llvm-project/mlir/lib/EDSC/MLIREmitter.cpp

331 lines
12 KiB
C++

//===- MLIREmitter.cpp - MLIR EDSC Emitter Class Implementation -*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "mlir/EDSC/MLIREmitter.h"
#include "mlir/EDSC/Types.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Instructions.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Value.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/SuperVectorOps/SuperVectorOps.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/STLExtras.h"
using llvm::dbgs;
using llvm::errs;
#define DEBUG_TYPE "edsc"
namespace mlir {
namespace edsc {
// Factors out the boilerplate that is needed to build and answer the
// following simple question:
// Given a set of Value* `values`, how do I get the resulting op(`values`)
//
// This is a very loaded question and generally cannot be answered properly.
// For instance, an LLVM operation has many attributes that may not fit within
// this simplistic framing (e.g. overflow behavior etc).
//
// Still, MLIR is a higher-level IR and the Halide experience shows it is
// possible to build useful EDSCs with the right amount of sugar.
//
// To build EDSCs we need to be able to conveniently support simple operations
// such as `add` on the type system. This captures the possible behaviors. In
// the future, this should be automatically constructed from an abstraction
// that is common to the IR verifier, but for now we need to get off the ground
// manually.
//
// This is expected to be a "dialect-specific" functionality: certain dialects
// will not have a simple definition. Two such cases that come to mind are:
// 1. what does it mean to have an operator* on an opaque tensor dialect
// (dot, vector, hadamard, kronecker ?)-product;
// 2. LLVM add with attributes like overflow.
// This is all left for future consideration; in the meantime let's separate
// concerns and implement useful infrastructure without solving all problems at
// once.
/// Returns the element type if the type is VectorType or MemRefType; returns
/// getType if the type is scalar.
static Type getElementType(const Value &v) {
if (auto vec = v.getType().dyn_cast<mlir::VectorType>()) {
return vec.getElementType();
}
if (auto mem = v.getType().dyn_cast<mlir::MemRefType>()) {
return mem.getElementType();
}
return v.getType();
}
static bool isIndexElement(const Value &v) {
return getElementType(v).isIndex();
}
static bool isIntElement(const Value &v) {
return getElementType(v).isa<IntegerType>();
}
static bool isFloatElement(const Value &v) {
return getElementType(v).isa<FloatType>();
}
Value *add(FuncBuilder *builder, Location location, Value *a, Value *b) {
if (isIndexElement(*a)) {
auto *context = builder->getContext();
auto d0 = getAffineDimExpr(0, context);
auto d1 = getAffineDimExpr(1, context);
auto map = AffineMap::get(2, 0, {d0 + d1}, {});
return builder
->create<AffineApplyOp>(location, map, ArrayRef<Value *>{a, b})
->getResult(0);
} else if (isIntElement(*a)) {
return builder->create<AddIOp>(location, a, b)->getResult();
}
assert(isFloatElement(*a) && "Expected float element");
return builder->create<AddFOp>(location, a, b)->getResult();
}
Value *sub(FuncBuilder *builder, Location location, Value *a, Value *b) {
if (isIndexElement(*a)) {
auto *context = builder->getContext();
auto d0 = getAffineDimExpr(0, context);
auto d1 = getAffineDimExpr(1, context);
auto map = AffineMap::get(2, 0, {d0 - d1}, {});
return builder
->create<AffineApplyOp>(location, map, ArrayRef<Value *>{a, b})
->getResult(0);
} else if (isIntElement(*a)) {
return builder->create<SubIOp>(location, a, b)->getResult();
}
assert(isFloatElement(*a) && "Expected float element");
return builder->create<SubFOp>(location, a, b)->getResult();
}
Value *mul(FuncBuilder *builder, Location location, Value *a, Value *b) {
if (!isFloatElement(*a)) {
return builder->create<MulIOp>(location, a, b)->getResult();
}
assert(isFloatElement(*a) && "Expected float element");
return builder->create<MulFOp>(location, a, b)->getResult();
}
static void printDefininingStatement(llvm::raw_ostream &os, const Value &v) {
const auto *inst = v.getDefiningInst();
if (inst) {
inst->print(os);
return;
}
// &v is required here otherwise we get:
// non-pointer operand type 'const mlir::ForInst' incompatible with nullptr
if (auto *forInst = dyn_cast<ForInst>(&v)) {
forInst->print(os);
} else {
os << "unknown_ssa_value";
}
}
MLIREmitter &MLIREmitter::bind(Bindable e, Value *v) {
LLVM_DEBUG(printDefininingStatement(llvm::dbgs() << "\nBinding " << e << " @"
<< e.getStoragePtr() << ": ",
*v));
auto it = ssaBindings.insert(std::make_pair(e, v));
if (!it.second) {
printDefininingStatement(
llvm::errs() << "\nRebinding " << e << " @" << e.getStoragePtr(), *v);
llvm_unreachable("Double binding!");
}
return *this;
}
Value *MLIREmitter::emit(Expr e) {
auto it = ssaBindings.find(e);
if (it != ssaBindings.end()) {
return it->second;
}
// Skip bindables, they must have been found already.
Value *res = nullptr;
if (auto un = e.dyn_cast<UnaryExpr>()) {
if (un.getKind() == ExprKind::Dealloc) {
builder->create<DeallocOp>(location, emit(un.getExpr()));
return nullptr;
}
} else if (auto bin = e.dyn_cast<BinaryExpr>()) {
auto *a = emit(bin.getLHS());
auto *b = emit(bin.getRHS());
if (bin.getKind() == ExprKind::Add) {
res = add(builder, location, a, b);
} else if (bin.getKind() == ExprKind::Sub) {
res = sub(builder, location, a, b);
} else if (bin.getKind() == ExprKind::Mul) {
res = mul(builder, location, a, b);
}
// Vanilla comparisons operators.
// else if (bin.getKind() == ExprKind::And) {
// // impl i1
// res = add(builder, location, a, b); // MulIOp on i1
// }
// else if (bin.getKind() == ExprKind::Not) {
// res = ...; // 1 - cast<i1>()
// }
// else if (bin.getKind() == ExprKind::Or) {
// res = ...; // not(not(a) and not(b))
// }
// TODO(ntv): signed vs unsiged ??
// TODO(ntv): integer vs not ??
// TODO(ntv): float cmp
else if (bin.getKind() == ExprKind::EQ) {
res = builder->create<CmpIOp>(location, mlir::CmpIPredicate::EQ, a, b);
} else if (bin.getKind() == ExprKind::NE) {
res = builder->create<CmpIOp>(location, mlir::CmpIPredicate::NE, a, b);
} else if (bin.getKind() == ExprKind::LT) {
res = builder->create<CmpIOp>(location, mlir::CmpIPredicate::SLT, a, b);
} else if (bin.getKind() == ExprKind::LE) {
res = builder->create<CmpIOp>(location, mlir::CmpIPredicate::SLE, a, b);
} else if (bin.getKind() == ExprKind::GT) {
res = builder->create<CmpIOp>(location, mlir::CmpIPredicate::SGT, a, b);
} else if (bin.getKind() == ExprKind::GE) {
res = builder->create<CmpIOp>(location, mlir::CmpIPredicate::SGE, a, b);
}
// TODO(ntv): do we want this?
// if (res && ((a->type().is_uint() && !b->type().is_uint()) ||
// (!a->type().is_uint() && b->type().is_uint()))) {
// std::stringstream ss;
// ss << "a: " << *a << "\t b: " << *b;
// res->getDefiningOperation()->emitWarning(
// "Mixing signed and unsigned integers: " + ss.str());
// }
// }
}
if (auto ter = e.dyn_cast<TernaryExpr>()) {
if (ter.getKind() == ExprKind::Select) {
auto *cond = emit(ter.getCond());
auto *lhs = emit(ter.getLHS());
auto *rhs = emit(ter.getRHS());
res = builder->create<SelectOp>(location, cond, lhs, rhs)->getResult();
}
}
if (auto nar = e.dyn_cast<VariadicExpr>()) {
if (nar.getKind() == ExprKind::Alloc) {
auto exprs = emit(nar.getExprs());
auto types = nar.getTypes();
assert(types.size() == 1 && "Expected 1 type");
res =
builder->create<AllocOp>(location, types[0].cast<MemRefType>(), exprs)
->getResult();
} else if (nar.getKind() == ExprKind::Load) {
auto exprs = emit(nar.getExprs());
assert(exprs.size() > 1 && "Expected > 1 expr");
assert(nar.getTypes().empty() && "Expected no type");
SmallVector<Value *, 8> vals(exprs.begin() + 1, exprs.end());
res = builder->create<LoadOp>(location, exprs[0], vals)->getResult();
} else if (nar.getKind() == ExprKind::Store) {
auto exprs = emit(nar.getExprs());
assert(exprs.size() > 2 && "Expected > 2 expr");
assert(nar.getTypes().empty() && "Expected no type");
SmallVector<Value *, 8> vals(exprs.begin() + 2, exprs.end());
builder->create<StoreOp>(location, exprs[0], exprs[1], vals);
return nullptr;
} else if (nar.getKind() == ExprKind::VectorTypeCast) {
auto exprs = emit(nar.getExprs());
assert(exprs.size() == 1 && "Expected 1 expr");
auto types = nar.getTypes();
assert(types.size() == 1 && "Expected 1 type");
res = builder
->create<VectorTypeCastOp>(location, exprs[0],
types[0].cast<MemRefType>())
->getResult();
}
}
if (auto expr = e.dyn_cast<StmtBlockLikeExpr>()) {
if (expr.getKind() == ExprKind::For) {
auto exprs = emit(expr.getExprs());
assert(exprs.size() == 3 && "Expected 3 exprs");
assert(expr.getTypes().empty() && "Expected no type");
auto lb =
exprs[0]->getDefiningInst()->cast<ConstantIndexOp>()->getValue();
auto ub =
exprs[1]->getDefiningInst()->cast<ConstantIndexOp>()->getValue();
auto step =
exprs[2]->getDefiningInst()->cast<ConstantIndexOp>()->getValue();
res = builder->createFor(location, lb, ub, step);
}
}
if (!res) {
e.print(llvm::errs() << "\nError @" << e.getStoragePtr() << ": ");
assert(false);
}
auto resIter = ssaBindings.insert(std::make_pair(e, res));
(void)resIter;
assert(resIter.second && "insertion failed");
return res;
}
SmallVector<Value *, 8> MLIREmitter::emit(ArrayRef<Expr> exprs) {
return mlir::functional::map(
[this](Expr e) {
auto *res = this->emit(e);
LLVM_DEBUG(
printDefininingStatement(llvm::dbgs() << "\nEmitted: ", *res));
return res;
},
exprs);
}
void MLIREmitter::emitStmt(const Stmt &stmt) {
auto *block = builder->getBlock();
auto ip = builder->getInsertionPoint();
// Blocks are just a containing abstraction, they do not emit their RHS.
if (stmt.getRHS().getKind() != ExprKind::Block) {
auto *val = emit(stmt.getRHS());
if (!val) {
assert((stmt.getRHS().getKind() == ExprKind::Dealloc ||
stmt.getRHS().getKind() == ExprKind::Store) &&
"dealloc or store expected as the only 0-result ops");
return;
}
bind(stmt.getLHS(), val);
if (stmt.getRHS().getKind() == ExprKind::For) {
// Step into the loop.
builder->setInsertionPointToStart(cast<ForInst>(val)->getBody());
}
}
emitStmts(stmt.getEnclosedStmts());
builder->setInsertionPoint(block, ip);
}
void MLIREmitter::emitStmts(ArrayRef<Stmt> stmts) {
for (auto &stmt : stmts) {
emitStmt(stmt);
}
}
} // namespace edsc
} // namespace mlir