llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp

1300 lines
46 KiB
C++

//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//
#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPUISelLowering.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#define DEBUG_TYPE "amdgpu-call-lowering"
using namespace llvm;
namespace {
struct AMDGPUValueHandler : public CallLowering::ValueHandler {
AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
: ValueHandler(IsIncoming, B, MRI, AssignFn) {}
/// Wrapper around extendRegister to ensure we extend to a full 32-bit
/// register.
Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to
// extend and do a 32-bit copy to avoid the verifier complaining about it.
return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
}
return extendRegister(ValVReg, VA);
}
};
struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
: AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
MachineInstrBuilder MIB;
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
llvm_unreachable("not implemented");
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
llvm_unreachable("not implemented");
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
Register ExtReg = extendRegisterMin32(ValVReg, VA);
// If this is a scalar return, insert a readfirstlane just in case the value
// ends up in a VGPR.
// FIXME: Assert this is a shader return.
const SIRegisterInfo *TRI
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
if (TRI->isSGPRReg(MRI, PhysReg)) {
auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
{MRI.getType(ExtReg)}, false)
.addReg(ExtReg);
ExtReg = ToSGPR.getReg(0);
}
MIRBuilder.buildCopy(PhysReg, ExtReg);
MIB.addUse(PhysReg, RegState::Implicit);
}
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info,
ISD::ArgFlagsTy Flags,
CCState &State) override {
return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
}
};
struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
uint64_t StackUsed = 0;
AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: AMDGPUValueHandler(true, B, MRI, AssignFn) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
int FI = MFI.CreateFixedObject(Size, Offset, true);
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
auto AddrReg = MIRBuilder.buildFrameIndex(
LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
StackUsed = std::max(StackUsed, Size + Offset);
return AddrReg.getReg(0);
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
markPhysRegUsed(PhysReg);
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to do
// a 32-bit copy, and truncate to avoid the verifier complaining about it.
auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
return;
}
switch (VA.getLocInfo()) {
case CCValAssign::LocInfo::SExt:
case CCValAssign::LocInfo::ZExt:
case CCValAssign::LocInfo::AExt: {
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
break;
}
default:
MIRBuilder.buildCopy(ValVReg, PhysReg);
break;
}
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
MachinePointerInfo &MPO, CCValAssign &VA) override {
MachineFunction &MF = MIRBuilder.getMF();
// The reported memory location may be wider than the value.
const LLT RegTy = MRI.getType(ValVReg);
MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
// FIXME: Get alignment
auto MMO = MF.getMachineMemOperand(
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
inferAlignFromPtrInfo(MF, MPO));
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
}
/// How the physical register gets marked varies between formal
/// parameters (it's a basic-block live-in), and a call instruction
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
};
struct FormalArgHandler : public AMDGPUIncomingArgHandler {
FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIRBuilder.getMBB().addLiveIn(PhysReg);
}
};
struct CallReturnHandler : public AMDGPUIncomingArgHandler {
CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
: AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIB.addDef(PhysReg, RegState::Implicit);
}
MachineInstrBuilder MIB;
};
struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
MachineInstrBuilder MIB;
CCAssignFn *AssignFnVarArg;
/// For tail calls, the byte offset of the call's argument area from the
/// callee's. Unused elsewhere.
int FPDiff;
// Cache the SP register vreg if we need it more than once in this call site.
Register SPReg;
bool IsTailCall;
AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
bool IsTailCall = false, int FPDiff = 0)
: AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
MachineFunction &MF = MIRBuilder.getMF();
const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
const LLT S32 = LLT::scalar(32);
if (IsTailCall) {
llvm_unreachable("implement me");
}
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
if (!SPReg)
SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
MPO = MachinePointerInfo::getStack(MF, Offset);
return AddrReg.getReg(0);
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
MIB.addUse(PhysReg, RegState::Implicit);
Register ExtReg = extendRegisterMin32(ValVReg, VA);
MIRBuilder.buildCopy(PhysReg, ExtReg);
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
MachineFunction &MF = MIRBuilder.getMF();
uint64_t LocMemOffset = VA.getLocMemOffset();
const auto &ST = MF.getSubtarget<GCNSubtarget>();
auto MMO = MF.getMachineMemOperand(
MPO, MachineMemOperand::MOStore, Size,
commonAlignment(ST.getStackAlignment(), LocMemOffset));
MIRBuilder.buildStore(ValVReg, Addr, *MMO);
}
void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
uint64_t Size, MachinePointerInfo &MPO,
CCValAssign &VA) override {
Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
? extendRegister(Arg.Regs[0], VA)
: Arg.Regs[0];
// If we extended we might need to adjust the MMO's Size.
const LLT RegTy = MRI.getType(ValVReg);
if (RegTy.getSizeInBytes() > Size)
Size = RegTy.getSizeInBytes();
assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
}
};
}
AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
: CallLowering(&TLI) {
}
// FIXME: Compatability shim
static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
switch (MIOpc) {
case TargetOpcode::G_SEXT:
return ISD::SIGN_EXTEND;
case TargetOpcode::G_ZEXT:
return ISD::ZERO_EXTEND;
case TargetOpcode::G_ANYEXT:
return ISD::ANY_EXTEND;
default:
llvm_unreachable("not an extend opcode");
}
}
void AMDGPUCallLowering::splitToValueTypes(
MachineIRBuilder &B,
const ArgInfo &OrigArg,
SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL, CallingConv::ID CallConv,
bool IsOutgoing,
SplitArgTy PerformArgSplit) const {
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
LLVMContext &Ctx = OrigArg.Ty->getContext();
if (OrigArg.Ty->isVoidTy())
return;
SmallVector<EVT, 4> SplitVTs;
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
assert(OrigArg.Regs.size() == SplitVTs.size());
int SplitIdx = 0;
for (EVT VT : SplitVTs) {
Register Reg = OrigArg.Regs[SplitIdx];
Type *Ty = VT.getTypeForEVT(Ctx);
LLT LLTy = getLLTForType(*Ty, DL);
if (IsOutgoing && VT.isScalarInteger()) {
unsigned ExtendOp = TargetOpcode::G_ANYEXT;
if (OrigArg.Flags[0].isSExt()) {
assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
ExtendOp = TargetOpcode::G_SEXT;
} else if (OrigArg.Flags[0].isZExt()) {
assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
ExtendOp = TargetOpcode::G_ZEXT;
}
EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
extOpcodeToISDExtOpcode(ExtendOp));
if (ExtVT.getSizeInBits() != VT.getSizeInBits()) {
VT = ExtVT;
Ty = ExtVT.getTypeForEVT(Ctx);
LLTy = getLLTForType(*Ty, DL);
Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
}
}
unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
if (NumParts == 1) {
// No splitting to do, but we want to replace the original type (e.g. [1 x
// double] -> double).
SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
++SplitIdx;
continue;
}
SmallVector<Register, 8> SplitRegs;
Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
LLT PartLLT = getLLTForType(*PartTy, DL);
MachineRegisterInfo &MRI = *B.getMRI();
// FIXME: Should we be reporting all of the part registers for a single
// argument, and let handleAssignments take care of the repacking?
for (unsigned i = 0; i < NumParts; ++i) {
Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
SplitRegs.push_back(PartReg);
SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
}
PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
++SplitIdx;
}
}
// TODO: Move to generic code
static void unpackRegsToOrigType(MachineIRBuilder &B,
ArrayRef<Register> DstRegs,
Register SrcReg,
const CallLowering::ArgInfo &Info,
LLT SrcTy,
LLT PartTy) {
assert(DstRegs.size() > 1 && "Nothing to unpack");
const unsigned PartSize = PartTy.getSizeInBits();
if (SrcTy.isVector() && !PartTy.isVector() &&
PartSize > SrcTy.getElementType().getSizeInBits()) {
// Vector was scalarized, and the elements extended.
auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
for (int i = 0, e = DstRegs.size(); i != e; ++i)
B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
return;
}
LLT GCDTy = getGCDType(SrcTy, PartTy);
if (GCDTy == PartTy) {
// If this already evenly divisible, we can create a simple unmerge.
B.buildUnmerge(DstRegs, SrcReg);
return;
}
MachineRegisterInfo &MRI = *B.getMRI();
LLT DstTy = MRI.getType(DstRegs[0]);
LLT LCMTy = getLCMType(SrcTy, PartTy);
const unsigned LCMSize = LCMTy.getSizeInBits();
const unsigned DstSize = DstTy.getSizeInBits();
const unsigned SrcSize = SrcTy.getSizeInBits();
Register UnmergeSrc = SrcReg;
if (LCMSize != SrcSize) {
// Widen to the common type.
Register Undef = B.buildUndef(SrcTy).getReg(0);
SmallVector<Register, 8> MergeParts(1, SrcReg);
for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
MergeParts.push_back(Undef);
UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
}
// Unmerge to the original registers and pad with dead defs.
SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
Size += DstSize) {
UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
}
B.buildUnmerge(UnmergeResults, UnmergeSrc);
}
/// Lower the return value for the already existing \p Ret. This assumes that
/// \p B's insertion point is correct.
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
const Value *Val, ArrayRef<Register> VRegs,
MachineInstrBuilder &Ret) const {
if (!Val)
return true;
auto &MF = B.getMF();
const auto &F = MF.getFunction();
const DataLayout &DL = MF.getDataLayout();
MachineRegisterInfo *MRI = B.getMRI();
CallingConv::ID CC = F.getCallingConv();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
ArgInfo OrigRetInfo(VRegs, Val->getType());
setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
SmallVector<ArgInfo, 4> SplitRetInfos;
splitToValueTypes(
B, OrigRetInfo, SplitRetInfos, DL, CC, true,
[&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
int VTSplitIdx) {
unpackRegsToOrigType(B, Regs, SrcReg,
SplitRetInfos[VTSplitIdx],
LLTy, PartLLT);
});
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
return handleAssignments(B, SplitRetInfos, RetHandler);
}
bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
const Value *Val,
ArrayRef<Register> VRegs) const {
MachineFunction &MF = B.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MFI->setIfReturnsVoid(!Val);
assert(!Val == VRegs.empty() && "Return value without a vreg");
CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
const bool IsShader = AMDGPU::isShader(CC);
const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
AMDGPU::isKernel(CC);
if (IsWaveEnd) {
B.buildInstr(AMDGPU::S_ENDPGM)
.addImm(0);
return true;
}
auto const &ST = MF.getSubtarget<GCNSubtarget>();
unsigned ReturnOpc =
IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
auto Ret = B.buildInstrNoInsert(ReturnOpc);
Register ReturnAddrVReg;
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
Ret.addUse(ReturnAddrVReg);
}
if (!lowerReturnVal(B, Val, VRegs, Ret))
return false;
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
&AMDGPU::SGPR_64RegClass);
B.buildCopy(ReturnAddrVReg, LiveInReturn);
}
// TODO: Handle CalleeSavedRegsViaCopy.
B.insertInstr(Ret);
return true;
}
void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
Type *ParamTy,
uint64_t Offset) const {
MachineFunction &MF = B.getMF();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register KernArgSegmentPtr =
MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
}
void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
uint64_t Offset, Align Alignment,
Register DstReg) const {
MachineFunction &MF = B.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
lowerParameterPtr(PtrReg, B, ParamTy, Offset);
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo,
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
TypeSize, Alignment);
B.buildLoad(DstReg, PtrReg, *MMO);
}
// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
MachineIRBuilder &B,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info.hasPrivateSegmentBuffer()) {
Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info.hasDispatchPtr()) {
Register DispatchPtrReg = Info.addDispatchPtr(TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info.hasQueuePtr()) {
Register QueuePtrReg = Info.addQueuePtr(TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info.hasKernargSegmentPtr()) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register VReg = MRI.createGenericVirtualRegister(P4);
MRI.addLiveIn(InputPtrReg, VReg);
B.getMBB().addLiveIn(InputPtrReg);
B.buildCopy(VReg, InputPtrReg);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info.hasDispatchID()) {
Register DispatchIDReg = Info.addDispatchID(TRI);
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchIDReg);
}
if (Info.hasFlatScratchInit()) {
Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
}
bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
MachineIRBuilder &B, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
MachineFunction &MF = B.getMF();
const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
unsigned i = 0;
const Align KernArgBaseAlign(16);
const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
uint64_t ExplicitArgOffset = 0;
// TODO: Align down to dword alignment and extract bits for extending loads.
for (auto &Arg : F.args()) {
const bool IsByRef = Arg.hasByRefAttr();
Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
if (AllocSize == 0)
continue;
MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
if (!ABIAlign)
ABIAlign = DL.getABITypeAlign(ArgTy);
uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
if (Arg.use_empty()) {
++i;
continue;
}
Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
if (IsByRef) {
unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
assert(VRegs[i].size() == 1 &&
"expected only one register for byval pointers");
if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
} else {
const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
}
} else {
ArrayRef<Register> OrigArgRegs = VRegs[i];
Register ArgReg =
OrigArgRegs.size() == 1
? OrigArgRegs[0]
: MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
if (OrigArgRegs.size() > 1)
unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
}
++i;
}
TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
return true;
}
/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
static MachineInstrBuilder mergeVectorRegsToResultRegs(
MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
MachineRegisterInfo &MRI = *B.getMRI();
LLT LLTy = MRI.getType(DstRegs[0]);
LLT PartLLT = MRI.getType(SrcRegs[0]);
// Deal with v3s16 split into v2s16
LLT LCMTy = getLCMType(LLTy, PartLLT);
if (LCMTy == LLTy) {
// Common case where no padding is needed.
assert(DstRegs.size() == 1);
return B.buildConcatVectors(DstRegs[0], SrcRegs);
}
const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
Register Undef = B.buildUndef(PartLLT).getReg(0);
// Build vector of undefs.
SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
// Replace the first sources with the real registers.
std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
SmallVector<Register, 8> PadDstRegs(NumDst);
std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
// Create the excess dead defs for the unmerge.
for (int I = DstRegs.size(); I != NumDst; ++I)
PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
return B.buildUnmerge(PadDstRegs, Widened);
}
// TODO: Move this to generic code
static void packSplitRegsToOrigType(MachineIRBuilder &B,
ArrayRef<Register> OrigRegs,
ArrayRef<Register> Regs,
LLT LLTy,
LLT PartLLT) {
MachineRegisterInfo &MRI = *B.getMRI();
if (!LLTy.isVector() && !PartLLT.isVector()) {
assert(OrigRegs.size() == 1);
LLT OrigTy = MRI.getType(OrigRegs[0]);
unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
if (SrcSize == OrigTy.getSizeInBits())
B.buildMerge(OrigRegs[0], Regs);
else {
auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
B.buildTrunc(OrigRegs[0], Widened);
}
return;
}
if (LLTy.isVector() && PartLLT.isVector()) {
assert(OrigRegs.size() == 1);
assert(LLTy.getElementType() == PartLLT.getElementType());
mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
return;
}
assert(LLTy.isVector() && !PartLLT.isVector());
LLT DstEltTy = LLTy.getElementType();
// Pointer information was discarded. We'll need to coerce some register types
// to avoid violating type constraints.
LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
if (DstEltTy == PartLLT) {
// Vector was trivially scalarized.
if (RealDstEltTy.isPointer()) {
for (Register Reg : Regs)
MRI.setType(Reg, RealDstEltTy);
}
B.buildBuildVector(OrigRegs[0], Regs);
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
// Deal with vector with 64-bit elements decomposed to 32-bit
// registers. Need to create intermediate 64-bit elements.
SmallVector<Register, 8> EltMerges;
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
// Fix the type in case this is really a vector of pointers.
MRI.setType(Merge.getReg(0), RealDstEltTy);
EltMerges.push_back(Merge.getReg(0));
Regs = Regs.drop_front(PartsPerElt);
}
B.buildBuildVector(OrigRegs[0], EltMerges);
} else {
// Vector was split, and elements promoted to a wider type.
LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
auto BV = B.buildBuildVector(BVType, Regs);
B.buildTrunc(OrigRegs[0], BV);
}
}
bool AMDGPUCallLowering::lowerFormalArguments(
MachineIRBuilder &B, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
CallingConv::ID CC = F.getCallingConv();
// The infrastructure for normal calling convention lowering is essentially
// useless for kernels. We want to avoid any kind of legalization or argument
// splitting.
if (CC == CallingConv::AMDGPU_KERNEL)
return lowerFormalArgumentsKernel(B, F, VRegs);
const bool IsShader = AMDGPU::isShader(CC);
const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
MachineFunction &MF = B.getMF();
MachineBasicBlock &MBB = B.getMBB();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
if (!IsEntryFunc) {
Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
&AMDGPU::SGPR_64RegClass);
MBB.addLiveIn(ReturnAddrReg);
B.buildCopy(LiveInReturn, ReturnAddrReg);
}
if (Info->hasImplicitBufferPtr()) {
Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(ImplicitBufferPtrReg);
}
SmallVector<ArgInfo, 32> SplitArgs;
unsigned Idx = 0;
unsigned PSInputNum = 0;
for (auto &Arg : F.args()) {
if (DL.getTypeStoreSize(Arg.getType()) == 0)
continue;
const bool InReg = Arg.hasAttribute(Attribute::InReg);
// SGPR arguments to functions not implemented.
if (!IsShader && InReg)
return false;
if (Arg.hasAttribute(Attribute::SwiftSelf) ||
Arg.hasAttribute(Attribute::SwiftError) ||
Arg.hasAttribute(Attribute::Nest))
return false;
if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
const bool ArgUsed = !Arg.use_empty();
bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
if (!SkipArg) {
Info->markPSInputAllocated(PSInputNum);
if (ArgUsed)
Info->markPSInputEnabled(PSInputNum);
}
++PSInputNum;
if (SkipArg) {
for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
B.buildUndef(VRegs[Idx][I]);
++Idx;
continue;
}
}
ArgInfo OrigArg(VRegs[Idx], Arg.getType());
const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
setArgFlags(OrigArg, OrigArgIdx, DL, F);
splitToValueTypes(
B, OrigArg, SplitArgs, DL, CC, false,
// FIXME: We should probably be passing multiple registers to
// handleAssignments to do this
[&](ArrayRef<Register> Regs, Register DstReg,
LLT LLTy, LLT PartLLT, int VTSplitIdx) {
assert(DstReg == VRegs[Idx][VTSplitIdx]);
packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
LLTy, PartLLT);
});
++Idx;
}
// At least one interpolation mode must be enabled or else the GPU will
// hang.
//
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
// set PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CC == CallingConv::AMDGPU_PS) {
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->markPSInputEnabled(0);
}
if (Subtarget.isAmdPalOS()) {
// For isAmdPalOS, the user does not enable some bits after compilation
// based on run-time states; the register values being generated here are
// the final ones set in hardware. Therefore we need to apply the
// workaround to PSInputAddr and PSInputEnable together. (The case where
// a bit is set in PSInputAddr but not PSInputEnable is where the frontend
// set up an input arg for a particular interpolation mode, but nothing
// uses that input arg. Really we should have an earlier pass that removes
// such an arg.)
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
if ((PsInputBits & 0x7F) == 0 ||
((PsInputBits & 0xF) == 0 &&
(PsInputBits >> 11 & 1)))
Info->markPSInputEnabled(
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
}
}
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
if (!MBB.empty())
B.setInstr(*MBB.begin());
if (!IsEntryFunc) {
// For the fixed ABI, pass workitem IDs in the last argument register.
if (AMDGPUTargetMachine::EnableFixedFunctionABI)
TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
}
FormalArgHandler Handler(B, MRI, AssignFn);
if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
return false;
if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
// Special inputs come after user arguments.
TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
}
// Start adding system SGPRs.
if (IsEntryFunc) {
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
} else {
CCInfo.AllocateReg(Info->getScratchRSrcReg());
TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
}
// Move back to the end of the basic block.
B.setMBB(MBB);
return true;
}
bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
CCState &CCInfo,
SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
CallLoweringInfo &Info) const {
MachineFunction &MF = MIRBuilder.getMF();
const AMDGPUFunctionArgInfo *CalleeArgInfo
= &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
// TODO: Unify with private memory register handling. This is complicated by
// the fact that at least in kernels, the input argument is not necessarily
// in the same location as the input.
AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
AMDGPUFunctionArgInfo::DISPATCH_PTR,
AMDGPUFunctionArgInfo::QUEUE_PTR,
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
AMDGPUFunctionArgInfo::DISPATCH_ID,
AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
};
MachineRegisterInfo &MRI = MF.getRegInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const AMDGPULegalizerInfo *LI
= static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
for (auto InputID : InputRegs) {
const ArgDescriptor *OutgoingArg;
const TargetRegisterClass *ArgRC;
LLT ArgTy;
std::tie(OutgoingArg, ArgRC, ArgTy) =
CalleeArgInfo->getPreloadedValue(InputID);
if (!OutgoingArg)
continue;
const ArgDescriptor *IncomingArg;
const TargetRegisterClass *IncomingArgRC;
std::tie(IncomingArg, IncomingArgRC, ArgTy) =
CallerArgInfo.getPreloadedValue(InputID);
assert(IncomingArgRC == ArgRC);
Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
if (IncomingArg) {
LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
} else {
assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
}
if (OutgoingArg->isRegister()) {
ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
report_fatal_error("failed to allocate implicit input argument");
} else {
LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
return false;
}
}
// Pack workitem IDs into a single register or pass it as is if already
// packed.
const ArgDescriptor *OutgoingArg;
const TargetRegisterClass *ArgRC;
LLT ArgTy;
std::tie(OutgoingArg, ArgRC, ArgTy) =
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
if (!OutgoingArg)
std::tie(OutgoingArg, ArgRC, ArgTy) =
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
if (!OutgoingArg)
std::tie(OutgoingArg, ArgRC, ArgTy) =
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
if (!OutgoingArg)
return false;
auto WorkitemIDX =
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
auto WorkitemIDY =
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
auto WorkitemIDZ =
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
const LLT S32 = LLT::scalar(32);
// If incoming ids are not packed we need to pack them.
// FIXME: Should consider known workgroup size to eliminate known 0 cases.
Register InputReg;
if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
InputReg = MRI.createGenericVirtualRegister(S32);
LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
}
if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
Register Y = MRI.createGenericVirtualRegister(S32);
LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
std::get<2>(WorkitemIDY));
Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
}
if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
Register Z = MRI.createGenericVirtualRegister(S32);
LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
std::get<2>(WorkitemIDZ));
Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
}
if (!InputReg) {
InputReg = MRI.createGenericVirtualRegister(S32);
// Workitem ids are already packed, any of present incoming arguments will
// carry all required fields.
ArgDescriptor IncomingArg = ArgDescriptor::createArg(
IncomingArgX ? *IncomingArgX :
IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
&AMDGPU::VGPR_32RegClass, S32);
}
if (OutgoingArg->isRegister()) {
ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
report_fatal_error("failed to allocate implicit input argument");
} else {
LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
return false;
}
return true;
}
/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}
static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
bool IsTailCall) {
return AMDGPU::SI_CALL;
}
// Add operands to call instruction to track the callee.
static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
MachineIRBuilder &MIRBuilder,
AMDGPUCallLowering::CallLoweringInfo &Info) {
if (Info.Callee.isReg()) {
CallInst.addReg(Info.Callee.getReg());
CallInst.addImm(0);
} else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
// The call lowering lightly assumed we can directly encode a call target in
// the instruction, which is not the case. Materialize the address here.
const GlobalValue *GV = Info.Callee.getGlobal();
auto Ptr = MIRBuilder.buildGlobalValue(
LLT::pointer(GV->getAddressSpace(), 64), GV);
CallInst.addReg(Ptr.getReg(0));
CallInst.add(Info.Callee);
} else
return false;
return true;
}
bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
if (!AMDGPUTargetMachine::EnableFixedFunctionABI) {
LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
return false;
}
if (Info.IsVarArg) {
LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
return false;
}
MachineFunction &MF = MIRBuilder.getMF();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const Function &F = MF.getFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
const DataLayout &DL = F.getParent()->getDataLayout();
if (AMDGPU::isShader(F.getCallingConv())) {
LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
return false;
}
SmallVector<ArgInfo, 8> OutArgs;
SmallVector<ArgInfo, 4> SplitRetInfos;
for (auto &OrigArg : Info.OrigArgs) {
splitToValueTypes(
MIRBuilder, OrigArg, OutArgs, DL, Info.CallConv, true,
// FIXME: We should probably be passing multiple registers to
// handleAssignments to do this
[&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
int VTSplitIdx) {
unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
});
}
// If we can lower as a tail call, do that instead.
bool CanTailCallOpt = false;
// We must emit a tail call if we have musttail.
if (Info.IsMustTailCall && !CanTailCallOpt) {
LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
return false;
}
// Find out which ABI gets to decide where things go.
CCAssignFn *AssignFnFixed;
CCAssignFn *AssignFnVarArg;
std::tie(AssignFnFixed, AssignFnVarArg) =
getAssignFnsForCC(Info.CallConv, TLI);
MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
.addImm(0)
.addImm(0);
// Create a temporarily-floating call instruction so we can add the implicit
// uses of arg registers.
unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
MIB.addDef(TRI->getReturnAddressReg(MF));
if (!addCallTargetOperands(MIB, MIRBuilder, Info))
return false;
// Tell the call which registers are clobbered.
const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
MIB.addRegMask(Mask);
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
// We could pass MIB and directly add the implicit uses to the call
// now. However, as an aesthetic choice, place implicit argument operands
// after the ordinary user argument registers.
SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
// With a fixed ABI, allocate fixed registers before user arguments.
if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
return false;
}
// Do the actual argument marshalling.
SmallVector<Register, 8> PhysRegs;
AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
AssignFnVarArg, false);
if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
return false;
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// Insert copies for the SRD. In the HSA case, this should be an identity
// copy.
auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
MFI->getScratchRSrcReg());
MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
MIB.addReg(ArgReg.first, RegState::Implicit);
}
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// If Callee is a reg, since it is used by a target specific
// instruction, it must have a register class matching the
// constraint of that instruction.
// FIXME: We should define regbankselectable call instructions to handle
// divergent call targets.
if (MIB->getOperand(1).isReg()) {
MIB->getOperand(1).setReg(constrainOperandRegClass(
MF, *TRI, MRI, *ST.getInstrInfo(),
*ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1));
}
auto OrigInsertPt = MIRBuilder.getInsertPt();
// Now we can add the actual call instruction to the correct position.
MIRBuilder.insertInstr(MIB);
// Insert this now to give us an anchor point for managing the insert point.
MachineInstrBuilder CallSeqEnd =
MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
SmallVector<ArgInfo, 8> InArgs;
if (!Info.OrigRet.Ty->isVoidTy()) {
splitToValueTypes(
MIRBuilder, Info.OrigRet, InArgs, DL, Info.CallConv, false,
[&](ArrayRef<Register> Regs, Register DstReg,
LLT LLTy, LLT PartLLT, int VTSplitIdx) {
assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx],
Regs, LLTy, PartLLT);
});
}
// Make sure the raw argument copies are inserted before the marshalling to
// the original types.
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
// Finally we can copy the returned value back into its virtual-register. In
// symmetry with the arguments, the physical register must be an
// implicit-define of the call instruction.
if (!Info.OrigRet.Ty->isVoidTy()) {
CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
Info.IsVarArg);
CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
if (!handleAssignments(MIRBuilder, InArgs, Handler))
return false;
}
uint64_t CalleePopBytes = NumBytes;
CallSeqEnd.addImm(0)
.addImm(CalleePopBytes);
// Restore the insert point to after the call sequence.
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
return true;
}