llvm-project/llvm/lib/Target/Mips/MipsSubtarget.cpp

292 lines
10 KiB
C++

//===-- MipsSubtarget.cpp - Mips Subtarget Information --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Mips specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "MipsSubtarget.h"
#include "Mips.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "MipsCallLowering.h"
#include "MipsLegalizerInfo.h"
#include "MipsRegisterBankInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "mips-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "MipsGenSubtargetInfo.inc"
// FIXME: Maybe this should be on by default when Mips16 is specified
//
static cl::opt<bool>
Mixed16_32("mips-mixed-16-32", cl::init(false),
cl::desc("Allow for a mixture of Mips16 "
"and Mips32 code in a single output file"),
cl::Hidden);
static cl::opt<bool> Mips_Os16("mips-os16", cl::init(false),
cl::desc("Compile all functions that don't use "
"floating point as Mips 16"),
cl::Hidden);
static cl::opt<bool> Mips16HardFloat("mips16-hard-float", cl::NotHidden,
cl::desc("Enable mips16 hard float."),
cl::init(false));
static cl::opt<bool>
Mips16ConstantIslands("mips16-constant-islands", cl::NotHidden,
cl::desc("Enable mips16 constant islands."),
cl::init(true));
static cl::opt<bool>
GPOpt("mgpopt", cl::Hidden,
cl::desc("Enable gp-relative addressing of mips small data items"));
bool MipsSubtarget::DspWarningPrinted = false;
bool MipsSubtarget::MSAWarningPrinted = false;
bool MipsSubtarget::VirtWarningPrinted = false;
bool MipsSubtarget::CRCWarningPrinted = false;
bool MipsSubtarget::GINVWarningPrinted = false;
void MipsSubtarget::anchor() {}
MipsSubtarget::MipsSubtarget(const Triple &TT, StringRef CPU, StringRef FS,
bool little, const MipsTargetMachine &TM,
unsigned StackAlignOverride)
: MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(MipsDefault),
IsLittle(little), IsSoftFloat(false), IsSingleFloat(false), IsFPXX(false),
NoABICalls(false), Abs2008(false), IsFP64bit(false), UseOddSPReg(true),
IsNaN2008bit(false), IsGP64bit(false), HasVFPU(false), HasCnMips(false),
HasMips3_32(false), HasMips3_32r2(false), HasMips4_32(false),
HasMips4_32r2(false), HasMips5_32r2(false), InMips16Mode(false),
InMips16HardFloat(Mips16HardFloat), InMicroMipsMode(false), HasDSP(false),
HasDSPR2(false), HasDSPR3(false), AllowMixed16_32(Mixed16_32 | Mips_Os16),
Os16(Mips_Os16), HasMSA(false), UseTCCInDIV(false), HasSym32(false),
HasEVA(false), DisableMadd4(false), HasMT(false), HasCRC(false),
HasVirt(false), HasGINV(false), UseIndirectJumpsHazard(false),
StackAlignOverride(StackAlignOverride),
TM(TM), TargetTriple(TT), TSInfo(),
InstrInfo(
MipsInstrInfo::create(initializeSubtargetDependencies(CPU, FS, TM))),
FrameLowering(MipsFrameLowering::create(*this)),
TLInfo(MipsTargetLowering::create(TM, *this)) {
if (MipsArchVersion == MipsDefault)
MipsArchVersion = Mips32;
// Don't even attempt to generate code for MIPS-I and MIPS-V. They have not
// been tested and currently exist for the integrated assembler only.
if (MipsArchVersion == Mips1)
report_fatal_error("Code generation for MIPS-I is not implemented", false);
if (MipsArchVersion == Mips5)
report_fatal_error("Code generation for MIPS-V is not implemented", false);
// Check if Architecture and ABI are compatible.
assert(((!isGP64bit() && isABI_O32()) ||
(isGP64bit() && (isABI_N32() || isABI_N64()))) &&
"Invalid Arch & ABI pair.");
if (hasMSA() && !isFP64bit())
report_fatal_error("MSA requires a 64-bit FPU register file (FR=1 mode). "
"See -mattr=+fp64.",
false);
if (isFP64bit() && !hasMips64() && hasMips32() && !hasMips32r2())
report_fatal_error(
"FPU with 64-bit registers is not available on MIPS32 pre revision 2. "
"Use -mcpu=mips32r2 or greater.");
if (!isABI_O32() && !useOddSPReg())
report_fatal_error("-mattr=+nooddspreg requires the O32 ABI.", false);
if (IsFPXX && (isABI_N32() || isABI_N64()))
report_fatal_error("FPXX is not permitted for the N32/N64 ABI's.", false);
if (hasMips64r6() && InMicroMipsMode)
report_fatal_error("microMIPS64R6 is not supported", false);
if (!isABI_O32() && InMicroMipsMode)
report_fatal_error("microMIPS64 is not supported.", false);
if (UseIndirectJumpsHazard) {
if (InMicroMipsMode)
report_fatal_error(
"cannot combine indirect jumps with hazard barriers and microMIPS");
if (!hasMips32r2())
report_fatal_error(
"indirect jumps with hazard barriers requires MIPS32R2 or later");
}
if (inAbs2008Mode() && hasMips32() && !hasMips32r2()) {
report_fatal_error("IEEE 754-2008 abs.fmt is not supported for the given "
"architecture.",
false);
}
if (hasMips32r6()) {
StringRef ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
assert(isFP64bit());
assert(isNaN2008());
assert(inAbs2008Mode());
if (hasDSP())
report_fatal_error(ISA + " is not compatible with the DSP ASE", false);
}
if (NoABICalls && TM.isPositionIndependent())
report_fatal_error("position-independent code requires '-mabicalls'");
if (isABI_N64() && !TM.isPositionIndependent() && !hasSym32())
NoABICalls = true;
// Set UseSmallSection.
UseSmallSection = GPOpt;
if (!NoABICalls && GPOpt) {
errs() << "warning: cannot use small-data accesses for '-mabicalls'"
<< "\n";
UseSmallSection = false;
}
if (hasDSPR2() && !DspWarningPrinted) {
if (hasMips64() && !hasMips64r2()) {
errs() << "warning: the 'dspr2' ASE requires MIPS64 revision 2 or "
<< "greater\n";
DspWarningPrinted = true;
} else if (hasMips32() && !hasMips32r2()) {
errs() << "warning: the 'dspr2' ASE requires MIPS32 revision 2 or "
<< "greater\n";
DspWarningPrinted = true;
}
} else if (hasDSP() && !DspWarningPrinted) {
if (hasMips64() && !hasMips64r2()) {
errs() << "warning: the 'dsp' ASE requires MIPS64 revision 2 or "
<< "greater\n";
DspWarningPrinted = true;
} else if (hasMips32() && !hasMips32r2()) {
errs() << "warning: the 'dsp' ASE requires MIPS32 revision 2 or "
<< "greater\n";
DspWarningPrinted = true;
}
}
StringRef ArchName = hasMips64() ? "MIPS64" : "MIPS32";
if (!hasMips32r5() && hasMSA() && !MSAWarningPrinted) {
errs() << "warning: the 'msa' ASE requires " << ArchName
<< " revision 5 or greater\n";
MSAWarningPrinted = true;
}
if (!hasMips32r5() && hasVirt() && !VirtWarningPrinted) {
errs() << "warning: the 'virt' ASE requires " << ArchName
<< " revision 5 or greater\n";
VirtWarningPrinted = true;
}
if (!hasMips32r6() && hasCRC() && !CRCWarningPrinted) {
errs() << "warning: the 'crc' ASE requires " << ArchName
<< " revision 6 or greater\n";
CRCWarningPrinted = true;
}
if (!hasMips32r6() && hasGINV() && !GINVWarningPrinted) {
errs() << "warning: the 'ginv' ASE requires " << ArchName
<< " revision 6 or greater\n";
GINVWarningPrinted = true;
}
CallLoweringInfo.reset(new MipsCallLowering(*getTargetLowering()));
Legalizer.reset(new MipsLegalizerInfo(*this));
auto *RBI = new MipsRegisterBankInfo(*getRegisterInfo());
RegBankInfo.reset(RBI);
InstSelector.reset(createMipsInstructionSelector(
*static_cast<const MipsTargetMachine *>(&TM), *this, *RBI));
}
bool MipsSubtarget::isPositionIndependent() const {
return TM.isPositionIndependent();
}
/// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
bool MipsSubtarget::enablePostRAScheduler() const { return true; }
void MipsSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const {
CriticalPathRCs.clear();
CriticalPathRCs.push_back(isGP64bit() ? &Mips::GPR64RegClass
: &Mips::GPR32RegClass);
}
CodeGenOpt::Level MipsSubtarget::getOptLevelToEnablePostRAScheduler() const {
return CodeGenOpt::Aggressive;
}
MipsSubtarget &
MipsSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS,
const TargetMachine &TM) {
std::string CPUName = MIPS_MC::selectMipsCPU(TM.getTargetTriple(), CPU);
// Parse features string.
ParseSubtargetFeatures(CPUName, FS);
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUName);
if (InMips16Mode && !IsSoftFloat)
InMips16HardFloat = true;
if (StackAlignOverride)
stackAlignment = StackAlignOverride;
else if (isABI_N32() || isABI_N64())
stackAlignment = 16;
else {
assert(isABI_O32() && "Unknown ABI for stack alignment!");
stackAlignment = 8;
}
return *this;
}
bool MipsSubtarget::useConstantIslands() {
LLVM_DEBUG(dbgs() << "use constant islands " << Mips16ConstantIslands
<< "\n");
return Mips16ConstantIslands;
}
Reloc::Model MipsSubtarget::getRelocationModel() const {
return TM.getRelocationModel();
}
bool MipsSubtarget::isABI_N64() const { return getABI().IsN64(); }
bool MipsSubtarget::isABI_N32() const { return getABI().IsN32(); }
bool MipsSubtarget::isABI_O32() const { return getABI().IsO32(); }
const MipsABIInfo &MipsSubtarget::getABI() const { return TM.getABI(); }
const CallLowering *MipsSubtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const LegalizerInfo *MipsSubtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *MipsSubtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
const InstructionSelector *MipsSubtarget::getInstructionSelector() const {
return InstSelector.get();
}