llvm-project/llvm/lib/Target/AVR/AVRFrameLowering.cpp

548 lines
19 KiB
C++

//===-- AVRFrameLowering.cpp - AVR Frame Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AVR implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "AVRFrameLowering.h"
#include "AVR.h"
#include "AVRInstrInfo.h"
#include "AVRMachineFunctionInfo.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include <vector>
namespace llvm {
AVRFrameLowering::AVRFrameLowering()
: TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 1, -2) {}
bool AVRFrameLowering::canSimplifyCallFramePseudos(
const MachineFunction &MF) const {
// Always simplify call frame pseudo instructions, even when
// hasReservedCallFrame is false.
return true;
}
bool AVRFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
// Reserve call frame memory in function prologue under the following
// conditions:
// - Y pointer is reserved to be the frame pointer.
// - The function does not contain variable sized objects.
const MachineFrameInfo &MFI = MF.getFrameInfo();
return hasFP(MF) && !MFI.hasVarSizedObjects();
}
void AVRFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.begin();
CallingConv::ID CallConv = MF.getFunction()->getCallingConv();
DebugLoc DL = (MBBI != MBB.end()) ? MBBI->getDebugLoc() : DebugLoc();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const AVRInstrInfo &TII = *STI.getInstrInfo();
bool HasFP = hasFP(MF);
// Interrupt handlers re-enable interrupts in function entry.
if (CallConv == CallingConv::AVR_INTR) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::BSETs))
.addImm(0x07)
.setMIFlag(MachineInstr::FrameSetup);
}
// Save the frame pointer if we have one.
if (HasFP) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHWRr))
.addReg(AVR::R29R28, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
}
// Emit special prologue code to save R1, R0 and SREG in interrupt/signal
// handlers before saving any other registers.
if (CallConv == CallingConv::AVR_INTR ||
CallConv == CallingConv::AVR_SIGNAL) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHWRr))
.addReg(AVR::R1R0, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(AVR::INRdA), AVR::R0)
.addImm(0x3f)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHRr))
.addReg(AVR::R0, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(AVR::EORRdRr))
.addReg(AVR::R0, RegState::Define)
.addReg(AVR::R0, RegState::Kill)
.addReg(AVR::R0, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
}
// Early exit if the frame pointer is not needed in this function.
if (!HasFP) {
return;
}
const MachineFrameInfo &MFI = MF.getFrameInfo();
const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
unsigned FrameSize = MFI.getStackSize() - AFI->getCalleeSavedFrameSize();
// Skip the callee-saved push instructions.
while (
(MBBI != MBB.end()) && MBBI->getFlag(MachineInstr::FrameSetup) &&
(MBBI->getOpcode() == AVR::PUSHRr || MBBI->getOpcode() == AVR::PUSHWRr)) {
++MBBI;
}
// Update Y with the new base value.
BuildMI(MBB, MBBI, DL, TII.get(AVR::SPREAD), AVR::R29R28)
.addReg(AVR::SP)
.setMIFlag(MachineInstr::FrameSetup);
// Mark the FramePtr as live-in in every block except the entry.
for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
I != E; ++I) {
I->addLiveIn(AVR::R29R28);
}
if (!FrameSize) {
return;
}
// Reserve the necessary frame memory by doing FP -= <size>.
unsigned Opcode = (isUInt<6>(FrameSize)) ? AVR::SBIWRdK : AVR::SUBIWRdK;
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opcode), AVR::R29R28)
.addReg(AVR::R29R28, RegState::Kill)
.addImm(FrameSize)
.setMIFlag(MachineInstr::FrameSetup);
// The SREG implicit def is dead.
MI->getOperand(3).setIsDead();
// Write back R29R28 to SP and temporarily disable interrupts.
BuildMI(MBB, MBBI, DL, TII.get(AVR::SPWRITE), AVR::SP)
.addReg(AVR::R29R28)
.setMIFlag(MachineInstr::FrameSetup);
}
void AVRFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
CallingConv::ID CallConv = MF.getFunction()->getCallingConv();
bool isHandler = (CallConv == CallingConv::AVR_INTR ||
CallConv == CallingConv::AVR_SIGNAL);
// Early exit if the frame pointer is not needed in this function except for
// signal/interrupt handlers where special code generation is required.
if (!hasFP(MF) && !isHandler) {
return;
}
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->getDesc().isReturn() &&
"Can only insert epilog into returning blocks");
DebugLoc DL = MBBI->getDebugLoc();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
unsigned FrameSize = MFI.getStackSize() - AFI->getCalleeSavedFrameSize();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const AVRInstrInfo &TII = *STI.getInstrInfo();
// Emit special epilogue code to restore R1, R0 and SREG in interrupt/signal
// handlers at the very end of the function, just before reti.
if (isHandler) {
BuildMI(MBB, MBBI, DL, TII.get(AVR::POPRd), AVR::R0);
BuildMI(MBB, MBBI, DL, TII.get(AVR::OUTARr))
.addImm(0x3f)
.addReg(AVR::R0, RegState::Kill);
BuildMI(MBB, MBBI, DL, TII.get(AVR::POPWRd), AVR::R1R0);
}
if (hasFP(MF))
BuildMI(MBB, MBBI, DL, TII.get(AVR::POPWRd), AVR::R29R28);
// Early exit if there is no need to restore the frame pointer.
if (!FrameSize) {
return;
}
// Skip the callee-saved pop instructions.
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = std::prev(MBBI);
int Opc = PI->getOpcode();
if (Opc != AVR::POPRd && Opc != AVR::POPWRd && !PI->isTerminator()) {
break;
}
--MBBI;
}
unsigned Opcode;
// Select the optimal opcode depending on how big it is.
if (isUInt<6>(FrameSize)) {
Opcode = AVR::ADIWRdK;
} else {
Opcode = AVR::SUBIWRdK;
FrameSize = -FrameSize;
}
// Restore the frame pointer by doing FP += <size>.
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opcode), AVR::R29R28)
.addReg(AVR::R29R28, RegState::Kill)
.addImm(FrameSize);
// The SREG implicit def is dead.
MI->getOperand(3).setIsDead();
// Write back R29R28 to SP and temporarily disable interrupts.
BuildMI(MBB, MBBI, DL, TII.get(AVR::SPWRITE), AVR::SP)
.addReg(AVR::R29R28, RegState::Kill);
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function meets any of the following
// conditions:
// - a register has been spilled
// - has allocas
// - input arguments are passed using the stack
//
// Notice that strictly this is not a frame pointer because it contains SP after
// frame allocation instead of having the original SP in function entry.
bool AVRFrameLowering::hasFP(const MachineFunction &MF) const {
const AVRMachineFunctionInfo *FuncInfo = MF.getInfo<AVRMachineFunctionInfo>();
return (FuncInfo->getHasSpills() || FuncInfo->getHasAllocas() ||
FuncInfo->getHasStackArgs());
}
bool AVRFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty()) {
return false;
}
unsigned CalleeFrameSize = 0;
DebugLoc DL = MBB.findDebugLoc(MI);
MachineFunction &MF = *MBB.getParent();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
AVRMachineFunctionInfo *AVRFI = MF.getInfo<AVRMachineFunctionInfo>();
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i - 1].getReg();
bool IsNotLiveIn = !MBB.isLiveIn(Reg);
assert(TRI->getRegSizeInBits(*TRI->getMinimalPhysRegClass(Reg)) == 8 &&
"Invalid register size");
// Add the callee-saved register as live-in only if it is not already a
// live-in register, this usually happens with arguments that are passed
// through callee-saved registers.
if (IsNotLiveIn) {
MBB.addLiveIn(Reg);
}
// Do not kill the register when it is an input argument.
BuildMI(MBB, MI, DL, TII.get(AVR::PUSHRr))
.addReg(Reg, getKillRegState(IsNotLiveIn))
.setMIFlag(MachineInstr::FrameSetup);
++CalleeFrameSize;
}
AVRFI->setCalleeSavedFrameSize(CalleeFrameSize);
return true;
}
bool AVRFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty()) {
return false;
}
DebugLoc DL = MBB.findDebugLoc(MI);
const MachineFunction &MF = *MBB.getParent();
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
for (const CalleeSavedInfo &CCSI : CSI) {
unsigned Reg = CCSI.getReg();
assert(TRI->getRegSizeInBits(*TRI->getMinimalPhysRegClass(Reg)) == 8 &&
"Invalid register size");
BuildMI(MBB, MI, DL, TII.get(AVR::POPRd), Reg);
}
return true;
}
/// Replace pseudo store instructions that pass arguments through the stack with
/// real instructions. If insertPushes is true then all instructions are
/// replaced with push instructions, otherwise regular std instructions are
/// inserted.
static void fixStackStores(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const TargetInstrInfo &TII, bool insertPushes) {
const AVRSubtarget &STI = MBB.getParent()->getSubtarget<AVRSubtarget>();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
// Iterate through the BB until we hit a call instruction or we reach the end.
for (auto I = MI, E = MBB.end(); I != E && !I->isCall();) {
MachineBasicBlock::iterator NextMI = std::next(I);
MachineInstr &MI = *I;
unsigned Opcode = I->getOpcode();
// Only care of pseudo store instructions where SP is the base pointer.
if (Opcode != AVR::STDSPQRr && Opcode != AVR::STDWSPQRr) {
I = NextMI;
continue;
}
assert(MI.getOperand(0).getReg() == AVR::SP &&
"Invalid register, should be SP!");
if (insertPushes) {
// Replace this instruction with a push.
unsigned SrcReg = MI.getOperand(2).getReg();
bool SrcIsKill = MI.getOperand(2).isKill();
// We can't use PUSHWRr here because when expanded the order of the new
// instructions are reversed from what we need. Perform the expansion now.
if (Opcode == AVR::STDWSPQRr) {
BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
.addReg(TRI.getSubReg(SrcReg, AVR::sub_hi),
getKillRegState(SrcIsKill));
BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
.addReg(TRI.getSubReg(SrcReg, AVR::sub_lo),
getKillRegState(SrcIsKill));
} else {
BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
.addReg(SrcReg, getKillRegState(SrcIsKill));
}
MI.eraseFromParent();
I = NextMI;
continue;
}
// Replace this instruction with a regular store. Use Y as the base
// pointer since it is guaranteed to contain a copy of SP.
unsigned STOpc =
(Opcode == AVR::STDWSPQRr) ? AVR::STDWPtrQRr : AVR::STDPtrQRr;
MI.setDesc(TII.get(STOpc));
MI.getOperand(0).setReg(AVR::R29R28);
I = NextMI;
}
}
MachineBasicBlock::iterator AVRFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetFrameLowering &TFI = *STI.getFrameLowering();
const AVRInstrInfo &TII = *STI.getInstrInfo();
// There is nothing to insert when the call frame memory is allocated during
// function entry. Delete the call frame pseudo and replace all pseudo stores
// with real store instructions.
if (TFI.hasReservedCallFrame(MF)) {
fixStackStores(MBB, MI, TII, false);
return MBB.erase(MI);
}
DebugLoc DL = MI->getDebugLoc();
unsigned int Opcode = MI->getOpcode();
int Amount = TII.getFrameSize(*MI);
// Adjcallstackup does not need to allocate stack space for the call, instead
// we insert push instructions that will allocate the necessary stack.
// For adjcallstackdown we convert it into an 'adiw reg, <amt>' handling
// the read and write of SP in I/O space.
if (Amount != 0) {
assert(TFI.getStackAlignment() == 1 && "Unsupported stack alignment");
if (Opcode == TII.getCallFrameSetupOpcode()) {
fixStackStores(MBB, MI, TII, true);
} else {
assert(Opcode == TII.getCallFrameDestroyOpcode());
// Select the best opcode to adjust SP based on the offset size.
unsigned addOpcode;
if (isUInt<6>(Amount)) {
addOpcode = AVR::ADIWRdK;
} else {
addOpcode = AVR::SUBIWRdK;
Amount = -Amount;
}
// Build the instruction sequence.
BuildMI(MBB, MI, DL, TII.get(AVR::SPREAD), AVR::R31R30).addReg(AVR::SP);
MachineInstr *New = BuildMI(MBB, MI, DL, TII.get(addOpcode), AVR::R31R30)
.addReg(AVR::R31R30, RegState::Kill)
.addImm(Amount);
New->getOperand(3).setIsDead();
BuildMI(MBB, MI, DL, TII.get(AVR::SPWRITE), AVR::SP)
.addReg(AVR::R31R30, RegState::Kill);
}
}
return MBB.erase(MI);
}
void AVRFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// If we have a frame pointer, the Y register needs to be saved as well.
// We don't do that here however - the prologue and epilogue generation
// code will handle it specially.
}
/// The frame analyzer pass.
///
/// Scans the function for allocas and used arguments
/// that are passed through the stack.
struct AVRFrameAnalyzer : public MachineFunctionPass {
static char ID;
AVRFrameAnalyzer() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
AVRMachineFunctionInfo *FuncInfo = MF.getInfo<AVRMachineFunctionInfo>();
// If there are no fixed frame indexes during this stage it means there
// are allocas present in the function.
if (MFI.getNumObjects() != MFI.getNumFixedObjects()) {
// Check for the type of allocas present in the function. We only care
// about fixed size allocas so do not give false positives if only
// variable sized allocas are present.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
// Variable sized objects have size 0.
if (MFI.getObjectSize(i)) {
FuncInfo->setHasAllocas(true);
break;
}
}
}
// If there are fixed frame indexes present, scan the function to see if
// they are really being used.
if (MFI.getNumFixedObjects() == 0) {
return false;
}
// Ok fixed frame indexes present, now scan the function to see if they
// are really being used, otherwise we can ignore them.
for (const MachineBasicBlock &BB : MF) {
for (const MachineInstr &MI : BB) {
int Opcode = MI.getOpcode();
if ((Opcode != AVR::LDDRdPtrQ) && (Opcode != AVR::LDDWRdPtrQ) &&
(Opcode != AVR::STDPtrQRr) && (Opcode != AVR::STDWPtrQRr)) {
continue;
}
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isFI()) {
continue;
}
if (MFI.isFixedObjectIndex(MO.getIndex())) {
FuncInfo->setHasStackArgs(true);
return false;
}
}
}
}
return false;
}
StringRef getPassName() const { return "AVR Frame Analyzer"; }
};
char AVRFrameAnalyzer::ID = 0;
/// Creates instance of the frame analyzer pass.
FunctionPass *createAVRFrameAnalyzerPass() { return new AVRFrameAnalyzer(); }
/// Create the Dynalloca Stack Pointer Save/Restore pass.
/// Insert a copy of SP before allocating the dynamic stack memory and restore
/// it in function exit to restore the original SP state. This avoids the need
/// of reserving a register pair for a frame pointer.
struct AVRDynAllocaSR : public MachineFunctionPass {
static char ID;
AVRDynAllocaSR() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) {
// Early exit when there are no variable sized objects in the function.
if (!MF.getFrameInfo().hasVarSizedObjects()) {
return false;
}
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
const TargetInstrInfo &TII = *STI.getInstrInfo();
MachineBasicBlock &EntryMBB = MF.front();
MachineBasicBlock::iterator MBBI = EntryMBB.begin();
DebugLoc DL = EntryMBB.findDebugLoc(MBBI);
unsigned SPCopy =
MF.getRegInfo().createVirtualRegister(&AVR::DREGSRegClass);
// Create a copy of SP in function entry before any dynallocas are
// inserted.
BuildMI(EntryMBB, MBBI, DL, TII.get(AVR::COPY), SPCopy).addReg(AVR::SP);
// Restore SP in all exit basic blocks.
for (MachineBasicBlock &MBB : MF) {
// If last instruction is a return instruction, add a restore copy.
if (!MBB.empty() && MBB.back().isReturn()) {
MBBI = MBB.getLastNonDebugInstr();
DL = MBBI->getDebugLoc();
BuildMI(MBB, MBBI, DL, TII.get(AVR::COPY), AVR::SP)
.addReg(SPCopy, RegState::Kill);
}
}
return true;
}
StringRef getPassName() const {
return "AVR dynalloca stack pointer save/restore";
}
};
char AVRDynAllocaSR::ID = 0;
/// createAVRDynAllocaSRPass - returns an instance of the dynalloca stack
/// pointer save/restore pass.
FunctionPass *createAVRDynAllocaSRPass() { return new AVRDynAllocaSR(); }
} // end of namespace llvm