llvm-project/lldb/source/Core/Timer.cpp

220 lines
6.3 KiB
C++

//===-- Timer.cpp -----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Timer.h"
#include <algorithm>
#include <map>
#include <mutex>
#include <vector>
#include "lldb/Core/Stream.h"
#include "lldb/Host/Host.h"
#include <stdio.h>
using namespace lldb_private;
#define TIMER_INDENT_AMOUNT 2
namespace {
typedef std::map<const char *, uint64_t> TimerCategoryMap;
struct TimerStack {
TimerStack() : m_depth(0) {}
uint32_t m_depth;
std::vector<Timer *> m_stack;
};
} // end of anonymous namespace
std::atomic<bool> Timer::g_quiet(true);
std::atomic<unsigned> Timer::g_display_depth(0);
static std::mutex &GetFileMutex() {
static std::mutex *g_file_mutex_ptr = nullptr;
static std::once_flag g_once_flag;
std::call_once(g_once_flag, []() {
// leaked on purpose to ensure this mutex works after main thread has run
// global C++ destructor chain
g_file_mutex_ptr = new std::mutex();
});
return *g_file_mutex_ptr;
}
static std::mutex &GetCategoryMutex() {
static std::mutex g_category_mutex;
return g_category_mutex;
}
static TimerCategoryMap &GetCategoryMap() {
static TimerCategoryMap g_category_map;
return g_category_map;
}
static void ThreadSpecificCleanup(void *p) {
delete static_cast<TimerStack *>(p);
}
static TimerStack *GetTimerStackForCurrentThread() {
static lldb::thread_key_t g_key =
Host::ThreadLocalStorageCreate(ThreadSpecificCleanup);
void *timer_stack = Host::ThreadLocalStorageGet(g_key);
if (timer_stack == NULL) {
Host::ThreadLocalStorageSet(g_key, new TimerStack);
timer_stack = Host::ThreadLocalStorageGet(g_key);
}
return (TimerStack *)timer_stack;
}
void Timer::SetQuiet(bool value) { g_quiet = value; }
Timer::Timer(const char *category, const char *format, ...)
: m_category(category), m_total_start(), m_timer_start(), m_total_ticks(0),
m_timer_ticks(0) {
TimerStack *stack = GetTimerStackForCurrentThread();
if (!stack)
return;
if (stack->m_depth++ < g_display_depth) {
if (g_quiet == false) {
std::lock_guard<std::mutex> lock(GetFileMutex());
// Indent
::fprintf(stdout, "%*s", stack->m_depth * TIMER_INDENT_AMOUNT, "");
// Print formatted string
va_list args;
va_start(args, format);
::vfprintf(stdout, format, args);
va_end(args);
// Newline
::fprintf(stdout, "\n");
}
TimeValue start_time(TimeValue::Now());
m_total_start = start_time;
m_timer_start = start_time;
if (!stack->m_stack.empty())
stack->m_stack.back()->ChildStarted(start_time);
stack->m_stack.push_back(this);
}
}
Timer::~Timer() {
TimerStack *stack = GetTimerStackForCurrentThread();
if (!stack)
return;
if (m_total_start.IsValid()) {
TimeValue stop_time = TimeValue::Now();
if (m_total_start.IsValid()) {
m_total_ticks += (stop_time - m_total_start);
m_total_start.Clear();
}
if (m_timer_start.IsValid()) {
m_timer_ticks += (stop_time - m_timer_start);
m_timer_start.Clear();
}
assert(stack->m_stack.back() == this);
stack->m_stack.pop_back();
if (stack->m_stack.empty() == false)
stack->m_stack.back()->ChildStopped(stop_time);
const uint64_t total_nsec_uint = GetTotalElapsedNanoSeconds();
const uint64_t timer_nsec_uint = GetTimerElapsedNanoSeconds();
const double total_nsec = total_nsec_uint;
const double timer_nsec = timer_nsec_uint;
if (g_quiet == false) {
std::lock_guard<std::mutex> lock(GetFileMutex());
::fprintf(stdout, "%*s%.9f sec (%.9f sec)\n",
(stack->m_depth - 1) * TIMER_INDENT_AMOUNT, "",
total_nsec / 1000000000.0, timer_nsec / 1000000000.0);
}
// Keep total results for each category so we can dump results.
std::lock_guard<std::mutex> guard(GetCategoryMutex());
TimerCategoryMap &category_map = GetCategoryMap();
category_map[m_category] += timer_nsec_uint;
}
if (stack->m_depth > 0)
--stack->m_depth;
}
uint64_t Timer::GetTotalElapsedNanoSeconds() {
uint64_t total_ticks = m_total_ticks;
// If we are currently running, we need to add the current
// elapsed time of the running timer...
if (m_total_start.IsValid())
total_ticks += (TimeValue::Now() - m_total_start);
return total_ticks;
}
uint64_t Timer::GetTimerElapsedNanoSeconds() {
uint64_t timer_ticks = m_timer_ticks;
// If we are currently running, we need to add the current
// elapsed time of the running timer...
if (m_timer_start.IsValid())
timer_ticks += (TimeValue::Now() - m_timer_start);
return timer_ticks;
}
void Timer::ChildStarted(const TimeValue &start_time) {
if (m_timer_start.IsValid()) {
m_timer_ticks += (start_time - m_timer_start);
m_timer_start.Clear();
}
}
void Timer::ChildStopped(const TimeValue &stop_time) {
if (!m_timer_start.IsValid())
m_timer_start = stop_time;
}
void Timer::SetDisplayDepth(uint32_t depth) { g_display_depth = depth; }
/* binary function predicate:
* - returns whether a person is less than another person
*/
static bool
CategoryMapIteratorSortCriterion(const TimerCategoryMap::const_iterator &lhs,
const TimerCategoryMap::const_iterator &rhs) {
return lhs->second > rhs->second;
}
void Timer::ResetCategoryTimes() {
std::lock_guard<std::mutex> guard(GetCategoryMutex());
TimerCategoryMap &category_map = GetCategoryMap();
category_map.clear();
}
void Timer::DumpCategoryTimes(Stream *s) {
std::lock_guard<std::mutex> guard(GetCategoryMutex());
TimerCategoryMap &category_map = GetCategoryMap();
std::vector<TimerCategoryMap::const_iterator> sorted_iterators;
TimerCategoryMap::const_iterator pos, end = category_map.end();
for (pos = category_map.begin(); pos != end; ++pos) {
sorted_iterators.push_back(pos);
}
std::sort(sorted_iterators.begin(), sorted_iterators.end(),
CategoryMapIteratorSortCriterion);
const size_t count = sorted_iterators.size();
for (size_t i = 0; i < count; ++i) {
const double timer_nsec = sorted_iterators[i]->second;
s->Printf("%.9f sec for %s\n", timer_nsec / 1000000000.0,
sorted_iterators[i]->first);
}
}