Go to file
Julian Lettner 0c4863a253 Reland "[TSan][libdispatch] Add interceptors for dispatch_async_and_wait()"
The linker errors caused by this revision have been addressed.

Add interceptors for `dispatch_async_and_wait[_f]()` which was added in
macOS 10.14.  This pair of functions is similar to `dispatch_sync()`,
but does not force a context switch of the queue onto the caller thread
when the queue is active (and hence is more efficient).  For TSan, we
can apply the same semantics as for `dispatch_sync()`.

From the header docs:
> Differences with dispatch_sync()
>
> When the runtime has brought up a thread to invoke the asynchronous
> workitems already submitted to the specified queue, that servicing
> thread will also be used to execute synchronous work submitted to the
> queue with dispatch_async_and_wait().
>
> However, if the runtime has not brought up a thread to service the
> specified queue (because it has no workitems enqueued, or only
> synchronous workitems), then dispatch_async_and_wait() will invoke the
> workitem on the calling thread, similar to the behaviour of functions
> in the dispatch_sync family.

Additional context:
> The guidance is to use `dispatch_async_and_wait()` instead of
> `dispatch_sync()` when it is necessary to mix async and sync calls on
> the same queue. `dispatch_async_and_wait()` does not guarantee
> execution on the caller thread which allows to reduce context switches
> when the target queue is active.
> https://gist.github.com/tclementdev/6af616354912b0347cdf6db159c37057

rdar://35757961

Reviewed By: kubamracek

Differential Revision: https://reviews.llvm.org/D85854
2020-08-18 18:34:14 -07:00
clang WCharType and WIntType are always signed int on OpenBSD. 2020-08-18 19:59:54 -04:00
clang-tools-extra [NFC][clang-tidy] Put abseil headers in alphabetical order 2020-08-18 15:52:47 +01:00
compiler-rt Reland "[TSan][libdispatch] Add interceptors for dispatch_async_and_wait()" 2020-08-18 18:34:14 -07:00
debuginfo-tests Harmonize Python shebang 2020-07-16 21:53:45 +02:00
flang [mlir] Remove the use of "kinds" from Attributes and Types 2020-08-18 16:20:14 -07:00
libc [libc][obvious] Fix link order of math tests. 2020-08-18 11:04:58 -07:00
libclc libclc: Add Mesa/SPIR-V target 2020-08-17 14:01:46 -07:00
libcxx Disable use of _ExtInt with '__atomic' builtins 2020-08-18 09:17:26 -07:00
libcxxabi ld128 demangle: allow space for 'L' suffix. 2020-08-18 16:14:05 -07:00
libunwind Default to disabling the libunwind frameheader cache. 2020-08-18 14:37:36 -07:00
lld [ELF] Assign file offsets of non-SHF_ALLOC after SHF_ALLOC and set sh_addr=0 to non-SHF_ALLOC 2020-08-18 09:03:01 -07:00
lldb [lldb] Remove unused function getArchFlag (NFC) 2020-08-18 15:20:57 -07:00
llvm AMDGPU: Implement waterfall loop for MIMG instructions with 256-bit SRsrc 2020-08-18 16:27:36 -07:00
mlir Separate the Registration from Loading dialects in the Context 2020-08-19 01:19:03 +00:00
openmp [libomptarget][NFC] Sort list of plugins in chronological order 2020-08-17 08:33:36 -07:00
parallel-libs Reapply "Try enabling -Wsuggest-override again, using add_compile_options instead of add_compile_definitions for disabling it in unittests/ directories." 2020-07-22 17:50:19 -07:00
polly [Polly] Reuse LLVM's build rules for gtest/gmock 2020-08-09 12:53:31 +02:00
pstl [libc++][pstl] Remove c++98 from UNSUPPORTED annotations 2020-07-29 14:17:32 -04:00
utils/arcanist Use in-tree clang-format-diff.py as Arcanist linter 2020-04-06 12:02:20 -04:00
.arcconfig [arcconfig] Default base to previous revision 2020-02-24 16:20:25 -08:00
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format
.clang-tidy - Update .clang-tidy to ignore parameters of main like functions for naming violations in clang and llvm directory 2020-01-31 16:49:45 +00:00
.git-blame-ignore-revs NFC: Add whitespace changing revisions to .git-blame-ignore-revs 2020-07-28 13:10:05 -04:00
.gitignore [clangd] Store index in '.cache/clangd/index' instead of '.clangd/index' 2020-07-07 14:53:45 +02:00
CONTRIBUTING.md
README.md Revert 'This is a test commit - ded57e1a06 2020-06-18 01:03:42 +05:30

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.