Context) CUDALaunchBoundsAttr(
|
|
AttrRange, Context, MaxThreads, MinBlocks, SpellingListIndex));
|
|
}
|
|
|
|
static void handleLaunchBoundsAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
|
|
!checkAttributeAtMostNumArgs(S, AL, 2))
|
|
return;
|
|
|
|
S.AddLaunchBoundsAttr(AL.getRange(), D, AL.getArgAsExpr(0),
|
|
AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
|
|
AL.getAttributeSpellingListIndex());
|
|
}
|
|
|
|
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
ParamIdx ArgumentIdx;
|
|
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
|
|
ArgumentIdx))
|
|
return;
|
|
|
|
ParamIdx TypeTagIdx;
|
|
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
|
|
TypeTagIdx))
|
|
return;
|
|
|
|
bool IsPointer = AL.getName()->getName() == "pointer_with_type_tag";
|
|
if (IsPointer) {
|
|
// Ensure that buffer has a pointer type.
|
|
unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
|
|
if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
|
|
!getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
|
|
S.Diag(AL.getLoc(), diag::err_attribute_pointers_only)
|
|
<< AL.getName() << 0;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
|
|
AL.getRange(), S.Context, AL.getArgAsIdent(0)->Ident, ArgumentIdx,
|
|
TypeTagIdx, IsPointer, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!AL.isArgIdent(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
|
|
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
|
|
return;
|
|
}
|
|
|
|
if (!checkAttributeNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
if (!isa<VarDecl>(D)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedVariable;
|
|
return;
|
|
}
|
|
|
|
IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
|
|
TypeSourceInfo *MatchingCTypeLoc = nullptr;
|
|
S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
|
|
assert(MatchingCTypeLoc && "no type source info for attribute argument");
|
|
|
|
D->addAttr(::new (S.Context)
|
|
TypeTagForDatatypeAttr(AL.getRange(), S.Context, PointerKind,
|
|
MatchingCTypeLoc,
|
|
AL.getLayoutCompatible(),
|
|
AL.getMustBeNull(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleXRayLogArgsAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
ParamIdx ArgCount;
|
|
|
|
if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
|
|
ArgCount,
|
|
true /* CanIndexImplicitThis */))
|
|
return;
|
|
|
|
// ArgCount isn't a parameter index [0;n), it's a count [1;n]
|
|
D->addAttr(::new (S.Context) XRayLogArgsAttr(
|
|
AL.getRange(), S.Context, ArgCount.getSourceIndex(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Checker-specific attribute handlers.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
|
|
return QT->isDependentType() || QT->isObjCRetainableType();
|
|
}
|
|
|
|
static bool isValidSubjectOfNSAttribute(Sema &S, QualType QT) {
|
|
return QT->isDependentType() || QT->isObjCObjectPointerType() ||
|
|
S.Context.isObjCNSObjectType(QT);
|
|
}
|
|
|
|
static bool isValidSubjectOfCFAttribute(Sema &S, QualType QT) {
|
|
return QT->isDependentType() || QT->isPointerType() ||
|
|
isValidSubjectOfNSAttribute(S, QT);
|
|
}
|
|
|
|
static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
S.AddNSConsumedAttr(AL.getRange(), D, AL.getAttributeSpellingListIndex(),
|
|
AL.getKind() == AttributeList::AT_NSConsumed,
|
|
/*template instantiation*/ false);
|
|
}
|
|
|
|
void Sema::AddNSConsumedAttr(SourceRange AttrRange, Decl *D,
|
|
unsigned SpellingIndex, bool IsNSConsumed,
|
|
bool IsTemplateInstantiation) {
|
|
const auto *Param = cast<ParmVarDecl>(D);
|
|
bool TypeOK;
|
|
|
|
if (IsNSConsumed)
|
|
TypeOK = isValidSubjectOfNSAttribute(*this, Param->getType());
|
|
else
|
|
TypeOK = isValidSubjectOfCFAttribute(*this, Param->getType());
|
|
|
|
if (!TypeOK) {
|
|
// These attributes are normally just advisory, but in ARC, ns_consumed
|
|
// is significant. Allow non-dependent code to contain inappropriate
|
|
// attributes even in ARC, but require template instantiations to be
|
|
// set up correctly.
|
|
Diag(D->getLocStart(), (IsTemplateInstantiation && IsNSConsumed &&
|
|
getLangOpts().ObjCAutoRefCount
|
|
? diag::err_ns_attribute_wrong_parameter_type
|
|
: diag::warn_ns_attribute_wrong_parameter_type))
|
|
<< AttrRange << (IsNSConsumed ? "ns_consumed" : "cf_consumed")
|
|
<< (IsNSConsumed ? /*objc pointers*/ 0 : /*cf pointers*/ 1);
|
|
return;
|
|
}
|
|
|
|
if (IsNSConsumed)
|
|
D->addAttr(::new (Context)
|
|
NSConsumedAttr(AttrRange, Context, SpellingIndex));
|
|
else
|
|
D->addAttr(::new (Context)
|
|
CFConsumedAttr(AttrRange, Context, SpellingIndex));
|
|
}
|
|
|
|
bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
|
|
if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
|
|
return false;
|
|
|
|
Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
|
|
<< "'ns_returns_retained'" << 0 << 0;
|
|
return true;
|
|
}
|
|
|
|
static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
QualType ReturnType;
|
|
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
ReturnType = MD->getReturnType();
|
|
else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
|
|
(AL.getKind() == AttributeList::AT_NSReturnsRetained))
|
|
return; // ignore: was handled as a type attribute
|
|
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D))
|
|
ReturnType = PD->getType();
|
|
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
ReturnType = FD->getReturnType();
|
|
else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
|
|
ReturnType = Param->getType()->getPointeeType();
|
|
if (ReturnType.isNull()) {
|
|
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
|
|
<< AL.getName() << /*pointer-to-CF*/2
|
|
<< AL.getRange();
|
|
return;
|
|
}
|
|
} else if (AL.isUsedAsTypeAttr()) {
|
|
return;
|
|
} else {
|
|
AttributeDeclKind ExpectedDeclKind;
|
|
switch (AL.getKind()) {
|
|
default: llvm_unreachable("invalid ownership attribute");
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
case AttributeList::AT_NSReturnsAutoreleased:
|
|
case AttributeList::AT_NSReturnsNotRetained:
|
|
ExpectedDeclKind = ExpectedFunctionOrMethod;
|
|
break;
|
|
|
|
case AttributeList::AT_CFReturnsRetained:
|
|
case AttributeList::AT_CFReturnsNotRetained:
|
|
ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
|
|
break;
|
|
}
|
|
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getRange() << AL.getName() << ExpectedDeclKind;
|
|
return;
|
|
}
|
|
|
|
bool TypeOK;
|
|
bool Cf;
|
|
switch (AL.getKind()) {
|
|
default: llvm_unreachable("invalid ownership attribute");
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
|
|
Cf = false;
|
|
break;
|
|
|
|
case AttributeList::AT_NSReturnsAutoreleased:
|
|
case AttributeList::AT_NSReturnsNotRetained:
|
|
TypeOK = isValidSubjectOfNSAttribute(S, ReturnType);
|
|
Cf = false;
|
|
break;
|
|
|
|
case AttributeList::AT_CFReturnsRetained:
|
|
case AttributeList::AT_CFReturnsNotRetained:
|
|
TypeOK = isValidSubjectOfCFAttribute(S, ReturnType);
|
|
Cf = true;
|
|
break;
|
|
}
|
|
|
|
if (!TypeOK) {
|
|
if (AL.isUsedAsTypeAttr())
|
|
return;
|
|
|
|
if (isa<ParmVarDecl>(D)) {
|
|
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
|
|
<< AL.getName() << /*pointer-to-CF*/2
|
|
<< AL.getRange();
|
|
} else {
|
|
// Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
|
|
enum : unsigned {
|
|
Function,
|
|
Method,
|
|
Property
|
|
} SubjectKind = Function;
|
|
if (isa<ObjCMethodDecl>(D))
|
|
SubjectKind = Method;
|
|
else if (isa<ObjCPropertyDecl>(D))
|
|
SubjectKind = Property;
|
|
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
|
|
<< AL.getName() << SubjectKind << Cf
|
|
<< AL.getRange();
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (AL.getKind()) {
|
|
default:
|
|
llvm_unreachable("invalid ownership attribute");
|
|
case AttributeList::AT_NSReturnsAutoreleased:
|
|
D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_CFReturnsNotRetained:
|
|
D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_NSReturnsNotRetained:
|
|
D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_CFReturnsRetained:
|
|
D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
return;
|
|
};
|
|
}
|
|
|
|
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
|
|
const AttributeList &Attrs) {
|
|
const int EP_ObjCMethod = 1;
|
|
const int EP_ObjCProperty = 2;
|
|
|
|
SourceLocation loc = Attrs.getLoc();
|
|
QualType resultType;
|
|
if (isa<ObjCMethodDecl>(D))
|
|
resultType = cast<ObjCMethodDecl>(D)->getReturnType();
|
|
else
|
|
resultType = cast<ObjCPropertyDecl>(D)->getType();
|
|
|
|
if (!resultType->isReferenceType() &&
|
|
(!resultType->isPointerType() || resultType->isObjCRetainableType())) {
|
|
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
|
|
<< SourceRange(loc)
|
|
<< Attrs.getName()
|
|
<< (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
|
|
<< /*non-retainable pointer*/ 2;
|
|
|
|
// Drop the attribute.
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
|
|
Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
|
|
const AttributeList &Attrs) {
|
|
const auto *Method = cast<ObjCMethodDecl>(D);
|
|
|
|
const DeclContext *DC = Method->getDeclContext();
|
|
if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
|
|
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
|
|
<< Attrs.getName() << 0;
|
|
S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
|
|
return;
|
|
}
|
|
if (Method->getMethodFamily() == OMF_dealloc) {
|
|
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
|
|
<< Attrs.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(
|
|
Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCBridgeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
|
|
|
|
if (!Parm) {
|
|
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << AL.getName() << 0;
|
|
return;
|
|
}
|
|
|
|
// Typedefs only allow objc_bridge(id) and have some additional checking.
|
|
if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
if (!Parm->Ident->isStr("id")) {
|
|
S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id)
|
|
<< AL.getName();
|
|
return;
|
|
}
|
|
|
|
// Only allow 'cv void *'.
|
|
QualType T = TD->getUnderlyingType();
|
|
if (!T->isVoidPointerType()) {
|
|
S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
|
|
return;
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ObjCBridgeAttr(AL.getRange(), S.Context, Parm->Ident,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
|
|
|
|
if (!Parm) {
|
|
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << AL.getName() << 0;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ObjCBridgeMutableAttr(AL.getRange(), S.Context, Parm->Ident,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
IdentifierInfo *RelatedClass =
|
|
AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
|
|
if (!RelatedClass) {
|
|
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << AL.getName() << 0;
|
|
return;
|
|
}
|
|
IdentifierInfo *ClassMethod =
|
|
AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
|
|
IdentifierInfo *InstanceMethod =
|
|
AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
|
|
D->addAttr(::new (S.Context)
|
|
ObjCBridgeRelatedAttr(AL.getRange(), S.Context, RelatedClass,
|
|
ClassMethod, InstanceMethod,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
ObjCInterfaceDecl *IFace;
|
|
if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
|
|
IFace = CatDecl->getClassInterface();
|
|
else
|
|
IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
|
|
|
|
if (!IFace)
|
|
return;
|
|
|
|
IFace->setHasDesignatedInitializers();
|
|
D->addAttr(::new (S.Context)
|
|
ObjCDesignatedInitializerAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleObjCRuntimeName(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
StringRef MetaDataName;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
|
|
return;
|
|
D->addAttr(::new (S.Context)
|
|
ObjCRuntimeNameAttr(AL.getRange(), S.Context,
|
|
MetaDataName,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
// When a user wants to use objc_boxable with a union or struct
|
|
// but they don't have access to the declaration (legacy/third-party code)
|
|
// then they can 'enable' this feature with a typedef:
|
|
// typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
|
|
static void handleObjCBoxable(Sema &S, Decl *D, const AttributeList &AL) {
|
|
bool notify = false;
|
|
|
|
auto *RD = dyn_cast<RecordDecl>(D);
|
|
if (RD && RD->getDefinition()) {
|
|
RD = RD->getDefinition();
|
|
notify = true;
|
|
}
|
|
|
|
if (RD) {
|
|
ObjCBoxableAttr *BoxableAttr = ::new (S.Context)
|
|
ObjCBoxableAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex());
|
|
RD->addAttr(BoxableAttr);
|
|
if (notify) {
|
|
// we need to notify ASTReader/ASTWriter about
|
|
// modification of existing declaration
|
|
if (ASTMutationListener *L = S.getASTMutationListener())
|
|
L->AddedAttributeToRecord(BoxableAttr, RD);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handleObjCOwnershipAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (hasDeclarator(D)) return;
|
|
|
|
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
|
|
<< AL.getRange() << AL.getName() << ExpectedVariable;
|
|
}
|
|
|
|
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
const auto *VD = cast<ValueDecl>(D);
|
|
QualType QT = VD->getType();
|
|
|
|
if (!QT->isDependentType() &&
|
|
!QT->isObjCLifetimeType()) {
|
|
S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
|
|
<< QT;
|
|
return;
|
|
}
|
|
|
|
Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
|
|
|
|
// If we have no lifetime yet, check the lifetime we're presumably
|
|
// going to infer.
|
|
if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
|
|
Lifetime = QT->getObjCARCImplicitLifetime();
|
|
|
|
switch (Lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
assert(QT->isDependentType() &&
|
|
"didn't infer lifetime for non-dependent type?");
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak: // meaningful
|
|
case Qualifiers::OCL_Strong: // meaningful
|
|
break;
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
|
|
<< (Lifetime == Qualifiers::OCL_Autoreleasing);
|
|
break;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
ObjCPreciseLifetimeAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Microsoft specific attribute handlers.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UuidAttr *Sema::mergeUuidAttr(Decl *D, SourceRange Range,
|
|
unsigned AttrSpellingListIndex, StringRef Uuid) {
|
|
if (const auto *UA = D->getAttr<UuidAttr>()) {
|
|
if (UA->getGuid().equals_lower(Uuid))
|
|
return nullptr;
|
|
Diag(UA->getLocation(), diag::err_mismatched_uuid);
|
|
Diag(Range.getBegin(), diag::note_previous_uuid);
|
|
D->dropAttr<UuidAttr>();
|
|
}
|
|
|
|
return ::new (Context) UuidAttr(Range, Context, Uuid, AttrSpellingListIndex);
|
|
}
|
|
|
|
static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!S.LangOpts.CPlusPlus) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
|
|
<< AL.getName() << AttributeLangSupport::C;
|
|
return;
|
|
}
|
|
|
|
StringRef StrRef;
|
|
SourceLocation LiteralLoc;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc))
|
|
return;
|
|
|
|
// GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
|
|
// "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
|
|
if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
|
|
StrRef = StrRef.drop_front().drop_back();
|
|
|
|
// Validate GUID length.
|
|
if (StrRef.size() != 36) {
|
|
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0; i < 36; ++i) {
|
|
if (i == 8 || i == 13 || i == 18 || i == 23) {
|
|
if (StrRef[i] != '-') {
|
|
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
|
|
return;
|
|
}
|
|
} else if (!isHexDigit(StrRef[i])) {
|
|
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
|
|
// the only thing in the [] list, the [] too), and add an insertion of
|
|
// __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
|
|
// separating attributes nor of the [ and the ] are in the AST.
|
|
// Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
|
|
// on cfe-dev.
|
|
if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
|
|
S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
|
|
|
|
UuidAttr *UA = S.mergeUuidAttr(D, AL.getRange(),
|
|
AL.getAttributeSpellingListIndex(), StrRef);
|
|
if (UA)
|
|
D->addAttr(UA);
|
|
}
|
|
|
|
static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!S.LangOpts.CPlusPlus) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
|
|
<< AL.getName() << AttributeLangSupport::C;
|
|
return;
|
|
}
|
|
MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
|
|
D, AL.getRange(), /*BestCase=*/true,
|
|
AL.getAttributeSpellingListIndex(),
|
|
(MSInheritanceAttr::Spelling)AL.getSemanticSpelling());
|
|
if (IA) {
|
|
D->addAttr(IA);
|
|
S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
|
|
}
|
|
}
|
|
|
|
static void handleDeclspecThreadAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
const auto *VD = cast<VarDecl>(D);
|
|
if (!S.Context.getTargetInfo().isTLSSupported()) {
|
|
S.Diag(AL.getLoc(), diag::err_thread_unsupported);
|
|
return;
|
|
}
|
|
if (VD->getTSCSpec() != TSCS_unspecified) {
|
|
S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
|
|
return;
|
|
}
|
|
if (VD->hasLocalStorage()) {
|
|
S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
|
|
return;
|
|
}
|
|
D->addAttr(::new (S.Context) ThreadAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAbiTagAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
SmallVector<StringRef, 4> Tags;
|
|
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
|
|
StringRef Tag;
|
|
if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
|
|
return;
|
|
Tags.push_back(Tag);
|
|
}
|
|
|
|
if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
|
|
if (!NS->isInline()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
|
|
return;
|
|
}
|
|
if (NS->isAnonymousNamespace()) {
|
|
S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
|
|
return;
|
|
}
|
|
if (AL.getNumArgs() == 0)
|
|
Tags.push_back(NS->getName());
|
|
} else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
// Store tags sorted and without duplicates.
|
|
llvm::sort(Tags.begin(), Tags.end());
|
|
Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AbiTagAttr(AL.getRange(), S.Context, Tags.data(), Tags.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleARMInterruptAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Check the attribute arguments.
|
|
if (AL.getNumArgs() > 1) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
StringRef Str;
|
|
SourceLocation ArgLoc;
|
|
|
|
if (AL.getNumArgs() == 0)
|
|
Str = "";
|
|
else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
|
|
return;
|
|
|
|
ARMInterruptAttr::InterruptType Kind;
|
|
if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << Str << ArgLoc;
|
|
return;
|
|
}
|
|
|
|
unsigned Index = AL.getAttributeSpellingListIndex();
|
|
D->addAttr(::new (S.Context)
|
|
ARMInterruptAttr(AL.getLoc(), S.Context, Kind, Index));
|
|
}
|
|
|
|
static void handleMSP430InterruptAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
if (!AL.isArgExpr(0)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL.getName()
|
|
<< AANT_ArgumentIntegerConstant;
|
|
return;
|
|
}
|
|
|
|
// FIXME: Check for decl - it should be void ()(void).
|
|
|
|
Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
|
|
llvm::APSInt NumParams(32);
|
|
if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
|
|
<< AL.getName() << AANT_ArgumentIntegerConstant
|
|
<< NumParamsExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
unsigned Num = NumParams.getLimitedValue(255);
|
|
if ((Num & 1) || Num > 30) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
|
|
<< AL.getName() << (int)NumParams.getSExtValue()
|
|
<< NumParamsExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
MSP430InterruptAttr(AL.getLoc(), S.Context, Num,
|
|
AL.getAttributeSpellingListIndex()));
|
|
D->addAttr(UsedAttr::CreateImplicit(S.Context));
|
|
}
|
|
|
|
static void handleMipsInterruptAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Only one optional argument permitted.
|
|
if (AL.getNumArgs() > 1) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
StringRef Str;
|
|
SourceLocation ArgLoc;
|
|
|
|
if (AL.getNumArgs() == 0)
|
|
Str = "";
|
|
else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
|
|
return;
|
|
|
|
// Semantic checks for a function with the 'interrupt' attribute for MIPS:
|
|
// a) Must be a function.
|
|
// b) Must have no parameters.
|
|
// c) Must have the 'void' return type.
|
|
// d) Cannot have the 'mips16' attribute, as that instruction set
|
|
// lacks the 'eret' instruction.
|
|
// e) The attribute itself must either have no argument or one of the
|
|
// valid interrupt types, see [MipsInterruptDocs].
|
|
|
|
if (!isFunctionOrMethod(D)) {
|
|
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
|
|
<< "'interrupt'" << ExpectedFunctionOrMethod;
|
|
return;
|
|
}
|
|
|
|
if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
|
|
S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
|
|
<< 0;
|
|
return;
|
|
}
|
|
|
|
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
|
|
S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
|
|
<< 1;
|
|
return;
|
|
}
|
|
|
|
if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL.getRange(),
|
|
AL.getName()))
|
|
return;
|
|
|
|
MipsInterruptAttr::InterruptType Kind;
|
|
if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< AL.getName() << "'" + std::string(Str) + "'";
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) MipsInterruptAttr(
|
|
AL.getLoc(), S.Context, Kind, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAnyX86InterruptAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Semantic checks for a function with the 'interrupt' attribute.
|
|
// a) Must be a function.
|
|
// b) Must have the 'void' return type.
|
|
// c) Must take 1 or 2 arguments.
|
|
// d) The 1st argument must be a pointer.
|
|
// e) The 2nd argument (if any) must be an unsigned integer.
|
|
if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
|
|
CXXMethodDecl::isStaticOverloadedOperator(
|
|
cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunctionWithProtoType;
|
|
return;
|
|
}
|
|
// Interrupt handler must have void return type.
|
|
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
|
|
S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
|
|
diag::err_anyx86_interrupt_attribute)
|
|
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
|
|
? 0
|
|
: 1)
|
|
<< 0;
|
|
return;
|
|
}
|
|
// Interrupt handler must have 1 or 2 parameters.
|
|
unsigned NumParams = getFunctionOrMethodNumParams(D);
|
|
if (NumParams < 1 || NumParams > 2) {
|
|
S.Diag(D->getLocStart(), diag::err_anyx86_interrupt_attribute)
|
|
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
|
|
? 0
|
|
: 1)
|
|
<< 1;
|
|
return;
|
|
}
|
|
// The first argument must be a pointer.
|
|
if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
|
|
S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
|
|
diag::err_anyx86_interrupt_attribute)
|
|
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
|
|
? 0
|
|
: 1)
|
|
<< 2;
|
|
return;
|
|
}
|
|
// The second argument, if present, must be an unsigned integer.
|
|
unsigned TypeSize =
|
|
S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
|
|
? 64
|
|
: 32;
|
|
if (NumParams == 2 &&
|
|
(!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
|
|
S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
|
|
S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
|
|
diag::err_anyx86_interrupt_attribute)
|
|
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
|
|
? 0
|
|
: 1)
|
|
<< 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
|
|
return;
|
|
}
|
|
D->addAttr(::new (S.Context) AnyX86InterruptAttr(
|
|
AL.getLoc(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
D->addAttr(UsedAttr::CreateImplicit(S.Context));
|
|
}
|
|
|
|
static void handleAVRInterruptAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!isFunctionOrMethod(D)) {
|
|
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
|
|
<< "'interrupt'" << ExpectedFunction;
|
|
return;
|
|
}
|
|
|
|
if (!checkAttributeNumArgs(S, AL, 0))
|
|
return;
|
|
|
|
handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
|
|
}
|
|
|
|
static void handleAVRSignalAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!isFunctionOrMethod(D)) {
|
|
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
|
|
<< "'signal'" << ExpectedFunction;
|
|
return;
|
|
}
|
|
|
|
if (!checkAttributeNumArgs(S, AL, 0))
|
|
return;
|
|
|
|
handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
|
|
}
|
|
|
|
static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// Dispatch the interrupt attribute based on the current target.
|
|
switch (S.Context.getTargetInfo().getTriple().getArch()) {
|
|
case llvm::Triple::msp430:
|
|
handleMSP430InterruptAttr(S, D, AL);
|
|
break;
|
|
case llvm::Triple::mipsel:
|
|
case llvm::Triple::mips:
|
|
handleMipsInterruptAttr(S, D, AL);
|
|
break;
|
|
case llvm::Triple::x86:
|
|
case llvm::Triple::x86_64:
|
|
handleAnyX86InterruptAttr(S, D, AL);
|
|
break;
|
|
case llvm::Triple::avr:
|
|
handleAVRInterruptAttr(S, D, AL);
|
|
break;
|
|
default:
|
|
handleARMInterruptAttr(S, D, AL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
uint32_t Min = 0;
|
|
Expr *MinExpr = AL.getArgAsExpr(0);
|
|
if (!checkUInt32Argument(S, AL, MinExpr, Min))
|
|
return;
|
|
|
|
uint32_t Max = 0;
|
|
Expr *MaxExpr = AL.getArgAsExpr(1);
|
|
if (!checkUInt32Argument(S, AL, MaxExpr, Max))
|
|
return;
|
|
|
|
if (Min == 0 && Max != 0) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
|
|
<< AL.getName() << 0;
|
|
return;
|
|
}
|
|
if (Min > Max) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AMDGPUFlatWorkGroupSizeAttr(AL.getLoc(), S.Context, Min, Max,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
uint32_t Min = 0;
|
|
Expr *MinExpr = AL.getArgAsExpr(0);
|
|
if (!checkUInt32Argument(S, AL, MinExpr, Min))
|
|
return;
|
|
|
|
uint32_t Max = 0;
|
|
if (AL.getNumArgs() == 2) {
|
|
Expr *MaxExpr = AL.getArgAsExpr(1);
|
|
if (!checkUInt32Argument(S, AL, MaxExpr, Max))
|
|
return;
|
|
}
|
|
|
|
if (Min == 0 && Max != 0) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
|
|
<< AL.getName() << 0;
|
|
return;
|
|
}
|
|
if (Max != 0 && Min > Max) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
|
|
<< AL.getName() << 1;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AMDGPUWavesPerEUAttr(AL.getLoc(), S.Context, Min, Max,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
uint32_t NumSGPR = 0;
|
|
Expr *NumSGPRExpr = AL.getArgAsExpr(0);
|
|
if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AMDGPUNumSGPRAttr(AL.getLoc(), S.Context, NumSGPR,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
uint32_t NumVGPR = 0;
|
|
Expr *NumVGPRExpr = AL.getArgAsExpr(0);
|
|
if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context)
|
|
AMDGPUNumVGPRAttr(AL.getLoc(), S.Context, NumVGPR,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
|
|
const AttributeList& AL) {
|
|
// If we try to apply it to a function pointer, don't warn, but don't
|
|
// do anything, either. It doesn't matter anyway, because there's nothing
|
|
// special about calling a force_align_arg_pointer function.
|
|
const auto *VD = dyn_cast<ValueDecl>(D);
|
|
if (VD && VD->getType()->isFunctionPointerType())
|
|
return;
|
|
// Also don't warn on function pointer typedefs.
|
|
const auto *TD = dyn_cast<TypedefNameDecl>(D);
|
|
if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
|
|
TD->getUnderlyingType()->isFunctionType()))
|
|
return;
|
|
// Attribute can only be applied to function types.
|
|
if (!isa<FunctionDecl>(D)) {
|
|
S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunction;
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
X86ForceAlignArgPointerAttr(AL.getRange(), S.Context,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleLayoutVersion(Sema &S, Decl *D, const AttributeList &AL) {
|
|
uint32_t Version;
|
|
Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
|
|
if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
|
|
return;
|
|
|
|
// TODO: Investigate what happens with the next major version of MSVC.
|
|
if (Version != LangOptions::MSVC2015) {
|
|
S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
|
|
<< AL.getName() << Version << VersionExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
D->addAttr(::new (S.Context)
|
|
LayoutVersionAttr(AL.getRange(), S.Context, Version,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (D->hasAttr<DLLExportAttr>()) {
|
|
Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
|
|
return nullptr;
|
|
}
|
|
|
|
if (D->hasAttr<DLLImportAttr>())
|
|
return nullptr;
|
|
|
|
return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
|
|
}
|
|
|
|
DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
|
|
unsigned AttrSpellingListIndex) {
|
|
if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
|
|
Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
|
|
D->dropAttr<DLLImportAttr>();
|
|
}
|
|
|
|
if (D->hasAttr<DLLExportAttr>())
|
|
return nullptr;
|
|
|
|
return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
|
|
}
|
|
|
|
static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
|
|
if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
|
|
S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
|
|
<< A.getName();
|
|
return;
|
|
}
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
|
|
!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
// MinGW doesn't allow dllimport on inline functions.
|
|
S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
|
|
<< A.getName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
MD->getParent()->isLambda()) {
|
|
S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A.getName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned Index = A.getAttributeSpellingListIndex();
|
|
Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
|
|
? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
|
|
: (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
|
|
if (NewAttr)
|
|
D->addAttr(NewAttr);
|
|
}
|
|
|
|
MSInheritanceAttr *
|
|
Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
|
|
unsigned AttrSpellingListIndex,
|
|
MSInheritanceAttr::Spelling SemanticSpelling) {
|
|
if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
|
|
if (IA->getSemanticSpelling() == SemanticSpelling)
|
|
return nullptr;
|
|
Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
|
|
<< 1 /*previous declaration*/;
|
|
Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
|
|
D->dropAttr<MSInheritanceAttr>();
|
|
}
|
|
|
|
auto *RD = cast<CXXRecordDecl>(D);
|
|
if (RD->hasDefinition()) {
|
|
if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
|
|
SemanticSpelling)) {
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
|
|
Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
|
|
<< 1 /*partial specialization*/;
|
|
return nullptr;
|
|
}
|
|
if (RD->getDescribedClassTemplate()) {
|
|
Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
|
|
<< 0 /*primary template*/;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return ::new (Context)
|
|
MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
|
|
}
|
|
|
|
static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
// The capability attributes take a single string parameter for the name of
|
|
// the capability they represent. The lockable attribute does not take any
|
|
// parameters. However, semantically, both attributes represent the same
|
|
// concept, and so they use the same semantic attribute. Eventually, the
|
|
// lockable attribute will be removed.
|
|
//
|
|
// For backward compatibility, any capability which has no specified string
|
|
// literal will be considered a "mutex."
|
|
StringRef N("mutex");
|
|
SourceLocation LiteralLoc;
|
|
if (AL.getKind() == AttributeList::AT_Capability &&
|
|
!S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
|
|
return;
|
|
|
|
// Currently, there are only two names allowed for a capability: role and
|
|
// mutex (case insensitive). Diagnose other capability names.
|
|
if (!N.equals_lower("mutex") && !N.equals_lower("role"))
|
|
S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
|
|
|
|
D->addAttr(::new (S.Context) CapabilityAttr(AL.getRange(), S.Context, N,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAssertCapabilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr*, 1> Args;
|
|
if (!checkLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) AssertCapabilityAttr(AL.getRange(), S.Context,
|
|
Args.data(), Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr*, 1> Args;
|
|
if (!checkLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) AcquireCapabilityAttr(AL.getRange(),
|
|
S.Context,
|
|
Args.data(), Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
SmallVector<Expr*, 2> Args;
|
|
if (!checkTryLockFunAttrCommon(S, D, AL, Args))
|
|
return;
|
|
|
|
D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(AL.getRange(),
|
|
S.Context,
|
|
AL.getArgAsExpr(0),
|
|
Args.data(),
|
|
Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Check that all arguments are lockable objects.
|
|
SmallVector<Expr *, 1> Args;
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
|
|
|
|
D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
|
|
AL.getRange(), S.Context, Args.data(), Args.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
// check that all arguments are lockable objects
|
|
SmallVector<Expr*, 1> Args;
|
|
checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
|
|
if (Args.empty())
|
|
return;
|
|
|
|
RequiresCapabilityAttr *RCA = ::new (S.Context)
|
|
RequiresCapabilityAttr(AL.getRange(), S.Context, Args.data(),
|
|
Args.size(), AL.getAttributeSpellingListIndex());
|
|
|
|
D->addAttr(RCA);
|
|
}
|
|
|
|
static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
|
|
if (NSD->isAnonymousNamespace()) {
|
|
S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
|
|
// Do not want to attach the attribute to the namespace because that will
|
|
// cause confusing diagnostic reports for uses of declarations within the
|
|
// namespace.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle the cases where the attribute has a text message.
|
|
StringRef Str, Replacement;
|
|
if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
|
|
!S.checkStringLiteralArgumentAttr(AL, 0, Str))
|
|
return;
|
|
|
|
// Only support a single optional message for Declspec and CXX11.
|
|
if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
|
|
checkAttributeAtMostNumArgs(S, AL, 1);
|
|
else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
|
|
!S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
|
|
return;
|
|
|
|
if (!S.getLangOpts().CPlusPlus14)
|
|
if (AL.isCXX11Attribute() &&
|
|
!(AL.hasScope() && AL.getScopeName()->isStr("gnu")))
|
|
S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL.getName();
|
|
|
|
D->addAttr(::new (S.Context)
|
|
DeprecatedAttr(AL.getRange(), S.Context, Str, Replacement,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static bool isGlobalVar(const Decl *D) {
|
|
if (const auto *S = dyn_cast<VarDecl>(D))
|
|
return S->hasGlobalStorage();
|
|
return false;
|
|
}
|
|
|
|
static void handleNoSanitizeAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (!checkAttributeAtLeastNumArgs(S, AL, 1))
|
|
return;
|
|
|
|
std::vector<StringRef> Sanitizers;
|
|
|
|
for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
|
|
StringRef SanitizerName;
|
|
SourceLocation LiteralLoc;
|
|
|
|
if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
|
|
return;
|
|
|
|
if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 0)
|
|
S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
|
|
else if (isGlobalVar(D) && SanitizerName != "address")
|
|
S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunctionOrMethod;
|
|
Sanitizers.push_back(SanitizerName);
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) NoSanitizeAttr(
|
|
AL.getRange(), S.Context, Sanitizers.data(), Sanitizers.size(),
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
StringRef AttrName = AL.getName()->getName();
|
|
normalizeName(AttrName);
|
|
StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
|
|
.Case("no_address_safety_analysis", "address")
|
|
.Case("no_sanitize_address", "address")
|
|
.Case("no_sanitize_thread", "thread")
|
|
.Case("no_sanitize_memory", "memory");
|
|
if (isGlobalVar(D) && SanitizerName != "address")
|
|
S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
|
|
<< AL.getName() << ExpectedFunction;
|
|
D->addAttr(::new (S.Context)
|
|
NoSanitizeAttr(AL.getRange(), S.Context, &SanitizerName, 1,
|
|
AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
static void handleInternalLinkageAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (InternalLinkageAttr *Internal =
|
|
S.mergeInternalLinkageAttr(D, AL.getRange(), AL.getName(),
|
|
AL.getAttributeSpellingListIndex()))
|
|
D->addAttr(Internal);
|
|
}
|
|
|
|
static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const AttributeList &AL) {
|
|
if (S.LangOpts.OpenCLVersion != 200)
|
|
S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
|
|
<< AL.getName() << "2.0" << 0;
|
|
else
|
|
S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
|
|
<< AL.getName() << "2.0";
|
|
}
|
|
|
|
/// Handles semantic checking for features that are common to all attributes,
|
|
/// such as checking whether a parameter was properly specified, or the correct
|
|
/// number of arguments were passed, etc.
|
|
static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
// Several attributes carry different semantics than the parsing requires, so
|
|
// those are opted out of the common argument checks.
|
|
//
|
|
// We also bail on unknown and ignored attributes because those are handled
|
|
// as part of the target-specific handling logic.
|
|
if (AL.getKind() == AttributeList::UnknownAttribute)
|
|
return false;
|
|
// Check whether the attribute requires specific language extensions to be
|
|
// enabled.
|
|
if (!AL.diagnoseLangOpts(S))
|
|
return true;
|
|
// Check whether the attribute appertains to the given subject.
|
|
if (!AL.diagnoseAppertainsTo(S, D))
|
|
return true;
|
|
if (AL.hasCustomParsing())
|
|
return false;
|
|
|
|
if (AL.getMinArgs() == AL.getMaxArgs()) {
|
|
// If there are no optional arguments, then checking for the argument count
|
|
// is trivial.
|
|
if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
|
|
return true;
|
|
} else {
|
|
// There are optional arguments, so checking is slightly more involved.
|
|
if (AL.getMinArgs() &&
|
|
!checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
|
|
return true;
|
|
else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
|
|
!checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
|
|
return true;
|
|
}
|
|
|
|
if (S.CheckAttrTarget(AL))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void handleOpenCLAccessAttr(Sema &S, Decl *D,
|
|
const AttributeList &AL) {
|
|
if (D->isInvalidDecl())
|
|
return;
|
|
|
|
// Check if there is only one access qualifier.
|
|
if (D->hasAttr<OpenCLAccessAttr>()) {
|
|
S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
|
|
<< D->getSourceRange();
|
|
D->setInvalidDecl(true);
|
|
return;
|
|
}
|
|
|
|
// OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
|
|
// image object can be read and written.
|
|
// OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
|
|
// object. Using the read_write (or __read_write) qualifier with the pipe
|
|
// qualifier is a compilation error.
|
|
if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
|
|
const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
|
|
if (AL.getName()->getName().find("read_write") != StringRef::npos) {
|
|
if (S.getLangOpts().OpenCLVersion < 200 || DeclTy->isPipeType()) {
|
|
S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
|
|
<< AL.getName() << PDecl->getType() << DeclTy->isImageType();
|
|
D->setInvalidDecl(true);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
D->addAttr(::new (S.Context) OpenCLAccessAttr(
|
|
AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Sema Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
|
|
/// the attribute applies to decls. If the attribute is a type attribute, just
|
|
/// silently ignore it if a GNU attribute.
|
|
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
|
|
const AttributeList &AL,
|
|
bool IncludeCXX11Attributes) {
|
|
if (AL.isInvalid() || AL.getKind() == AttributeList::IgnoredAttribute)
|
|
return;
|
|
|
|
// Ignore C++11 attributes on declarator chunks: they appertain to the type
|
|
// instead.
|
|
if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
|
|
return;
|
|
|
|
// Unknown attributes are automatically warned on. Target-specific attributes
|
|
// which do not apply to the current target architecture are treated as
|
|
// though they were unknown attributes.
|
|
if (AL.getKind() == AttributeList::UnknownAttribute ||
|
|
!AL.existsInTarget(S.Context.getTargetInfo())) {
|
|
S.Diag(AL.getLoc(), AL.isDeclspecAttribute()
|
|
? diag::warn_unhandled_ms_attribute_ignored
|
|
: diag::warn_unknown_attribute_ignored)
|
|
<< AL.getName();
|
|
return;
|
|
}
|
|
|
|
if (handleCommonAttributeFeatures(S, D, AL))
|
|
return;
|
|
|
|
switch (AL.getKind()) {
|
|
default:
|
|
if (!AL.isStmtAttr()) {
|
|
// Type attributes are handled elsewhere; silently move on.
|
|
assert(AL.isTypeAttr() && "Non-type attribute not handled");
|
|
break;
|
|
}
|
|
S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
|
|
<< AL.getName() << D->getLocation();
|
|
break;
|
|
case AttributeList::AT_Interrupt:
|
|
handleInterruptAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_X86ForceAlignArgPointer:
|
|
handleX86ForceAlignArgPointerAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_DLLExport:
|
|
case AttributeList::AT_DLLImport:
|
|
handleDLLAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Mips16:
|
|
handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
|
|
MipsInterruptAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoMips16:
|
|
handleSimpleAttribute<NoMips16Attr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MicroMips:
|
|
handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoMicroMips:
|
|
handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MipsLongCall:
|
|
handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
|
|
S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MipsShortCall:
|
|
handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
|
|
S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AMDGPUFlatWorkGroupSize:
|
|
handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AMDGPUWavesPerEU:
|
|
handleAMDGPUWavesPerEUAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AMDGPUNumSGPR:
|
|
handleAMDGPUNumSGPRAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AMDGPUNumVGPR:
|
|
handleAMDGPUNumVGPRAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AVRSignal:
|
|
handleAVRSignalAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_IBAction:
|
|
handleSimpleAttribute<IBActionAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_IBOutlet:
|
|
handleIBOutlet(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_IBOutletCollection:
|
|
handleIBOutletCollection(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_IFunc:
|
|
handleIFuncAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Alias:
|
|
handleAliasAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Aligned:
|
|
handleAlignedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AlignValue:
|
|
handleAlignValueAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AllocSize:
|
|
handleAllocSizeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AlwaysInline:
|
|
handleAlwaysInlineAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Artificial:
|
|
handleSimpleAttribute<ArtificialAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AnalyzerNoReturn:
|
|
handleAnalyzerNoReturnAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_TLSModel:
|
|
handleTLSModelAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Annotate:
|
|
handleAnnotateAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Availability:
|
|
handleAvailabilityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CarriesDependency:
|
|
handleDependencyAttr(S, scope, D, AL);
|
|
break;
|
|
case AttributeList::AT_Common:
|
|
handleCommonAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CUDAConstant:
|
|
handleConstantAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_PassObjectSize:
|
|
handlePassObjectSizeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Constructor:
|
|
handleConstructorAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CXX11NoReturn:
|
|
handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Deprecated:
|
|
handleDeprecatedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Destructor:
|
|
handleDestructorAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_EnableIf:
|
|
handleEnableIfAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_DiagnoseIf:
|
|
handleDiagnoseIfAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ExtVectorType:
|
|
handleExtVectorTypeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ExternalSourceSymbol:
|
|
handleExternalSourceSymbolAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MinSize:
|
|
handleMinSizeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_OptimizeNone:
|
|
handleOptimizeNoneAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_FlagEnum:
|
|
handleSimpleAttribute<FlagEnumAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_EnumExtensibility:
|
|
handleEnumExtensibilityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Flatten:
|
|
handleSimpleAttribute<FlattenAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Format:
|
|
handleFormatAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_FormatArg:
|
|
handleFormatArgAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CUDAGlobal:
|
|
handleGlobalAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CUDADevice:
|
|
handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
|
|
AL);
|
|
break;
|
|
case AttributeList::AT_CUDAHost:
|
|
handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D,
|
|
AL);
|
|
break;
|
|
case AttributeList::AT_GNUInline:
|
|
handleGNUInlineAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CUDALaunchBounds:
|
|
handleLaunchBoundsAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Restrict:
|
|
handleRestrictAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MayAlias:
|
|
handleSimpleAttribute<MayAliasAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Mode:
|
|
handleModeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoAlias:
|
|
handleSimpleAttribute<NoAliasAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoCommon:
|
|
handleSimpleAttribute<NoCommonAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoSplitStack:
|
|
handleSimpleAttribute<NoSplitStackAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NonNull:
|
|
if (auto *PVD = dyn_cast<ParmVarDecl>(D))
|
|
handleNonNullAttrParameter(S, PVD, AL);
|
|
else
|
|
handleNonNullAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ReturnsNonNull:
|
|
handleReturnsNonNullAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoEscape:
|
|
handleNoEscapeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AssumeAligned:
|
|
handleAssumeAlignedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AllocAlign:
|
|
handleAllocAlignAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Overloadable:
|
|
handleSimpleAttribute<OverloadableAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Ownership:
|
|
handleOwnershipAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Cold:
|
|
handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Hot:
|
|
handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Naked:
|
|
handleNakedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoReturn:
|
|
handleNoReturnAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AnyX86NoCfCheck:
|
|
handleNoCfCheckAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoThrow:
|
|
handleSimpleAttribute<NoThrowAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CUDAShared:
|
|
handleSharedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_VecReturn:
|
|
handleVecReturnAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCOwnership:
|
|
handleObjCOwnershipAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCPreciseLifetime:
|
|
handleObjCPreciseLifetimeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCReturnsInnerPointer:
|
|
handleObjCReturnsInnerPointerAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCRequiresSuper:
|
|
handleObjCRequiresSuperAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCBridge:
|
|
handleObjCBridgeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCBridgeMutable:
|
|
handleObjCBridgeMutableAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCBridgeRelated:
|
|
handleObjCBridgeRelatedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCDesignatedInitializer:
|
|
handleObjCDesignatedInitializer(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCRuntimeName:
|
|
handleObjCRuntimeName(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCRuntimeVisible:
|
|
handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCBoxable:
|
|
handleObjCBoxable(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CFAuditedTransfer:
|
|
handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
|
|
CFUnknownTransferAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CFUnknownTransfer:
|
|
handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
|
|
CFAuditedTransferAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CFConsumed:
|
|
case AttributeList::AT_NSConsumed:
|
|
handleNSConsumedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NSConsumesSelf:
|
|
handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NSReturnsAutoreleased:
|
|
case AttributeList::AT_NSReturnsNotRetained:
|
|
case AttributeList::AT_CFReturnsNotRetained:
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
case AttributeList::AT_CFReturnsRetained:
|
|
handleNSReturnsRetainedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_WorkGroupSizeHint:
|
|
handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ReqdWorkGroupSize:
|
|
handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_OpenCLIntelReqdSubGroupSize:
|
|
handleSubGroupSize(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_VecTypeHint:
|
|
handleVecTypeHint(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_RequireConstantInit:
|
|
handleSimpleAttribute<RequireConstantInitAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_InitPriority:
|
|
handleInitPriorityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Packed:
|
|
handlePackedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Section:
|
|
handleSectionAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Target:
|
|
handleTargetAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Unavailable:
|
|
handleAttrWithMessage<UnavailableAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ArcWeakrefUnavailable:
|
|
handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCRootClass:
|
|
handleSimpleAttribute<ObjCRootClassAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCSubclassingRestricted:
|
|
handleSimpleAttribute<ObjCSubclassingRestrictedAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCExplicitProtocolImpl:
|
|
handleObjCSuppresProtocolAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCRequiresPropertyDefs:
|
|
handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Unused:
|
|
handleUnusedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ReturnsTwice:
|
|
handleSimpleAttribute<ReturnsTwiceAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NotTailCalled:
|
|
handleSimpleAttributeWithExclusions<NotTailCalledAttr,
|
|
AlwaysInlineAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_DisableTailCalls:
|
|
handleSimpleAttributeWithExclusions<DisableTailCallsAttr,
|
|
NakedAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Used:
|
|
handleSimpleAttribute<UsedAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Visibility:
|
|
handleVisibilityAttr(S, D, AL, false);
|
|
break;
|
|
case AttributeList::AT_TypeVisibility:
|
|
handleVisibilityAttr(S, D, AL, true);
|
|
break;
|
|
case AttributeList::AT_WarnUnused:
|
|
handleSimpleAttribute<WarnUnusedAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_WarnUnusedResult:
|
|
handleWarnUnusedResult(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Weak:
|
|
handleSimpleAttribute<WeakAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_WeakRef:
|
|
handleWeakRefAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_WeakImport:
|
|
handleWeakImportAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_TransparentUnion:
|
|
handleTransparentUnionAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCException:
|
|
handleSimpleAttribute<ObjCExceptionAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCMethodFamily:
|
|
handleObjCMethodFamilyAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCNSObject:
|
|
handleObjCNSObject(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ObjCIndependentClass:
|
|
handleObjCIndependentClass(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Blocks:
|
|
handleBlocksAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Sentinel:
|
|
handleSentinelAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Const:
|
|
handleSimpleAttribute<ConstAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Pure:
|
|
handleSimpleAttribute<PureAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Cleanup:
|
|
handleCleanupAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoDebug:
|
|
handleNoDebugAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoDuplicate:
|
|
handleSimpleAttribute<NoDuplicateAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Convergent:
|
|
handleSimpleAttribute<ConvergentAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoInline:
|
|
handleSimpleAttribute<NoInlineAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
|
|
handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_StdCall:
|
|
case AttributeList::AT_CDecl:
|
|
case AttributeList::AT_FastCall:
|
|
case AttributeList::AT_ThisCall:
|
|
case AttributeList::AT_Pascal:
|
|
case AttributeList::AT_RegCall:
|
|
case AttributeList::AT_SwiftCall:
|
|
case AttributeList::AT_VectorCall:
|
|
case AttributeList::AT_MSABI:
|
|
case AttributeList::AT_SysVABI:
|
|
case AttributeList::AT_Pcs:
|
|
case AttributeList::AT_IntelOclBicc:
|
|
case AttributeList::AT_PreserveMost:
|
|
case AttributeList::AT_PreserveAll:
|
|
handleCallConvAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Suppress:
|
|
handleSuppressAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_OpenCLKernel:
|
|
handleSimpleAttribute<OpenCLKernelAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_OpenCLAccess:
|
|
handleOpenCLAccessAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_OpenCLNoSVM:
|
|
handleOpenCLNoSVMAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_SwiftContext:
|
|
handleParameterABIAttr(S, D, AL, ParameterABI::SwiftContext);
|
|
break;
|
|
case AttributeList::AT_SwiftErrorResult:
|
|
handleParameterABIAttr(S, D, AL, ParameterABI::SwiftErrorResult);
|
|
break;
|
|
case AttributeList::AT_SwiftIndirectResult:
|
|
handleParameterABIAttr(S, D, AL, ParameterABI::SwiftIndirectResult);
|
|
break;
|
|
case AttributeList::AT_InternalLinkage:
|
|
handleInternalLinkageAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_LTOVisibilityPublic:
|
|
handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, AL);
|
|
break;
|
|
|
|
// Microsoft attributes:
|
|
case AttributeList::AT_EmptyBases:
|
|
handleSimpleAttribute<EmptyBasesAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_LayoutVersion:
|
|
handleLayoutVersion(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_TrivialABI:
|
|
handleSimpleAttribute<TrivialABIAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MSNoVTable:
|
|
handleSimpleAttribute<MSNoVTableAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MSStruct:
|
|
handleSimpleAttribute<MSStructAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Uuid:
|
|
handleUuidAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_MSInheritance:
|
|
handleMSInheritanceAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_SelectAny:
|
|
handleSimpleAttribute<SelectAnyAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_Thread:
|
|
handleDeclspecThreadAttr(S, D, AL);
|
|
break;
|
|
|
|
case AttributeList::AT_AbiTag:
|
|
handleAbiTagAttr(S, D, AL);
|
|
break;
|
|
|
|
// Thread safety attributes:
|
|
case AttributeList::AT_AssertExclusiveLock:
|
|
handleAssertExclusiveLockAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AssertSharedLock:
|
|
handleAssertSharedLockAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_GuardedVar:
|
|
handleSimpleAttribute<GuardedVarAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_PtGuardedVar:
|
|
handlePtGuardedVarAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ScopedLockable:
|
|
handleSimpleAttribute<ScopedLockableAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoSanitize:
|
|
handleNoSanitizeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoSanitizeSpecific:
|
|
handleNoSanitizeSpecificAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_NoThreadSafetyAnalysis:
|
|
handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_GuardedBy:
|
|
handleGuardedByAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_PtGuardedBy:
|
|
handlePtGuardedByAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ExclusiveTrylockFunction:
|
|
handleExclusiveTrylockFunctionAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_LockReturned:
|
|
handleLockReturnedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_LocksExcluded:
|
|
handleLocksExcludedAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_SharedTrylockFunction:
|
|
handleSharedTrylockFunctionAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AcquiredBefore:
|
|
handleAcquiredBeforeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AcquiredAfter:
|
|
handleAcquiredAfterAttr(S, D, AL);
|
|
break;
|
|
|
|
// Capability analysis attributes.
|
|
case AttributeList::AT_Capability:
|
|
case AttributeList::AT_Lockable:
|
|
handleCapabilityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_RequiresCapability:
|
|
handleRequiresCapabilityAttr(S, D, AL);
|
|
break;
|
|
|
|
case AttributeList::AT_AssertCapability:
|
|
handleAssertCapabilityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AcquireCapability:
|
|
handleAcquireCapabilityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ReleaseCapability:
|
|
handleReleaseCapabilityAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_TryAcquireCapability:
|
|
handleTryAcquireCapabilityAttr(S, D, AL);
|
|
break;
|
|
|
|
// Consumed analysis attributes.
|
|
case AttributeList::AT_Consumable:
|
|
handleConsumableAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ConsumableAutoCast:
|
|
handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ConsumableSetOnRead:
|
|
handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_CallableWhen:
|
|
handleCallableWhenAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ParamTypestate:
|
|
handleParamTypestateAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_ReturnTypestate:
|
|
handleReturnTypestateAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_SetTypestate:
|
|
handleSetTypestateAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_TestTypestate:
|
|
handleTestTypestateAttr(S, D, AL);
|
|
break;
|
|
|
|
// Type safety attributes.
|
|
case AttributeList::AT_ArgumentWithTypeTag:
|
|
handleArgumentWithTypeTagAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_TypeTagForDatatype:
|
|
handleTypeTagForDatatypeAttr(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_AnyX86NoCallerSavedRegisters:
|
|
handleSimpleAttribute<AnyX86NoCallerSavedRegistersAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_RenderScriptKernel:
|
|
handleSimpleAttribute<RenderScriptKernelAttr>(S, D, AL);
|
|
break;
|
|
// XRay attributes.
|
|
case AttributeList::AT_XRayInstrument:
|
|
handleSimpleAttribute<XRayInstrumentAttr>(S, D, AL);
|
|
break;
|
|
case AttributeList::AT_XRayLogArgs:
|
|
handleXRayLogArgsAttr(S, D, AL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
|
|
/// attribute list to the specified decl, ignoring any type attributes.
|
|
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
|
|
const AttributeList *AttrList,
|
|
bool IncludeCXX11Attributes) {
|
|
for (const AttributeList* l = AttrList; l; l = l->getNext())
|
|
ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
|
|
|
|
// FIXME: We should be able to handle these cases in TableGen.
|
|
// GCC accepts
|
|
// static int a9 __attribute__((weakref));
|
|
// but that looks really pointless. We reject it.
|
|
if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
|
|
Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
|
|
<< cast<NamedDecl>(D);
|
|
D->dropAttr<WeakRefAttr>();
|
|
return;
|
|
}
|
|
|
|
// FIXME: We should be able to handle this in TableGen as well. It would be
|
|
// good to have a way to specify "these attributes must appear as a group",
|
|
// for these. Additionally, it would be good to have a way to specify "these
|
|
// attribute must never appear as a group" for attributes like cold and hot.
|
|
if (!D->hasAttr<OpenCLKernelAttr>()) {
|
|
// These attributes cannot be applied to a non-kernel function.
|
|
if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
|
|
// FIXME: This emits a different error message than
|
|
// diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
|
|
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
|
|
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
|
|
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
|
|
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
|
|
<< A << ExpectedKernelFunction;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
|
|
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
|
|
<< A << ExpectedKernelFunction;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
|
|
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
|
|
<< A << ExpectedKernelFunction;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
|
|
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
|
|
<< A << ExpectedKernelFunction;
|
|
D->setInvalidDecl();
|
|
} else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
|
|
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
|
|
D->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper for delayed processing TransparentUnion attribute.
|
|
void Sema::ProcessDeclAttributeDelayed(Decl *D, const AttributeList *AttrList) {
|
|
for (const AttributeList *AL = AttrList; AL; AL = AL->getNext())
|
|
if (AL->getKind() == AttributeList::AT_TransparentUnion) {
|
|
handleTransparentUnionAttr(*this, D, *AL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Annotation attributes are the only attributes allowed after an access
|
|
// specifier.
|
|
bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
|
|
const AttributeList *AttrList) {
|
|
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
|
|
if (l->getKind() == AttributeList::AT_Annotate) {
|
|
ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
|
|
} else {
|
|
Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// checkUnusedDeclAttributes - Check a list of attributes to see if it
|
|
/// contains any decl attributes that we should warn about.
|
|
static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
|
|
for ( ; A; A = A->getNext()) {
|
|
// Only warn if the attribute is an unignored, non-type attribute.
|
|
if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
|
|
if (A->getKind() == AttributeList::IgnoredAttribute) continue;
|
|
|
|
if (A->getKind() == AttributeList::UnknownAttribute) {
|
|
S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
|
|
<< A->getName() << A->getRange();
|
|
} else {
|
|
S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
|
|
<< A->getName() << A->getRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// checkUnusedDeclAttributes - Given a declarator which is not being
|
|
/// used to build a declaration, complain about any decl attributes
|
|
/// which might be lying around on it.
|
|
void Sema::checkUnusedDeclAttributes(Declarator &D) {
|
|
::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
|
|
::checkUnusedDeclAttributes(*this, D.getAttributes());
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
|
|
::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
|
|
}
|
|
|
|
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
|
|
/// \#pragma weak needs a non-definition decl and source may not have one.
|
|
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
|
|
SourceLocation Loc) {
|
|
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
|
|
NamedDecl *NewD = nullptr;
|
|
if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
|
|
FunctionDecl *NewFD;
|
|
// FIXME: Missing call to CheckFunctionDeclaration().
|
|
// FIXME: Mangling?
|
|
// FIXME: Is the qualifier info correct?
|
|
// FIXME: Is the DeclContext correct?
|
|
NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
|
|
Loc, Loc, DeclarationName(II),
|
|
FD->getType(), FD->getTypeSourceInfo(),
|
|
SC_None, false/*isInlineSpecified*/,
|
|
FD->hasPrototype(),
|
|
false/*isConstexprSpecified*/);
|
|
NewD = NewFD;
|
|
|
|
if (FD->getQualifier())
|
|
NewFD->setQualifierInfo(FD->getQualifierLoc());
|
|
|
|
// Fake up parameter variables; they are declared as if this were
|
|
// a typedef.
|
|
QualType FDTy = FD->getType();
|
|
if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
|
|
SmallVector<ParmVarDecl*, 16> Params;
|
|
for (const auto &AI : FT->param_types()) {
|
|
ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
|
|
Param->setScopeInfo(0, Params.size());
|
|
Params.push_back(Param);
|
|
}
|
|
NewFD->setParams(Params);
|
|
}
|
|
} else if (auto *VD = dyn_cast<VarDecl>(ND)) {
|
|
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
|
|
VD->getInnerLocStart(), VD->getLocation(), II,
|
|
VD->getType(), VD->getTypeSourceInfo(),
|
|
VD->getStorageClass());
|
|
if (VD->getQualifier())
|
|
cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
|
|
}
|
|
return NewD;
|
|
}
|
|
|
|
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
|
|
/// applied to it, possibly with an alias.
|
|
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
|
|
if (W.getUsed()) return; // only do this once
|
|
W.setUsed(true);
|
|
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
|
|
IdentifierInfo *NDId = ND->getIdentifier();
|
|
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
|
|
NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
|
|
W.getLocation()));
|
|
NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
|
|
WeakTopLevelDecl.push_back(NewD);
|
|
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
|
|
// to insert Decl at TU scope, sorry.
|
|
DeclContext *SavedContext = CurContext;
|
|
CurContext = Context.getTranslationUnitDecl();
|
|
NewD->setDeclContext(CurContext);
|
|
NewD->setLexicalDeclContext(CurContext);
|
|
PushOnScopeChains(NewD, S);
|
|
CurContext = SavedContext;
|
|
} else { // just add weak to existing
|
|
ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
|
|
}
|
|
}
|
|
|
|
void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
|
|
// It's valid to "forward-declare" #pragma weak, in which case we
|
|
// have to do this.
|
|
LoadExternalWeakUndeclaredIdentifiers();
|
|
if (!WeakUndeclaredIdentifiers.empty()) {
|
|
NamedDecl *ND = nullptr;
|
|
if (auto *VD = dyn_cast<VarDecl>(D))
|
|
if (VD->isExternC())
|
|
ND = VD;
|
|
if (auto *FD = dyn_cast<FunctionDecl>(D))
|
|
if (FD->isExternC())
|
|
ND = FD;
|
|
if (ND) {
|
|
if (IdentifierInfo *Id = ND->getIdentifier()) {
|
|
auto I = WeakUndeclaredIdentifiers.find(Id);
|
|
if (I != WeakUndeclaredIdentifiers.end()) {
|
|
WeakInfo W = I->second;
|
|
DeclApplyPragmaWeak(S, ND, W);
|
|
WeakUndeclaredIdentifiers[Id] = W;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
|
|
/// it, apply them to D. This is a bit tricky because PD can have attributes
|
|
/// specified in many different places, and we need to find and apply them all.
|
|
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
|
|
// Apply decl attributes from the DeclSpec if present.
|
|
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
|
|
ProcessDeclAttributeList(S, D, Attrs);
|
|
|
|
// Walk the declarator structure, applying decl attributes that were in a type
|
|
// position to the decl itself. This handles cases like:
|
|
// int *__attr__(x)** D;
|
|
// when X is a decl attribute.
|
|
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
|
|
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
|
|
ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
|
|
|
|
// Finally, apply any attributes on the decl itself.
|
|
if (const AttributeList *Attrs = PD.getAttributes())
|
|
ProcessDeclAttributeList(S, D, Attrs);
|
|
|
|
// Apply additional attributes specified by '#pragma clang attribute'.
|
|
AddPragmaAttributes(S, D);
|
|
}
|
|
|
|
/// Is the given declaration allowed to use a forbidden type?
|
|
/// If so, it'll still be annotated with an attribute that makes it
|
|
/// illegal to actually use.
|
|
static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
|
|
const DelayedDiagnostic &diag,
|
|
UnavailableAttr::ImplicitReason &reason) {
|
|
// Private ivars are always okay. Unfortunately, people don't
|
|
// always properly make their ivars private, even in system headers.
|
|
// Plus we need to make fields okay, too.
|
|
if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
|
|
!isa<FunctionDecl>(D))
|
|
return false;
|
|
|
|
// Silently accept unsupported uses of __weak in both user and system
|
|
// declarations when it's been disabled, for ease of integration with
|
|
// -fno-objc-arc files. We do have to take some care against attempts
|
|
// to define such things; for now, we've only done that for ivars
|
|
// and properties.
|
|
if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
|
|
if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
|
|
diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
|
|
reason = UnavailableAttr::IR_ForbiddenWeak;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Allow all sorts of things in system headers.
|
|
if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
|
|
// Currently, all the failures dealt with this way are due to ARC
|
|
// restrictions.
|
|
reason = UnavailableAttr::IR_ARCForbiddenType;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Handle a delayed forbidden-type diagnostic.
|
|
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
|
|
Decl *D) {
|
|
auto Reason = UnavailableAttr::IR_None;
|
|
if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
|
|
assert(Reason && "didn't set reason?");
|
|
D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
|
|
return;
|
|
}
|
|
if (S.getLangOpts().ObjCAutoRefCount)
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// FIXME: we may want to suppress diagnostics for all
|
|
// kind of forbidden type messages on unavailable functions.
|
|
if (FD->hasAttr<UnavailableAttr>() &&
|
|
DD.getForbiddenTypeDiagnostic() ==
|
|
diag::err_arc_array_param_no_ownership) {
|
|
DD.Triggered = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
|
|
<< DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
|
|
DD.Triggered = true;
|
|
}
|
|
|
|
static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context,
|
|
const Decl *D) {
|
|
// Check each AvailabilityAttr to find the one for this platform.
|
|
for (const auto *A : D->attrs()) {
|
|
if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
|
|
// FIXME: this is copied from CheckAvailability. We should try to
|
|
// de-duplicate.
|
|
|
|
// Check if this is an App Extension "platform", and if so chop off
|
|
// the suffix for matching with the actual platform.
|
|
StringRef ActualPlatform = Avail->getPlatform()->getName();
|
|
StringRef RealizedPlatform = ActualPlatform;
|
|
if (Context.getLangOpts().AppExt) {
|
|
size_t suffix = RealizedPlatform.rfind("_app_extension");
|
|
if (suffix != StringRef::npos)
|
|
RealizedPlatform = RealizedPlatform.slice(0, suffix);
|
|
}
|
|
|
|
StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
|
|
|
|
// Match the platform name.
|
|
if (RealizedPlatform == TargetPlatform)
|
|
return Avail;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// The diagnostic we should emit for \c D, and the declaration that
|
|
/// originated it, or \c AR_Available.
|
|
///
|
|
/// \param D The declaration to check.
|
|
/// \param Message If non-null, this will be populated with the message from
|
|
/// the availability attribute that is selected.
|
|
static std::pair<AvailabilityResult, const NamedDecl *>
|
|
ShouldDiagnoseAvailabilityOfDecl(const NamedDecl *D, std::string *Message) {
|
|
AvailabilityResult Result = D->getAvailability(Message);
|
|
|
|
// For typedefs, if the typedef declaration appears available look
|
|
// to the underlying type to see if it is more restrictive.
|
|
while (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
if (Result == AR_Available) {
|
|
if (const auto *TT = TD->getUnderlyingType()->getAs<TagType>()) {
|
|
D = TT->getDecl();
|
|
Result = D->getAvailability(Message);
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Forward class declarations get their attributes from their definition.
|
|
if (const auto *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
|
|
if (IDecl->getDefinition()) {
|
|
D = IDecl->getDefinition();
|
|
Result = D->getAvailability(Message);
|
|
}
|
|
}
|
|
|
|
if (const auto *ECD = dyn_cast<EnumConstantDecl>(D))
|
|
if (Result == AR_Available) {
|
|
const DeclContext *DC = ECD->getDeclContext();
|
|
if (const auto *TheEnumDecl = dyn_cast<EnumDecl>(DC)) {
|
|
Result = TheEnumDecl->getAvailability(Message);
|
|
D = TheEnumDecl;
|
|
}
|
|
}
|
|
|
|
return {Result, D};
|
|
}
|
|
|
|
|
|
/// \brief whether we should emit a diagnostic for \c K and \c DeclVersion in
|
|
/// the context of \c Ctx. For example, we should emit an unavailable diagnostic
|
|
/// in a deprecated context, but not the other way around.
|
|
static bool ShouldDiagnoseAvailabilityInContext(Sema &S, AvailabilityResult K,
|
|
VersionTuple DeclVersion,
|
|
Decl *Ctx) {
|
|
assert(K != AR_Available && "Expected an unavailable declaration here!");
|
|
|
|
// Checks if we should emit the availability diagnostic in the context of C.
|
|
auto CheckContext = [&](const Decl *C) {
|
|
if (K == AR_NotYetIntroduced) {
|
|
if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, C))
|
|
if (AA->getIntroduced() >= DeclVersion)
|
|
return true;
|
|
} else if (K == AR_Deprecated)
|
|
if (C->isDeprecated())
|
|
return true;
|
|
|
|
if (C->isUnavailable())
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
do {
|
|
if (CheckContext(Ctx))
|
|
return false;
|
|
|
|
// An implementation implicitly has the availability of the interface.
|
|
if (const auto *CatOrImpl = dyn_cast<ObjCImplDecl>(Ctx)) {
|
|
if (const ObjCInterfaceDecl *Interface = CatOrImpl->getClassInterface())
|
|
if (CheckContext(Interface))
|
|
return false;
|
|
}
|
|
// A category implicitly has the availability of the interface.
|
|
else if (const auto *CatD = dyn_cast<ObjCCategoryDecl>(Ctx))
|
|
if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
|
|
if (CheckContext(Interface))
|
|
return false;
|
|
} while ((Ctx = cast_or_null<Decl>(Ctx->getDeclContext())));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
shouldDiagnoseAvailabilityByDefault(const ASTContext &Context,
|
|
const VersionTuple &DeploymentVersion,
|
|
const VersionTuple &DeclVersion) {
|
|
const auto &Triple = Context.getTargetInfo().getTriple();
|
|
VersionTuple ForceAvailabilityFromVersion;
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::IOS:
|
|
case llvm::Triple::TvOS:
|
|
ForceAvailabilityFromVersion = VersionTuple(/*Major=*/11);
|
|
break;
|
|
case llvm::Triple::WatchOS:
|
|
ForceAvailabilityFromVersion = VersionTuple(/*Major=*/4);
|
|
break;
|
|
case llvm::Triple::Darwin:
|
|
case llvm::Triple::MacOSX:
|
|
ForceAvailabilityFromVersion = VersionTuple(/*Major=*/10, /*Minor=*/13);
|
|
break;
|
|
default:
|
|
// New targets should always warn about availability.
|
|
return Triple.getVendor() == llvm::Triple::Apple;
|
|
}
|
|
return DeploymentVersion >= ForceAvailabilityFromVersion ||
|
|
DeclVersion >= ForceAvailabilityFromVersion;
|
|
}
|
|
|
|
static NamedDecl *findEnclosingDeclToAnnotate(Decl *OrigCtx) {
|
|
for (Decl *Ctx = OrigCtx; Ctx;
|
|
Ctx = cast_or_null<Decl>(Ctx->getDeclContext())) {
|
|
if (isa<TagDecl>(Ctx) || isa<FunctionDecl>(Ctx) || isa<ObjCMethodDecl>(Ctx))
|
|
return cast<NamedDecl>(Ctx);
|
|
if (auto *CD = dyn_cast<ObjCContainerDecl>(Ctx)) {
|
|
if (auto *Imp = dyn_cast<ObjCImplDecl>(Ctx))
|
|
return Imp->getClassInterface();
|
|
return CD;
|
|
}
|
|
}
|
|
|
|
return dyn_cast<NamedDecl>(OrigCtx);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct AttributeInsertion {
|
|
StringRef Prefix;
|
|
SourceLocation Loc;
|
|
StringRef Suffix;
|
|
|
|
static AttributeInsertion createInsertionAfter(const NamedDecl *D) {
|
|
return {" ", D->getLocEnd(), ""};
|
|
}
|
|
static AttributeInsertion createInsertionAfter(SourceLocation Loc) {
|
|
return {" ", Loc, ""};
|
|
}
|
|
static AttributeInsertion createInsertionBefore(const NamedDecl *D) {
|
|
return {"", D->getLocStart(), "\n"};
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Tries to parse a string as ObjC method name.
|
|
///
|
|
/// \param Name The string to parse. Expected to originate from availability
|
|
/// attribute argument.
|
|
/// \param SlotNames The vector that will be populated with slot names. In case
|
|
/// of unsuccessful parsing can contain invalid data.
|
|
/// \returns A number of method parameters if parsing was successful, None
|
|
/// otherwise.
|
|
static Optional<unsigned>
|
|
tryParseObjCMethodName(StringRef Name, SmallVectorImpl<StringRef> &SlotNames,
|
|
const LangOptions &LangOpts) {
|
|
// Accept replacements starting with - or + as valid ObjC method names.
|
|
if (!Name.empty() && (Name.front() == '-' || Name.front() == '+'))
|
|
Name = Name.drop_front(1);
|
|
if (Name.empty())
|
|
return None;
|
|
Name.split(SlotNames, ':');
|
|
unsigned NumParams;
|
|
if (Name.back() == ':') {
|
|
// Remove an empty string at the end that doesn't represent any slot.
|
|
SlotNames.pop_back();
|
|
NumParams = SlotNames.size();
|
|
} else {
|
|
if (SlotNames.size() != 1)
|
|
// Not a valid method name, just a colon-separated string.
|
|
return None;
|
|
NumParams = 0;
|
|
}
|
|
// Verify all slot names are valid.
|
|
bool AllowDollar = LangOpts.DollarIdents;
|
|
for (StringRef S : SlotNames) {
|
|
if (S.empty())
|
|
continue;
|
|
if (!isValidIdentifier(S, AllowDollar))
|
|
return None;
|
|
}
|
|
return NumParams;
|
|
}
|
|
|
|
/// Returns a source location in which it's appropriate to insert a new
|
|
/// attribute for the given declaration \D.
|
|
static Optional<AttributeInsertion>
|
|
createAttributeInsertion(const NamedDecl *D, const SourceManager &SM,
|
|
const LangOptions &LangOpts) {
|
|
if (isa<ObjCPropertyDecl>(D))
|
|
return AttributeInsertion::createInsertionAfter(D);
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
if (MD->hasBody())
|
|
return None;
|
|
return AttributeInsertion::createInsertionAfter(D);
|
|
}
|
|
if (const auto *TD = dyn_cast<TagDecl>(D)) {
|
|
SourceLocation Loc =
|
|
Lexer::getLocForEndOfToken(TD->getInnerLocStart(), 0, SM, LangOpts);
|
|
if (Loc.isInvalid())
|
|
return None;
|
|
// Insert after the 'struct'/whatever keyword.
|
|
return AttributeInsertion::createInsertionAfter(Loc);
|
|
}
|
|
return AttributeInsertion::createInsertionBefore(D);
|
|
}
|
|
|
|
/// Actually emit an availability diagnostic for a reference to an unavailable
|
|
/// decl.
|
|
///
|
|
/// \param Ctx The context that the reference occurred in
|
|
/// \param ReferringDecl The exact declaration that was referenced.
|
|
/// \param OffendingDecl A related decl to \c ReferringDecl that has an
|
|
/// availability attribute corresponding to \c K attached to it. Note that this
|
|
/// may not be the same as ReferringDecl, i.e. if an EnumDecl is annotated and
|
|
/// we refer to a member EnumConstantDecl, ReferringDecl is the EnumConstantDecl
|
|
/// and OffendingDecl is the EnumDecl.
|
|
static void DoEmitAvailabilityWarning(Sema &S, AvailabilityResult K,
|
|
Decl *Ctx, const NamedDecl *ReferringDecl,
|
|
const NamedDecl *OffendingDecl,
|
|
StringRef Message,
|
|
ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass,
|
|
const ObjCPropertyDecl *ObjCProperty,
|
|
bool ObjCPropertyAccess) {
|
|
// Diagnostics for deprecated or unavailable.
|
|
unsigned diag, diag_message, diag_fwdclass_message;
|
|
unsigned diag_available_here = diag::note_availability_specified_here;
|
|
SourceLocation NoteLocation = OffendingDecl->getLocation();
|
|
|
|
// Matches 'diag::note_property_attribute' options.
|
|
unsigned property_note_select;
|
|
|
|
// Matches diag::note_availability_specified_here.
|
|
unsigned available_here_select_kind;
|
|
|
|
VersionTuple DeclVersion;
|
|
if (const AvailabilityAttr *AA = getAttrForPlatform(S.Context, OffendingDecl))
|
|
DeclVersion = AA->getIntroduced();
|
|
|
|
if (!ShouldDiagnoseAvailabilityInContext(S, K, DeclVersion, Ctx))
|
|
return;
|
|
|
|
SourceLocation Loc = Locs.front();
|
|
|
|
// The declaration can have multiple availability attributes, we are looking
|
|
// at one of them.
|
|
const AvailabilityAttr *A = getAttrForPlatform(S.Context, OffendingDecl);
|
|
if (A && A->isInherited()) {
|
|
for (const Decl *Redecl = OffendingDecl->getMostRecentDecl(); Redecl;
|
|
Redecl = Redecl->getPreviousDecl()) {
|
|
const AvailabilityAttr *AForRedecl =
|
|
getAttrForPlatform(S.Context, Redecl);
|
|
if (AForRedecl && !AForRedecl->isInherited()) {
|
|
// If D is a declaration with inherited attributes, the note should
|
|
// point to the declaration with actual attributes.
|
|
NoteLocation = Redecl->getLocation();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (K) {
|
|
case AR_NotYetIntroduced: {
|
|
// We would like to emit the diagnostic even if -Wunguarded-availability is
|
|
// not specified for deployment targets >= to iOS 11 or equivalent or
|
|
// for declarations that were introduced in iOS 11 (macOS 10.13, ...) or
|
|
// later.
|
|
const AvailabilityAttr *AA =
|
|
getAttrForPlatform(S.getASTContext(), OffendingDecl);
|
|
VersionTuple Introduced = AA->getIntroduced();
|
|
|
|
bool UseNewWarning = shouldDiagnoseAvailabilityByDefault(
|
|
S.Context, S.Context.getTargetInfo().getPlatformMinVersion(),
|
|
Introduced);
|
|
unsigned Warning = UseNewWarning ? diag::warn_unguarded_availability_new
|
|
: diag::warn_unguarded_availability;
|
|
|
|
S.Diag(Loc, Warning)
|
|
<< OffendingDecl
|
|
<< AvailabilityAttr::getPrettyPlatformName(
|
|
S.getASTContext().getTargetInfo().getPlatformName())
|
|
<< Introduced.getAsString();
|
|
|
|
S.Diag(OffendingDecl->getLocation(), diag::note_availability_specified_here)
|
|
<< OffendingDecl << /* partial */ 3;
|
|
|
|
if (const auto *Enclosing = findEnclosingDeclToAnnotate(Ctx)) {
|
|
if (const auto *TD = dyn_cast<TagDecl>(Enclosing))
|
|
if (TD->getDeclName().isEmpty()) {
|
|
S.Diag(TD->getLocation(),
|
|
diag::note_decl_unguarded_availability_silence)
|
|
<< /*Anonymous*/ 1 << TD->getKindName();
|
|
return;
|
|
}
|
|
auto FixitNoteDiag =
|
|
S.Diag(Enclosing->getLocation(),
|
|
diag::note_decl_unguarded_availability_silence)
|
|
<< /*Named*/ 0 << Enclosing;
|
|
// Don't offer a fixit for declarations with availability attributes.
|
|
if (Enclosing->hasAttr<AvailabilityAttr>())
|
|
return;
|
|
if (!S.getPreprocessor().isMacroDefined("API_AVAILABLE"))
|
|
return;
|
|
Optional<AttributeInsertion> Insertion = createAttributeInsertion(
|
|
Enclosing, S.getSourceManager(), S.getLangOpts());
|
|
if (!Insertion)
|
|
return;
|
|
std::string PlatformName =
|
|
AvailabilityAttr::getPlatformNameSourceSpelling(
|
|
S.getASTContext().getTargetInfo().getPlatformName())
|
|
.lower();
|
|
std::string Introduced =
|
|
OffendingDecl->getVersionIntroduced().getAsString();
|
|
FixitNoteDiag << FixItHint::CreateInsertion(
|
|
Insertion->Loc,
|
|
(llvm::Twine(Insertion->Prefix) + "API_AVAILABLE(" + PlatformName +
|
|
"(" + Introduced + "))" + Insertion->Suffix)
|
|
.str());
|
|
}
|
|
return;
|
|
}
|
|
case AR_Deprecated:
|
|
diag = !ObjCPropertyAccess ? diag::warn_deprecated
|
|
: diag::warn_property_method_deprecated;
|
|
diag_message = diag::warn_deprecated_message;
|
|
diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
|
|
property_note_select = /* deprecated */ 0;
|
|
available_here_select_kind = /* deprecated */ 2;
|
|
if (const auto *AL = OffendingDecl->getAttr<DeprecatedAttr>())
|
|
NoteLocation = AL->getLocation();
|
|
break;
|
|
|
|
case AR_Unavailable:
|
|
diag = !ObjCPropertyAccess ? diag::err_unavailable
|
|
: diag::err_property_method_unavailable;
|
|
diag_message = diag::err_unavailable_message;
|
|
diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
|
|
property_note_select = /* unavailable */ 1;
|
|
available_here_select_kind = /* unavailable */ 0;
|
|
|
|
if (auto AL = OffendingDecl->getAttr<UnavailableAttr>()) {
|
|
if (AL->isImplicit() && AL->getImplicitReason()) {
|
|
// Most of these failures are due to extra restrictions in ARC;
|
|
// reflect that in the primary diagnostic when applicable.
|
|
auto flagARCError = [&] {
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
S.getSourceManager().isInSystemHeader(
|
|
OffendingDecl->getLocation()))
|
|
diag = diag::err_unavailable_in_arc;
|
|
};
|
|
|
|
switch (AL->getImplicitReason()) {
|
|
case UnavailableAttr::IR_None: break;
|
|
|
|
case UnavailableAttr::IR_ARCForbiddenType:
|
|
flagARCError();
|
|
diag_available_here = diag::note_arc_forbidden_type;
|
|
break;
|
|
|
|
case UnavailableAttr::IR_ForbiddenWeak:
|
|
if (S.getLangOpts().ObjCWeakRuntime)
|
|
diag_available_here = diag::note_arc_weak_disabled;
|
|
else
|
|
diag_available_here = diag::note_arc_weak_no_runtime;
|
|
break;
|
|
|
|
case UnavailableAttr::IR_ARCForbiddenConversion:
|
|
flagARCError();
|
|
diag_available_here = diag::note_performs_forbidden_arc_conversion;
|
|
break;
|
|
|
|
case UnavailableAttr::IR_ARCInitReturnsUnrelated:
|
|
flagARCError();
|
|
diag_available_here = diag::note_arc_init_returns_unrelated;
|
|
break;
|
|
|
|
case UnavailableAttr::IR_ARCFieldWithOwnership:
|
|
flagARCError();
|
|
diag_available_here = diag::note_arc_field_with_ownership;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case AR_Available:
|
|
llvm_unreachable("Warning for availability of available declaration?");
|
|
}
|
|
|
|
SmallVector<FixItHint, 12> FixIts;
|
|
if (K == AR_Deprecated) {
|
|
StringRef Replacement;
|
|
if (auto AL = OffendingDecl->getAttr<DeprecatedAttr>())
|
|
Replacement = AL->getReplacement();
|
|
if (auto AL = getAttrForPlatform(S.Context, OffendingDecl))
|
|
Replacement = AL->getReplacement();
|
|
|
|
CharSourceRange UseRange;
|
|
if (!Replacement.empty())
|
|
UseRange =
|
|
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
|
|
if (UseRange.isValid()) {
|
|
if (const auto *MethodDecl = dyn_cast<ObjCMethodDecl>(ReferringDecl)) {
|
|
Selector Sel = MethodDecl->getSelector();
|
|
SmallVector<StringRef, 12> SelectorSlotNames;
|
|
Optional<unsigned> NumParams = tryParseObjCMethodName(
|
|
Replacement, SelectorSlotNames, S.getLangOpts());
|
|
if (NumParams && NumParams.getValue() == Sel.getNumArgs()) {
|
|
assert(SelectorSlotNames.size() == Locs.size());
|
|
for (unsigned I = 0; I < Locs.size(); ++I) {
|
|
if (!Sel.getNameForSlot(I).empty()) {
|
|
CharSourceRange NameRange = CharSourceRange::getCharRange(
|
|
Locs[I], S.getLocForEndOfToken(Locs[I]));
|
|
FixIts.push_back(FixItHint::CreateReplacement(
|
|
NameRange, SelectorSlotNames[I]));
|
|
} else
|
|
FixIts.push_back(
|
|
FixItHint::CreateInsertion(Locs[I], SelectorSlotNames[I]));
|
|
}
|
|
} else
|
|
FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement));
|
|
} else
|
|
FixIts.push_back(FixItHint::CreateReplacement(UseRange, Replacement));
|
|
}
|
|
}
|
|
|
|
if (!Message.empty()) {
|
|
S.Diag(Loc, diag_message) << ReferringDecl << Message << FixIts;
|
|
if (ObjCProperty)
|
|
S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
|
|
<< ObjCProperty->getDeclName() << property_note_select;
|
|
} else if (!UnknownObjCClass) {
|
|
S.Diag(Loc, diag) << ReferringDecl << FixIts;
|
|
if (ObjCProperty)
|
|
S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
|
|
<< ObjCProperty->getDeclName() << property_note_select;
|
|
} else {
|
|
S.Diag(Loc, diag_fwdclass_message) << ReferringDecl << FixIts;
|
|
S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
|
|
}
|
|
|
|
S.Diag(NoteLocation, diag_available_here)
|
|
<< OffendingDecl << available_here_select_kind;
|
|
}
|
|
|
|
static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
|
|
Decl *Ctx) {
|
|
assert(DD.Kind == DelayedDiagnostic::Availability &&
|
|
"Expected an availability diagnostic here");
|
|
|
|
DD.Triggered = true;
|
|
DoEmitAvailabilityWarning(
|
|
S, DD.getAvailabilityResult(), Ctx, DD.getAvailabilityReferringDecl(),
|
|
DD.getAvailabilityOffendingDecl(), DD.getAvailabilityMessage(),
|
|
DD.getAvailabilitySelectorLocs(), DD.getUnknownObjCClass(),
|
|
DD.getObjCProperty(), false);
|
|
}
|
|
|
|
void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
|
|
assert(DelayedDiagnostics.getCurrentPool());
|
|
DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
|
|
DelayedDiagnostics.popWithoutEmitting(state);
|
|
|
|
// When delaying diagnostics to run in the context of a parsed
|
|
// declaration, we only want to actually emit anything if parsing
|
|
// succeeds.
|
|
if (!decl) return;
|
|
|
|
// We emit all the active diagnostics in this pool or any of its
|
|
// parents. In general, we'll get one pool for the decl spec
|
|
// and a child pool for each declarator; in a decl group like:
|
|
// deprecated_typedef foo, *bar, baz();
|
|
// only the declarator pops will be passed decls. This is correct;
|
|
// we really do need to consider delayed diagnostics from the decl spec
|
|
// for each of the different declarations.
|
|
const DelayedDiagnosticPool *pool = &poppedPool;
|
|
do {
|
|
for (DelayedDiagnosticPool::pool_iterator
|
|
i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
|
|
// This const_cast is a bit lame. Really, Triggered should be mutable.
|
|
DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
|
|
if (diag.Triggered)
|
|
continue;
|
|
|
|
switch (diag.Kind) {
|
|
case DelayedDiagnostic::Availability:
|
|
// Don't bother giving deprecation/unavailable diagnostics if
|
|
// the decl is invalid.
|
|
if (!decl->isInvalidDecl())
|
|
handleDelayedAvailabilityCheck(*this, diag, decl);
|
|
break;
|
|
|
|
case DelayedDiagnostic::Access:
|
|
HandleDelayedAccessCheck(diag, decl);
|
|
break;
|
|
|
|
case DelayedDiagnostic::ForbiddenType:
|
|
handleDelayedForbiddenType(*this, diag, decl);
|
|
break;
|
|
}
|
|
}
|
|
} while ((pool = pool->getParent()));
|
|
}
|
|
|
|
/// Given a set of delayed diagnostics, re-emit them as if they had
|
|
/// been delayed in the current context instead of in the given pool.
|
|
/// Essentially, this just moves them to the current pool.
|
|
void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
|
|
DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
|
|
assert(curPool && "re-emitting in undelayed context not supported");
|
|
curPool->steal(pool);
|
|
}
|
|
|
|
static void EmitAvailabilityWarning(Sema &S, AvailabilityResult AR,
|
|
const NamedDecl *ReferringDecl,
|
|
const NamedDecl *OffendingDecl,
|
|
StringRef Message,
|
|
ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass,
|
|
const ObjCPropertyDecl *ObjCProperty,
|
|
bool ObjCPropertyAccess) {
|
|
// Delay if we're currently parsing a declaration.
|
|
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
|
|
S.DelayedDiagnostics.add(
|
|
DelayedDiagnostic::makeAvailability(
|
|
AR, Locs, ReferringDecl, OffendingDecl, UnknownObjCClass,
|
|
ObjCProperty, Message, ObjCPropertyAccess));
|
|
return;
|
|
}
|
|
|
|
Decl *Ctx = cast<Decl>(S.getCurLexicalContext());
|
|
DoEmitAvailabilityWarning(S, AR, Ctx, ReferringDecl, OffendingDecl,
|
|
Message, Locs, UnknownObjCClass, ObjCProperty,
|
|
ObjCPropertyAccess);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Returns true if the given statement can be a body-like child of \p Parent.
|
|
bool isBodyLikeChildStmt(const Stmt *S, const Stmt *Parent) {
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::IfStmtClass:
|
|
return cast<IfStmt>(Parent)->getThen() == S ||
|
|
cast<IfStmt>(Parent)->getElse() == S;
|
|
case Stmt::WhileStmtClass:
|
|
return cast<WhileStmt>(Parent)->getBody() == S;
|
|
case Stmt::DoStmtClass:
|
|
return cast<DoStmt>(Parent)->getBody() == S;
|
|
case Stmt::ForStmtClass:
|
|
return cast<ForStmt>(Parent)->getBody() == S;
|
|
case Stmt::CXXForRangeStmtClass:
|
|
return cast<CXXForRangeStmt>(Parent)->getBody() == S;
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return cast<ObjCForCollectionStmt>(Parent)->getBody() == S;
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
return cast<SwitchCase>(Parent)->getSubStmt() == S;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
class StmtUSEFinder : public RecursiveASTVisitor<StmtUSEFinder> {
|
|
const Stmt *Target;
|
|
|
|
public:
|
|
bool VisitStmt(Stmt *S) { return S != Target; }
|
|
|
|
/// Returns true if the given statement is present in the given declaration.
|
|
static bool isContained(const Stmt *Target, const Decl *D) {
|
|
StmtUSEFinder Visitor;
|
|
Visitor.Target = Target;
|
|
return !Visitor.TraverseDecl(const_cast<Decl *>(D));
|
|
}
|
|
};
|
|
|
|
/// Traverses the AST and finds the last statement that used a given
|
|
/// declaration.
|
|
class LastDeclUSEFinder : public RecursiveASTVisitor<LastDeclUSEFinder> {
|
|
const Decl *D;
|
|
|
|
public:
|
|
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
|
|
if (DRE->getDecl() == D)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static const Stmt *findLastStmtThatUsesDecl(const Decl *D,
|
|
const CompoundStmt *Scope) {
|
|
LastDeclUSEFinder Visitor;
|
|
Visitor.D = D;
|
|
for (auto I = Scope->body_rbegin(), E = Scope->body_rend(); I != E; ++I) {
|
|
const Stmt *S = *I;
|
|
if (!Visitor.TraverseStmt(const_cast<Stmt *>(S)))
|
|
return S;
|
|
}
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
/// \brief This class implements -Wunguarded-availability.
|
|
///
|
|
/// This is done with a traversal of the AST of a function that makes reference
|
|
/// to a partially available declaration. Whenever we encounter an \c if of the
|
|
/// form: \c if(@available(...)), we use the version from the condition to visit
|
|
/// the then statement.
|
|
class DiagnoseUnguardedAvailability
|
|
: public RecursiveASTVisitor<DiagnoseUnguardedAvailability> {
|
|
typedef RecursiveASTVisitor<DiagnoseUnguardedAvailability> Base;
|
|
|
|
Sema &SemaRef;
|
|
Decl *Ctx;
|
|
|
|
/// Stack of potentially nested 'if (@available(...))'s.
|
|
SmallVector<VersionTuple, 8> AvailabilityStack;
|
|
SmallVector<const Stmt *, 16> StmtStack;
|
|
|
|
void DiagnoseDeclAvailability(NamedDecl *D, SourceRange Range);
|
|
|
|
public:
|
|
DiagnoseUnguardedAvailability(Sema &SemaRef, Decl *Ctx)
|
|
: SemaRef(SemaRef), Ctx(Ctx) {
|
|
AvailabilityStack.push_back(
|
|
SemaRef.Context.getTargetInfo().getPlatformMinVersion());
|
|
}
|
|
|
|
bool TraverseDecl(Decl *D) {
|
|
// Avoid visiting nested functions to prevent duplicate warnings.
|
|
if (!D || isa<FunctionDecl>(D))
|
|
return true;
|
|
return Base::TraverseDecl(D);
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *S) {
|
|
if (!S)
|
|
return true;
|
|
StmtStack.push_back(S);
|
|
bool Result = Base::TraverseStmt(S);
|
|
StmtStack.pop_back();
|
|
return Result;
|
|
}
|
|
|
|
void IssueDiagnostics(Stmt *S) { TraverseStmt(S); }
|
|
|
|
bool TraverseIfStmt(IfStmt *If);
|
|
|
|
bool TraverseLambdaExpr(LambdaExpr *E) { return true; }
|
|
|
|
// for 'case X:' statements, don't bother looking at the 'X'; it can't lead
|
|
// to any useful diagnostics.
|
|
bool TraverseCaseStmt(CaseStmt *CS) { return TraverseStmt(CS->getSubStmt()); }
|
|
|
|
bool VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *PRE) {
|
|
if (PRE->isClassReceiver())
|
|
DiagnoseDeclAvailability(PRE->getClassReceiver(), PRE->getReceiverLocation());
|
|
return true;
|
|
}
|
|
|
|
bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) {
|
|
if (ObjCMethodDecl *D = Msg->getMethodDecl())
|
|
DiagnoseDeclAvailability(
|
|
D, SourceRange(Msg->getSelectorStartLoc(), Msg->getLocEnd()));
|
|
return true;
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
|
|
DiagnoseDeclAvailability(DRE->getDecl(),
|
|
SourceRange(DRE->getLocStart(), DRE->getLocEnd()));
|
|
return true;
|
|
}
|
|
|
|
bool VisitMemberExpr(MemberExpr *ME) {
|
|
DiagnoseDeclAvailability(ME->getMemberDecl(),
|
|
SourceRange(ME->getLocStart(), ME->getLocEnd()));
|
|
return true;
|
|
}
|
|
|
|
bool VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
|
|
SemaRef.Diag(E->getLocStart(), diag::warn_at_available_unchecked_use)
|
|
<< (!SemaRef.getLangOpts().ObjC1);
|
|
return true;
|
|
}
|
|
|
|
bool VisitTypeLoc(TypeLoc Ty);
|
|
};
|
|
|
|
void DiagnoseUnguardedAvailability::DiagnoseDeclAvailability(
|
|
NamedDecl *D, SourceRange Range) {
|
|
AvailabilityResult Result;
|
|
const NamedDecl *OffendingDecl;
|
|
std::tie(Result, OffendingDecl) =
|
|
ShouldDiagnoseAvailabilityOfDecl(D, nullptr);
|
|
if (Result != AR_Available) {
|
|
// All other diagnostic kinds have already been handled in
|
|
// DiagnoseAvailabilityOfDecl.
|
|
if (Result != AR_NotYetIntroduced)
|
|
return;
|
|
|
|
const AvailabilityAttr *AA =
|
|
getAttrForPlatform(SemaRef.getASTContext(), OffendingDecl);
|
|
VersionTuple Introduced = AA->getIntroduced();
|
|
|
|
if (AvailabilityStack.back() >= Introduced)
|
|
return;
|
|
|
|
// If the context of this function is less available than D, we should not
|
|
// emit a diagnostic.
|
|
if (!ShouldDiagnoseAvailabilityInContext(SemaRef, Result, Introduced, Ctx))
|
|
return;
|
|
|
|
// We would like to emit the diagnostic even if -Wunguarded-availability is
|
|
// not specified for deployment targets >= to iOS 11 or equivalent or
|
|
// for declarations that were introduced in iOS 11 (macOS 10.13, ...) or
|
|
// later.
|
|
unsigned DiagKind =
|
|
shouldDiagnoseAvailabilityByDefault(
|
|
SemaRef.Context,
|
|
SemaRef.Context.getTargetInfo().getPlatformMinVersion(), Introduced)
|
|
? diag::warn_unguarded_availability_new
|
|
: diag::warn_unguarded_availability;
|
|
|
|
SemaRef.Diag(Range.getBegin(), DiagKind)
|
|
<< Range << D
|
|
<< AvailabilityAttr::getPrettyPlatformName(
|
|
SemaRef.getASTContext().getTargetInfo().getPlatformName())
|
|
<< Introduced.getAsString();
|
|
|
|
SemaRef.Diag(OffendingDecl->getLocation(),
|
|
diag::note_availability_specified_here)
|
|
<< OffendingDecl << /* partial */ 3;
|
|
|
|
auto FixitDiag =
|
|
SemaRef.Diag(Range.getBegin(), diag::note_unguarded_available_silence)
|
|
<< Range << D
|
|
<< (SemaRef.getLangOpts().ObjC1 ? /*@available*/ 0
|
|
: /*__builtin_available*/ 1);
|
|
|
|
// Find the statement which should be enclosed in the if @available check.
|
|
if (StmtStack.empty())
|
|
return;
|
|
const Stmt *StmtOfUse = StmtStack.back();
|
|
const CompoundStmt *Scope = nullptr;
|
|
for (const Stmt *S : llvm::reverse(StmtStack)) {
|
|
if (const auto *CS = dyn_cast<CompoundStmt>(S)) {
|
|
Scope = CS;
|
|
break;
|
|
}
|
|
if (isBodyLikeChildStmt(StmtOfUse, S)) {
|
|
// The declaration won't be seen outside of the statement, so we don't
|
|
// have to wrap the uses of any declared variables in if (@available).
|
|
// Therefore we can avoid setting Scope here.
|
|
break;
|
|
}
|
|
StmtOfUse = S;
|
|
}
|
|
const Stmt *LastStmtOfUse = nullptr;
|
|
if (isa<DeclStmt>(StmtOfUse) && Scope) {
|
|
for (const Decl *D : cast<DeclStmt>(StmtOfUse)->decls()) {
|
|
if (StmtUSEFinder::isContained(StmtStack.back(), D)) {
|
|
LastStmtOfUse = LastDeclUSEFinder::findLastStmtThatUsesDecl(D, Scope);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const SourceManager &SM = SemaRef.getSourceManager();
|
|
SourceLocation IfInsertionLoc =
|
|
SM.getExpansionLoc(StmtOfUse->getLocStart());
|
|
SourceLocation StmtEndLoc =
|
|
SM.getExpansionRange(
|
|
(LastStmtOfUse ? LastStmtOfUse : StmtOfUse)->getLocEnd())
|
|
.second;
|
|
if (SM.getFileID(IfInsertionLoc) != SM.getFileID(StmtEndLoc))
|
|
return;
|
|
|
|
StringRef Indentation = Lexer::getIndentationForLine(IfInsertionLoc, SM);
|
|
const char *ExtraIndentation = " ";
|
|
std::string FixItString;
|
|
llvm::raw_string_ostream FixItOS(FixItString);
|
|
FixItOS << "if (" << (SemaRef.getLangOpts().ObjC1 ? "@available"
|
|
: "__builtin_available")
|
|
<< "("
|
|
<< AvailabilityAttr::getPlatformNameSourceSpelling(
|
|
SemaRef.getASTContext().getTargetInfo().getPlatformName())
|
|
<< " " << Introduced.getAsString() << ", *)) {\n"
|
|
<< Indentation << ExtraIndentation;
|
|
FixitDiag << FixItHint::CreateInsertion(IfInsertionLoc, FixItOS.str());
|
|
SourceLocation ElseInsertionLoc = Lexer::findLocationAfterToken(
|
|
StmtEndLoc, tok::semi, SM, SemaRef.getLangOpts(),
|
|
/*SkipTrailingWhitespaceAndNewLine=*/false);
|
|
if (ElseInsertionLoc.isInvalid())
|
|
ElseInsertionLoc =
|
|
Lexer::getLocForEndOfToken(StmtEndLoc, 0, SM, SemaRef.getLangOpts());
|
|
FixItOS.str().clear();
|
|
FixItOS << "\n"
|
|
<< Indentation << "} else {\n"
|
|
<< Indentation << ExtraIndentation
|
|
<< "// Fallback on earlier versions\n"
|
|
<< Indentation << "}";
|
|
FixitDiag << FixItHint::CreateInsertion(ElseInsertionLoc, FixItOS.str());
|
|
}
|
|
}
|
|
|
|
bool DiagnoseUnguardedAvailability::VisitTypeLoc(TypeLoc Ty) {
|
|
const Type *TyPtr = Ty.getTypePtr();
|
|
SourceRange Range{Ty.getBeginLoc(), Ty.getEndLoc()};
|
|
|
|
if (Range.isInvalid())
|
|
return true;
|
|
|
|
if (const auto *TT = dyn_cast<TagType>(TyPtr)) {
|
|
TagDecl *TD = TT->getDecl();
|
|
DiagnoseDeclAvailability(TD, Range);
|
|
|
|
} else if (const auto *TD = dyn_cast<TypedefType>(TyPtr)) {
|
|
TypedefNameDecl *D = TD->getDecl();
|
|
DiagnoseDeclAvailability(D, Range);
|
|
|
|
} else if (const auto *ObjCO = dyn_cast<ObjCObjectType>(TyPtr)) {
|
|
if (NamedDecl *D = ObjCO->getInterface())
|
|
DiagnoseDeclAvailability(D, Range);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DiagnoseUnguardedAvailability::TraverseIfStmt(IfStmt *If) {
|
|
VersionTuple CondVersion;
|
|
if (auto *E = dyn_cast<ObjCAvailabilityCheckExpr>(If->getCond())) {
|
|
CondVersion = E->getVersion();
|
|
|
|
// If we're using the '*' case here or if this check is redundant, then we
|
|
// use the enclosing version to check both branches.
|
|
if (CondVersion.empty() || CondVersion <= AvailabilityStack.back())
|
|
return TraverseStmt(If->getThen()) && TraverseStmt(If->getElse());
|
|
} else {
|
|
// This isn't an availability checking 'if', we can just continue.
|
|
return Base::TraverseIfStmt(If);
|
|
}
|
|
|
|
AvailabilityStack.push_back(CondVersion);
|
|
bool ShouldContinue = TraverseStmt(If->getThen());
|
|
AvailabilityStack.pop_back();
|
|
|
|
return ShouldContinue && TraverseStmt(If->getElse());
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
void Sema::DiagnoseUnguardedAvailabilityViolations(Decl *D) {
|
|
Stmt *Body = nullptr;
|
|
|
|
if (auto *FD = D->getAsFunction()) {
|
|
// FIXME: We only examine the pattern decl for availability violations now,
|
|
// but we should also examine instantiated templates.
|
|
if (FD->isTemplateInstantiation())
|
|
return;
|
|
|
|
Body = FD->getBody();
|
|
} else if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
Body = MD->getBody();
|
|
else if (auto *BD = dyn_cast<BlockDecl>(D))
|
|
Body = BD->getBody();
|
|
|
|
assert(Body && "Need a body here!");
|
|
|
|
DiagnoseUnguardedAvailability(*this, D).IssueDiagnostics(Body);
|
|
}
|
|
|
|
void Sema::DiagnoseAvailabilityOfDecl(NamedDecl *D,
|
|
ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass,
|
|
bool ObjCPropertyAccess,
|
|
bool AvoidPartialAvailabilityChecks) {
|
|
std::string Message;
|
|
AvailabilityResult Result;
|
|
const NamedDecl* OffendingDecl;
|
|
// See if this declaration is unavailable, deprecated, or partial.
|
|
std::tie(Result, OffendingDecl) = ShouldDiagnoseAvailabilityOfDecl(D, &Message);
|
|
if (Result == AR_Available)
|
|
return;
|
|
|
|
if (Result == AR_NotYetIntroduced) {
|
|
if (AvoidPartialAvailabilityChecks)
|
|
return;
|
|
|
|
// We need to know the @available context in the current function to
|
|
// diagnose this use, let DiagnoseUnguardedAvailabilityViolations do that
|
|
// when we're done parsing the current function.
|
|
if (getCurFunctionOrMethodDecl()) {
|
|
getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
|
|
return;
|
|
} else if (getCurBlock() || getCurLambda()) {
|
|
getCurFunction()->HasPotentialAvailabilityViolations = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
const ObjCPropertyDecl *ObjCPDecl = nullptr;
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
|
|
AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
|
|
if (PDeclResult == Result)
|
|
ObjCPDecl = PD;
|
|
}
|
|
}
|
|
|
|
EmitAvailabilityWarning(*this, Result, D, OffendingDecl, Message, Locs,
|
|
UnknownObjCClass, ObjCPDecl, ObjCPropertyAccess);
|
|
}
|