llvm-project/mlir/lib/Transforms/MemRefDataFlowOpt.cpp

222 lines
8.8 KiB
C++

//===- MemRefDataFlowOpt.cpp - MemRef DataFlow Optimization pass ------ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to forward memref stores to loads, thereby
// potentially getting rid of intermediate memref's entirely.
// TODO: In the future, similar techniques could be used to eliminate
// dead memref store's and perform more complex forwarding when support for
// SSA scalars live out of 'affine.for'/'affine.if' statements is available.
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
#define DEBUG_TYPE "memref-dataflow-opt"
using namespace mlir;
namespace {
// The store to load forwarding relies on three conditions:
//
// 1) they need to have mathematically equivalent affine access functions
// (checked after full composition of load/store operands); this implies that
// they access the same single memref element for all iterations of the common
// surrounding loop,
//
// 2) the store op should dominate the load op,
//
// 3) among all op's that satisfy both (1) and (2), the one that postdominates
// all store op's that have a dependence into the load, is provably the last
// writer to the particular memref location being loaded at the load op, and its
// store value can be forwarded to the load. Note that the only dependences
// that are to be considered are those that are satisfied at the block* of the
// innermost common surrounding loop of the <store, load> being considered.
//
// (* A dependence being satisfied at a block: a dependence that is satisfied by
// virtue of the destination operation appearing textually / lexically after
// the source operation within the body of a 'affine.for' operation; thus, a
// dependence is always either satisfied by a loop or by a block).
//
// The above conditions are simple to check, sufficient, and powerful for most
// cases in practice - they are sufficient, but not necessary --- since they
// don't reason about loops that are guaranteed to execute at least once or
// multiple sources to forward from.
//
// TODO: more forwarding can be done when support for
// loop/conditional live-out SSA values is available.
// TODO: do general dead store elimination for memref's. This pass
// currently only eliminates the stores only if no other loads/uses (other
// than dealloc) remain.
//
struct MemRefDataFlowOpt : public MemRefDataFlowOptBase<MemRefDataFlowOpt> {
void runOnFunction() override;
void forwardStoreToLoad(AffineReadOpInterface loadOp);
// A list of memref's that are potentially dead / could be eliminated.
SmallPtrSet<Value, 4> memrefsToErase;
// Load op's whose results were replaced by those forwarded from stores.
SmallVector<Operation *, 8> loadOpsToErase;
DominanceInfo *domInfo = nullptr;
PostDominanceInfo *postDomInfo = nullptr;
};
} // end anonymous namespace
/// Creates a pass to perform optimizations relying on memref dataflow such as
/// store to load forwarding, elimination of dead stores, and dead allocs.
std::unique_ptr<OperationPass<FuncOp>> mlir::createMemRefDataFlowOptPass() {
return std::make_unique<MemRefDataFlowOpt>();
}
// This is a straightforward implementation not optimized for speed. Optimize
// if needed.
void MemRefDataFlowOpt::forwardStoreToLoad(AffineReadOpInterface loadOp) {
// First pass over the use list to get the minimum number of surrounding
// loops common between the load op and the store op, with min taken across
// all store ops.
SmallVector<Operation *, 8> storeOps;
unsigned minSurroundingLoops = getNestingDepth(loadOp);
for (auto *user : loadOp.getMemRef().getUsers()) {
auto storeOp = dyn_cast<AffineWriteOpInterface>(user);
if (!storeOp)
continue;
unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *storeOp);
minSurroundingLoops = std::min(nsLoops, minSurroundingLoops);
storeOps.push_back(storeOp);
}
// The list of store op candidates for forwarding that satisfy conditions
// (1) and (2) above - they will be filtered later when checking (3).
SmallVector<Operation *, 8> fwdingCandidates;
// Store ops that have a dependence into the load (even if they aren't
// forwarding candidates). Each forwarding candidate will be checked for a
// post-dominance on these. 'fwdingCandidates' are a subset of depSrcStores.
SmallVector<Operation *, 8> depSrcStores;
for (auto *storeOp : storeOps) {
MemRefAccess srcAccess(storeOp);
MemRefAccess destAccess(loadOp);
// Find stores that may be reaching the load.
FlatAffineConstraints dependenceConstraints;
unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *storeOp);
unsigned d;
// Dependences at loop depth <= minSurroundingLoops do NOT matter.
for (d = nsLoops + 1; d > minSurroundingLoops; d--) {
DependenceResult result = checkMemrefAccessDependence(
srcAccess, destAccess, d, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (hasDependence(result))
break;
}
if (d == minSurroundingLoops)
continue;
// Stores that *may* be reaching the load.
depSrcStores.push_back(storeOp);
// 1. Check if the store and the load have mathematically equivalent
// affine access functions; this implies that they statically refer to the
// same single memref element. As an example this filters out cases like:
// store %A[%i0 + 1]
// load %A[%i0]
// store %A[%M]
// load %A[%N]
// Use the AffineValueMap difference based memref access equality checking.
if (srcAccess != destAccess)
continue;
// 2. The store has to dominate the load op to be candidate.
if (!domInfo->dominates(storeOp, loadOp))
continue;
// We now have a candidate for forwarding.
fwdingCandidates.push_back(storeOp);
}
// 3. Of all the store op's that meet the above criteria, the store that
// postdominates all 'depSrcStores' (if one exists) is the unique store
// providing the value to the load, i.e., provably the last writer to that
// memref loc.
// Note: this can be implemented in a cleaner way with postdominator tree
// traversals. Consider this for the future if needed.
Operation *lastWriteStoreOp = nullptr;
for (auto *storeOp : fwdingCandidates) {
if (llvm::all_of(depSrcStores, [&](Operation *depStore) {
return postDomInfo->postDominates(storeOp, depStore);
})) {
lastWriteStoreOp = storeOp;
break;
}
}
if (!lastWriteStoreOp)
return;
// Perform the actual store to load forwarding.
Value storeVal =
cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore();
loadOp.getValue().replaceAllUsesWith(storeVal);
// Record the memref for a later sweep to optimize away.
memrefsToErase.insert(loadOp.getMemRef());
// Record this to erase later.
loadOpsToErase.push_back(loadOp);
}
void MemRefDataFlowOpt::runOnFunction() {
// Only supports single block functions at the moment.
FuncOp f = getFunction();
if (!llvm::hasSingleElement(f)) {
markAllAnalysesPreserved();
return;
}
domInfo = &getAnalysis<DominanceInfo>();
postDomInfo = &getAnalysis<PostDominanceInfo>();
loadOpsToErase.clear();
memrefsToErase.clear();
// Walk all load's and perform store to load forwarding.
f.walk([&](AffineReadOpInterface loadOp) { forwardStoreToLoad(loadOp); });
// Erase all load op's whose results were replaced with store fwd'ed ones.
for (auto *loadOp : loadOpsToErase)
loadOp->erase();
// Check if the store fwd'ed memrefs are now left with only stores and can
// thus be completely deleted. Note: the canonicalize pass should be able
// to do this as well, but we'll do it here since we collected these anyway.
for (auto memref : memrefsToErase) {
// If the memref hasn't been alloc'ed in this function, skip.
Operation *defOp = memref.getDefiningOp();
if (!defOp || !isa<memref::AllocOp>(defOp))
// TODO: if the memref was returned by a 'call' operation, we
// could still erase it if the call had no side-effects.
continue;
if (llvm::any_of(memref.getUsers(), [&](Operation *ownerOp) {
return !isa<AffineWriteOpInterface, memref::DeallocOp>(ownerOp);
}))
continue;
// Erase all stores, the dealloc, and the alloc on the memref.
for (auto *user : llvm::make_early_inc_range(memref.getUsers()))
user->erase();
defOp->erase();
}
}