llvm-project/llvm/unittests/ADT/HashingTest.cpp

406 lines
18 KiB
C++

//===- llvm/unittest/ADT/HashingTest.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Hashing.h unit tests.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/DataTypes.h"
#include "gtest/gtest.h"
#include <deque>
#include <list>
#include <map>
#include <vector>
namespace llvm {
// Helper for test code to print hash codes.
void PrintTo(const hash_code &code, std::ostream *os) {
*os << static_cast<size_t>(code);
}
// Fake an object that is recognized as hashable data to test super large
// objects.
struct LargeTestInteger { uint64_t arr[8]; };
struct NonPOD {
uint64_t x, y;
NonPOD(uint64_t x, uint64_t y) : x(x), y(y) {}
friend hash_code hash_value(const NonPOD &obj) {
return hash_combine(obj.x, obj.y);
}
};
namespace hashing {
namespace detail {
template <> struct is_hashable_data<LargeTestInteger> : std::true_type {};
} // namespace detail
} // namespace hashing
} // namespace llvm
using namespace llvm;
namespace {
enum TestEnumeration {
TE_Foo = 42,
TE_Bar = 43
};
TEST(HashingTest, HashValueBasicTest) {
int x = 42, y = 43, c = 'x';
void *p = nullptr;
uint64_t i = 71;
const unsigned ci = 71;
volatile int vi = 71;
const volatile int cvi = 71;
uintptr_t addr = reinterpret_cast<uintptr_t>(&y);
EXPECT_EQ(hash_value(42), hash_value(x));
EXPECT_EQ(hash_value(42), hash_value(TE_Foo));
EXPECT_NE(hash_value(42), hash_value(y));
EXPECT_NE(hash_value(42), hash_value(TE_Bar));
EXPECT_NE(hash_value(42), hash_value(p));
EXPECT_EQ(hash_value(71), hash_value(i));
EXPECT_EQ(hash_value(71), hash_value(ci));
EXPECT_EQ(hash_value(71), hash_value(vi));
EXPECT_EQ(hash_value(71), hash_value(cvi));
EXPECT_EQ(hash_value(c), hash_value('x'));
EXPECT_EQ(hash_value('4'), hash_value('0' + 4));
EXPECT_EQ(hash_value(addr), hash_value(&y));
}
TEST(HashingTest, HashValueStdPair) {
EXPECT_EQ(hash_combine(42, 43), hash_value(std::make_pair(42, 43)));
EXPECT_NE(hash_combine(43, 42), hash_value(std::make_pair(42, 43)));
EXPECT_NE(hash_combine(42, 43), hash_value(std::make_pair(42ull, 43ull)));
EXPECT_NE(hash_combine(42, 43), hash_value(std::make_pair(42, 43ull)));
EXPECT_NE(hash_combine(42, 43), hash_value(std::make_pair(42ull, 43)));
// Note that pairs are implicitly flattened to a direct sequence of data and
// hashed efficiently as a consequence.
EXPECT_EQ(hash_combine(42, 43, 44),
hash_value(std::make_pair(42, std::make_pair(43, 44))));
EXPECT_EQ(hash_value(std::make_pair(42, std::make_pair(43, 44))),
hash_value(std::make_pair(std::make_pair(42, 43), 44)));
// Ensure that pairs which have padding bytes *inside* them don't get treated
// this way.
EXPECT_EQ(hash_combine('0', hash_combine(1ull, '2')),
hash_value(std::make_pair('0', std::make_pair(1ull, '2'))));
// Ensure that non-POD pairs don't explode the traits used.
NonPOD obj1(1, 2), obj2(3, 4), obj3(5, 6);
EXPECT_EQ(hash_combine(obj1, hash_combine(obj2, obj3)),
hash_value(std::make_pair(obj1, std::make_pair(obj2, obj3))));
}
TEST(HashingTest, HashValueStdTuple) {
EXPECT_EQ(hash_combine(), hash_value(std::make_tuple()));
EXPECT_EQ(hash_combine(42), hash_value(std::make_tuple(42)));
EXPECT_EQ(hash_combine(42, 'c'), hash_value(std::make_tuple(42, 'c')));
EXPECT_NE(hash_combine(43, 42), hash_value(std::make_tuple(42, 43)));
EXPECT_NE(hash_combine(42, 43), hash_value(std::make_tuple(42ull, 43ull)));
EXPECT_NE(hash_combine(42, 43), hash_value(std::make_tuple(42, 43ull)));
EXPECT_NE(hash_combine(42, 43), hash_value(std::make_tuple(42ull, 43)));
}
TEST(HashingTest, HashValueStdString) {
std::string s = "Hello World!";
EXPECT_EQ(hash_combine_range(s.c_str(), s.c_str() + s.size()), hash_value(s));
EXPECT_EQ(hash_combine_range(s.c_str(), s.c_str() + s.size() - 1),
hash_value(s.substr(0, s.size() - 1)));
EXPECT_EQ(hash_combine_range(s.c_str() + 1, s.c_str() + s.size() - 1),
hash_value(s.substr(1, s.size() - 2)));
std::wstring ws = L"Hello Wide World!";
EXPECT_EQ(hash_combine_range(ws.c_str(), ws.c_str() + ws.size()),
hash_value(ws));
EXPECT_EQ(hash_combine_range(ws.c_str(), ws.c_str() + ws.size() - 1),
hash_value(ws.substr(0, ws.size() - 1)));
EXPECT_EQ(hash_combine_range(ws.c_str() + 1, ws.c_str() + ws.size() - 1),
hash_value(ws.substr(1, ws.size() - 2)));
}
template <typename T, size_t N> T *begin(T (&arr)[N]) { return arr; }
template <typename T, size_t N> T *end(T (&arr)[N]) { return arr + N; }
// Provide a dummy, hashable type designed for easy verification: its hash is
// the same as its value.
struct HashableDummy { size_t value; };
hash_code hash_value(HashableDummy dummy) { return dummy.value; }
TEST(HashingTest, HashCombineRangeBasicTest) {
// Leave this uninitialized in the hope that valgrind will catch bad reads.
int dummy;
hash_code dummy_hash = hash_combine_range(&dummy, &dummy);
EXPECT_NE(hash_code(0), dummy_hash);
const int arr1[] = { 1, 2, 3 };
hash_code arr1_hash = hash_combine_range(begin(arr1), end(arr1));
EXPECT_NE(dummy_hash, arr1_hash);
EXPECT_EQ(arr1_hash, hash_combine_range(begin(arr1), end(arr1)));
const std::vector<int> vec(begin(arr1), end(arr1));
EXPECT_EQ(arr1_hash, hash_combine_range(vec.begin(), vec.end()));
const std::list<int> list(begin(arr1), end(arr1));
EXPECT_EQ(arr1_hash, hash_combine_range(list.begin(), list.end()));
const std::deque<int> deque(begin(arr1), end(arr1));
EXPECT_EQ(arr1_hash, hash_combine_range(deque.begin(), deque.end()));
const int arr2[] = { 3, 2, 1 };
hash_code arr2_hash = hash_combine_range(begin(arr2), end(arr2));
EXPECT_NE(dummy_hash, arr2_hash);
EXPECT_NE(arr1_hash, arr2_hash);
const int arr3[] = { 1, 1, 2, 3 };
hash_code arr3_hash = hash_combine_range(begin(arr3), end(arr3));
EXPECT_NE(dummy_hash, arr3_hash);
EXPECT_NE(arr1_hash, arr3_hash);
const int arr4[] = { 1, 2, 3, 3 };
hash_code arr4_hash = hash_combine_range(begin(arr4), end(arr4));
EXPECT_NE(dummy_hash, arr4_hash);
EXPECT_NE(arr1_hash, arr4_hash);
const size_t arr5[] = { 1, 2, 3 };
const HashableDummy d_arr5[] = { {1}, {2}, {3} };
hash_code arr5_hash = hash_combine_range(begin(arr5), end(arr5));
hash_code d_arr5_hash = hash_combine_range(begin(d_arr5), end(d_arr5));
EXPECT_EQ(arr5_hash, d_arr5_hash);
}
TEST(HashingTest, HashCombineRangeLengthDiff) {
// Test that as only the length varies, we compute different hash codes for
// sequences.
std::map<size_t, size_t> code_to_size;
std::vector<char> all_one_c(256, '\xff');
for (unsigned Idx = 1, Size = all_one_c.size(); Idx < Size; ++Idx) {
hash_code code = hash_combine_range(&all_one_c[0], &all_one_c[0] + Idx);
std::map<size_t, size_t>::iterator
I = code_to_size.insert(std::make_pair(code, Idx)).first;
EXPECT_EQ(Idx, I->second);
}
code_to_size.clear();
std::vector<char> all_zero_c(256, '\0');
for (unsigned Idx = 1, Size = all_zero_c.size(); Idx < Size; ++Idx) {
hash_code code = hash_combine_range(&all_zero_c[0], &all_zero_c[0] + Idx);
std::map<size_t, size_t>::iterator
I = code_to_size.insert(std::make_pair(code, Idx)).first;
EXPECT_EQ(Idx, I->second);
}
code_to_size.clear();
std::vector<unsigned> all_one_int(512, -1);
for (unsigned Idx = 1, Size = all_one_int.size(); Idx < Size; ++Idx) {
hash_code code = hash_combine_range(&all_one_int[0], &all_one_int[0] + Idx);
std::map<size_t, size_t>::iterator
I = code_to_size.insert(std::make_pair(code, Idx)).first;
EXPECT_EQ(Idx, I->second);
}
code_to_size.clear();
std::vector<unsigned> all_zero_int(512, 0);
for (unsigned Idx = 1, Size = all_zero_int.size(); Idx < Size; ++Idx) {
hash_code code = hash_combine_range(&all_zero_int[0], &all_zero_int[0] + Idx);
std::map<size_t, size_t>::iterator
I = code_to_size.insert(std::make_pair(code, Idx)).first;
EXPECT_EQ(Idx, I->second);
}
}
TEST(HashingTest, HashCombineRangeGoldenTest) {
struct { const char *s; uint64_t hash; } golden_data[] = {
#if SIZE_MAX == UINT64_MAX || SIZE_MAX == UINT32_MAX
{ "a", 0xaeb6f9d5517c61f8ULL },
{ "ab", 0x7ab1edb96be496b4ULL },
{ "abc", 0xe38e60bf19c71a3fULL },
{ "abcde", 0xd24461a66de97f6eULL },
{ "abcdefgh", 0x4ef872ec411dec9dULL },
{ "abcdefghijklm", 0xe8a865539f4eadfeULL },
{ "abcdefghijklmnopqrstu", 0x261cdf85faaf4e79ULL },
{ "abcdefghijklmnopqrstuvwxyzabcdef", 0x43ba70e4198e3b2aULL },
{ "abcdefghijklmnopqrstuvwxyzabcdef"
"abcdefghijklmnopqrstuvwxyzghijkl"
"abcdefghijklmnopqrstuvwxyzmnopqr"
"abcdefghijklmnopqrstuvwxyzstuvwx"
"abcdefghijklmnopqrstuvwxyzyzabcd", 0xdcd57fb2afdf72beULL },
{ "a", 0xaeb6f9d5517c61f8ULL },
{ "aa", 0xf2b3b69a9736a1ebULL },
{ "aaa", 0xf752eb6f07b1cafeULL },
{ "aaaaa", 0x812bd21e1236954cULL },
{ "aaaaaaaa", 0xff07a2cff08ac587ULL },
{ "aaaaaaaaaaaaa", 0x84ac949d54d704ecULL },
{ "aaaaaaaaaaaaaaaaaaaaa", 0xcb2c8fb6be8f5648ULL },
{ "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 0xcc40ab7f164091b6ULL },
{ "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 0xc58e174c1e78ffe9ULL },
{ "z", 0x1ba160d7e8f8785cULL },
{ "zz", 0x2c5c03172f1285d7ULL },
{ "zzz", 0x9d2c4f4b507a2ac3ULL },
{ "zzzzz", 0x0f03b9031735693aULL },
{ "zzzzzzzz", 0xe674147c8582c08eULL },
{ "zzzzzzzzzzzzz", 0x3162d9fa6938db83ULL },
{ "zzzzzzzzzzzzzzzzzzzzz", 0x37b9a549e013620cULL },
{ "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", 0x8921470aff885016ULL },
{ "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
"zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
"zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
"zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
"zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", 0xf60fdcd9beb08441ULL },
{ "a", 0xaeb6f9d5517c61f8ULL },
{ "ab", 0x7ab1edb96be496b4ULL },
{ "aba", 0x3edb049950884d0aULL },
{ "ababa", 0x8f2de9e73a97714bULL },
{ "abababab", 0xee14a29ddf0ce54cULL },
{ "ababababababa", 0x38b3ddaada2d52b4ULL },
{ "ababababababababababa", 0xd3665364219f2b85ULL },
{ "abababababababababababababababab", 0xa75cd6afbf1bc972ULL },
{ "abababababababababababababababab"
"abababababababababababababababab"
"abababababababababababababababab"
"abababababababababababababababab"
"abababababababababababababababab", 0x840192d129f7a22bULL }
#else
#error This test only supports 64-bit and 32-bit systems.
#endif
};
for (unsigned i = 0; i < sizeof(golden_data)/sizeof(*golden_data); ++i) {
StringRef str = golden_data[i].s;
hash_code hash = hash_combine_range(str.begin(), str.end());
#if 0 // Enable this to generate paste-able text for the above structure.
std::string member_str = "\"" + str.str() + "\",";
fprintf(stderr, " { %-35s 0x%016llxULL },\n",
member_str.c_str(), static_cast<uint64_t>(hash));
#endif
EXPECT_EQ(static_cast<size_t>(golden_data[i].hash),
static_cast<size_t>(hash));
}
}
TEST(HashingTest, HashCombineBasicTest) {
// Hashing a sequence of homogenous types matches range hashing.
const int i1 = 42, i2 = 43, i3 = 123, i4 = 999, i5 = 0, i6 = 79;
const int arr1[] = { i1, i2, i3, i4, i5, i6 };
EXPECT_EQ(hash_combine_range(arr1, arr1 + 1), hash_combine(i1));
EXPECT_EQ(hash_combine_range(arr1, arr1 + 2), hash_combine(i1, i2));
EXPECT_EQ(hash_combine_range(arr1, arr1 + 3), hash_combine(i1, i2, i3));
EXPECT_EQ(hash_combine_range(arr1, arr1 + 4), hash_combine(i1, i2, i3, i4));
EXPECT_EQ(hash_combine_range(arr1, arr1 + 5),
hash_combine(i1, i2, i3, i4, i5));
EXPECT_EQ(hash_combine_range(arr1, arr1 + 6),
hash_combine(i1, i2, i3, i4, i5, i6));
// Hashing a sequence of heterogeneous types which *happen* to all produce the
// same data for hashing produces the same as a range-based hash of the
// fundamental values.
const size_t s1 = 1024, s2 = 8888, s3 = 9000000;
const HashableDummy d1 = { 1024 }, d2 = { 8888 }, d3 = { 9000000 };
const size_t arr2[] = { s1, s2, s3 };
EXPECT_EQ(hash_combine_range(begin(arr2), end(arr2)),
hash_combine(s1, s2, s3));
EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(s1, s2, d3));
EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(s1, d2, s3));
EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(d1, s2, s3));
EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(d1, d2, s3));
EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(d1, d2, d3));
// Permuting values causes hashes to change.
EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i1, i1, i2));
EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i1, i2, i1));
EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i2, i1, i1));
EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i2, i2, i1));
EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i2, i2, i2));
EXPECT_NE(hash_combine(i2, i1, i1), hash_combine(i1, i1, i2));
EXPECT_NE(hash_combine(i1, i1, i2), hash_combine(i1, i2, i1));
EXPECT_NE(hash_combine(i1, i2, i1), hash_combine(i2, i1, i1));
// Changing type w/o changing value causes hashes to change.
EXPECT_NE(hash_combine(i1, i2, i3), hash_combine((char)i1, i2, i3));
EXPECT_NE(hash_combine(i1, i2, i3), hash_combine(i1, (char)i2, i3));
EXPECT_NE(hash_combine(i1, i2, i3), hash_combine(i1, i2, (char)i3));
// This is array of uint64, but it should have the exact same byte pattern as
// an array of LargeTestIntegers.
const uint64_t bigarr[] = {
0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL,
0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL,
0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL,
0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL,
0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL,
0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL,
0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL,
0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL,
0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL
};
// Hash a preposterously large integer, both aligned with the buffer and
// misaligned.
const LargeTestInteger li = { {
0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL,
0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL,
0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL
} };
// Rotate the storage from 'li'.
const LargeTestInteger l2 = { {
0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL,
0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL,
0xaaaacbcbffffababULL, 0xaaaaaaaaababababULL
} };
const LargeTestInteger l3 = { {
0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL,
0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL,
0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL
} };
EXPECT_EQ(hash_combine_range(begin(bigarr), end(bigarr)),
hash_combine(li, li, li));
EXPECT_EQ(hash_combine_range(bigarr, bigarr + 9),
hash_combine(bigarr[0], l2));
EXPECT_EQ(hash_combine_range(bigarr, bigarr + 10),
hash_combine(bigarr[0], bigarr[1], l3));
EXPECT_EQ(hash_combine_range(bigarr, bigarr + 17),
hash_combine(li, bigarr[0], l2));
EXPECT_EQ(hash_combine_range(bigarr, bigarr + 18),
hash_combine(li, bigarr[0], bigarr[1], l3));
EXPECT_EQ(hash_combine_range(bigarr, bigarr + 18),
hash_combine(bigarr[0], l2, bigarr[9], l3));
EXPECT_EQ(hash_combine_range(bigarr, bigarr + 20),
hash_combine(bigarr[0], l2, bigarr[9], l3, bigarr[18], bigarr[19]));
}
TEST(HashingTest, HashCombineArgs18) {
// This tests that we can pass in up to 18 args.
#define CHECK_SAME(...) \
EXPECT_EQ(hash_combine(__VA_ARGS__), hash_combine(__VA_ARGS__))
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8, 9);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7, 8);
CHECK_SAME(1, 2, 3, 4, 5, 6, 7);
CHECK_SAME(1, 2, 3, 4, 5, 6);
CHECK_SAME(1, 2, 3, 4, 5);
CHECK_SAME(1, 2, 3, 4);
CHECK_SAME(1, 2, 3);
CHECK_SAME(1, 2);
CHECK_SAME(1);
#undef CHECK_SAME
}
}