forked from OSchip/llvm-project
1144 lines
38 KiB
C++
1144 lines
38 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalObject.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::anchor() {}
|
|
void ValueMaterializer::anchor() {}
|
|
|
|
namespace {
|
|
|
|
/// A basic block used in a BlockAddress whose function body is not yet
|
|
/// materialized.
|
|
struct DelayedBasicBlock {
|
|
BasicBlock *OldBB;
|
|
std::unique_ptr<BasicBlock> TempBB;
|
|
|
|
DelayedBasicBlock(const BlockAddress &Old)
|
|
: OldBB(Old.getBasicBlock()),
|
|
TempBB(BasicBlock::Create(Old.getContext())) {}
|
|
};
|
|
|
|
struct WorklistEntry {
|
|
enum EntryKind {
|
|
MapGlobalInit,
|
|
MapAppendingVar,
|
|
MapGlobalAliasee,
|
|
RemapFunction
|
|
};
|
|
struct GVInitTy {
|
|
GlobalVariable *GV;
|
|
Constant *Init;
|
|
};
|
|
struct AppendingGVTy {
|
|
GlobalVariable *GV;
|
|
Constant *InitPrefix;
|
|
};
|
|
struct GlobalAliaseeTy {
|
|
GlobalAlias *GA;
|
|
Constant *Aliasee;
|
|
};
|
|
|
|
unsigned Kind : 2;
|
|
unsigned MCID : 29;
|
|
unsigned AppendingGVIsOldCtorDtor : 1;
|
|
unsigned AppendingGVNumNewMembers;
|
|
union {
|
|
GVInitTy GVInit;
|
|
AppendingGVTy AppendingGV;
|
|
GlobalAliaseeTy GlobalAliasee;
|
|
Function *RemapF;
|
|
} Data;
|
|
};
|
|
|
|
struct MappingContext {
|
|
ValueToValueMapTy *VM;
|
|
ValueMaterializer *Materializer = nullptr;
|
|
|
|
/// Construct a MappingContext with a value map and materializer.
|
|
explicit MappingContext(ValueToValueMapTy &VM,
|
|
ValueMaterializer *Materializer = nullptr)
|
|
: VM(&VM), Materializer(Materializer) {}
|
|
};
|
|
|
|
class Mapper {
|
|
friend class MDNodeMapper;
|
|
|
|
#ifndef NDEBUG
|
|
DenseSet<GlobalValue *> AlreadyScheduled;
|
|
#endif
|
|
|
|
RemapFlags Flags;
|
|
ValueMapTypeRemapper *TypeMapper;
|
|
unsigned CurrentMCID = 0;
|
|
SmallVector<MappingContext, 2> MCs;
|
|
SmallVector<WorklistEntry, 4> Worklist;
|
|
SmallVector<DelayedBasicBlock, 1> DelayedBBs;
|
|
SmallVector<Constant *, 16> AppendingInits;
|
|
|
|
public:
|
|
Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
|
|
: Flags(Flags), TypeMapper(TypeMapper),
|
|
MCs(1, MappingContext(VM, Materializer)) {}
|
|
|
|
/// ValueMapper should explicitly call \a flush() before destruction.
|
|
~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
|
|
|
|
bool hasWorkToDo() const { return !Worklist.empty(); }
|
|
|
|
unsigned
|
|
registerAlternateMappingContext(ValueToValueMapTy &VM,
|
|
ValueMaterializer *Materializer = nullptr) {
|
|
MCs.push_back(MappingContext(VM, Materializer));
|
|
return MCs.size() - 1;
|
|
}
|
|
|
|
void addFlags(RemapFlags Flags);
|
|
|
|
void remapGlobalObjectMetadata(GlobalObject &GO);
|
|
|
|
Value *mapValue(const Value *V);
|
|
void remapInstruction(Instruction *I);
|
|
void remapFunction(Function &F);
|
|
|
|
Constant *mapConstant(const Constant *C) {
|
|
return cast_or_null<Constant>(mapValue(C));
|
|
}
|
|
|
|
/// Map metadata.
|
|
///
|
|
/// Find the mapping for MD. Guarantees that the return will be resolved
|
|
/// (not an MDNode, or MDNode::isResolved() returns true).
|
|
Metadata *mapMetadata(const Metadata *MD);
|
|
|
|
void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
|
|
unsigned MCID);
|
|
void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
|
|
bool IsOldCtorDtor,
|
|
ArrayRef<Constant *> NewMembers,
|
|
unsigned MCID);
|
|
void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
|
|
unsigned MCID);
|
|
void scheduleRemapFunction(Function &F, unsigned MCID);
|
|
|
|
void flush();
|
|
|
|
private:
|
|
void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
|
|
void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
|
|
bool IsOldCtorDtor,
|
|
ArrayRef<Constant *> NewMembers);
|
|
void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
|
|
void remapFunction(Function &F, ValueToValueMapTy &VM);
|
|
|
|
ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
|
|
ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
|
|
|
|
Value *mapBlockAddress(const BlockAddress &BA);
|
|
|
|
/// Map metadata that doesn't require visiting operands.
|
|
Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
|
|
|
|
Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
|
|
Metadata *mapToSelf(const Metadata *MD);
|
|
};
|
|
|
|
class MDNodeMapper {
|
|
Mapper &M;
|
|
|
|
/// Data about a node in \a UniquedGraph.
|
|
struct Data {
|
|
bool HasChanged = false;
|
|
unsigned ID = std::numeric_limits<unsigned>::max();
|
|
TempMDNode Placeholder;
|
|
};
|
|
|
|
/// A graph of uniqued nodes.
|
|
struct UniquedGraph {
|
|
SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
|
|
SmallVector<MDNode *, 16> POT; // Post-order traversal.
|
|
|
|
/// Propagate changed operands through the post-order traversal.
|
|
///
|
|
/// Iteratively update \a Data::HasChanged for each node based on \a
|
|
/// Data::HasChanged of its operands, until fixed point.
|
|
void propagateChanges();
|
|
|
|
/// Get a forward reference to a node to use as an operand.
|
|
Metadata &getFwdReference(MDNode &Op);
|
|
};
|
|
|
|
/// Worklist of distinct nodes whose operands need to be remapped.
|
|
SmallVector<MDNode *, 16> DistinctWorklist;
|
|
|
|
// Storage for a UniquedGraph.
|
|
SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
|
|
SmallVector<MDNode *, 16> POTStorage;
|
|
|
|
public:
|
|
MDNodeMapper(Mapper &M) : M(M) {}
|
|
|
|
/// Map a metadata node (and its transitive operands).
|
|
///
|
|
/// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
|
|
/// algorithm handles distinct nodes and uniqued node subgraphs using
|
|
/// different strategies.
|
|
///
|
|
/// Distinct nodes are immediately mapped and added to \a DistinctWorklist
|
|
/// using \a mapDistinctNode(). Their mapping can always be computed
|
|
/// immediately without visiting operands, even if their operands change.
|
|
///
|
|
/// The mapping for uniqued nodes depends on whether their operands change.
|
|
/// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
|
|
/// a node to calculate uniqued node mappings in bulk. Distinct leafs are
|
|
/// added to \a DistinctWorklist with \a mapDistinctNode().
|
|
///
|
|
/// After mapping \c N itself, this function remaps the operands of the
|
|
/// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
|
|
/// N has been mapped.
|
|
Metadata *map(const MDNode &N);
|
|
|
|
private:
|
|
/// Map a top-level uniqued node and the uniqued subgraph underneath it.
|
|
///
|
|
/// This builds up a post-order traversal of the (unmapped) uniqued subgraph
|
|
/// underneath \c FirstN and calculates the nodes' mapping. Each node uses
|
|
/// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
|
|
/// operands uses the identity mapping.
|
|
///
|
|
/// The algorithm works as follows:
|
|
///
|
|
/// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
|
|
/// save the post-order traversal in the given \a UniquedGraph, tracking
|
|
/// nodes' operands change.
|
|
///
|
|
/// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
|
|
/// through the \a UniquedGraph until fixed point, following the rule
|
|
/// that if a node changes, any node that references must also change.
|
|
///
|
|
/// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
|
|
/// (referencing new operands) where necessary.
|
|
Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
|
|
|
|
/// Try to map the operand of an \a MDNode.
|
|
///
|
|
/// If \c Op is already mapped, return the mapping. If it's not an \a
|
|
/// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
|
|
/// return the result of \a mapDistinctNode().
|
|
///
|
|
/// \return None if \c Op is an unmapped uniqued \a MDNode.
|
|
/// \post getMappedOp(Op) only returns None if this returns None.
|
|
Optional<Metadata *> tryToMapOperand(const Metadata *Op);
|
|
|
|
/// Map a distinct node.
|
|
///
|
|
/// Return the mapping for the distinct node \c N, saving the result in \a
|
|
/// DistinctWorklist for later remapping.
|
|
///
|
|
/// \pre \c N is not yet mapped.
|
|
/// \pre \c N.isDistinct().
|
|
MDNode *mapDistinctNode(const MDNode &N);
|
|
|
|
/// Get a previously mapped node.
|
|
Optional<Metadata *> getMappedOp(const Metadata *Op) const;
|
|
|
|
/// Create a post-order traversal of an unmapped uniqued node subgraph.
|
|
///
|
|
/// This traverses the metadata graph deeply enough to map \c FirstN. It
|
|
/// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
|
|
/// metadata that has already been mapped will not be part of the POT.
|
|
///
|
|
/// Each node that has a changed operand from outside the graph (e.g., a
|
|
/// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
|
|
/// is marked with \a Data::HasChanged.
|
|
///
|
|
/// \return \c true if any nodes in \c G have \a Data::HasChanged.
|
|
/// \post \c G.POT is a post-order traversal ending with \c FirstN.
|
|
/// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
|
|
/// to change because of operands outside the graph.
|
|
bool createPOT(UniquedGraph &G, const MDNode &FirstN);
|
|
|
|
/// Visit the operands of a uniqued node in the POT.
|
|
///
|
|
/// Visit the operands in the range from \c I to \c E, returning the first
|
|
/// uniqued node we find that isn't yet in \c G. \c I is always advanced to
|
|
/// where to continue the loop through the operands.
|
|
///
|
|
/// This sets \c HasChanged if any of the visited operands change.
|
|
MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
|
|
MDNode::op_iterator E, bool &HasChanged);
|
|
|
|
/// Map all the nodes in the given uniqued graph.
|
|
///
|
|
/// This visits all the nodes in \c G in post-order, using the identity
|
|
/// mapping or creating a new node depending on \a Data::HasChanged.
|
|
///
|
|
/// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
|
|
/// their operands outside of \c G.
|
|
/// \pre \a Data::HasChanged is true for a node in \c G iff any of its
|
|
/// operands have changed.
|
|
/// \post \a getMappedOp() returns the mapped node for every node in \c G.
|
|
void mapNodesInPOT(UniquedGraph &G);
|
|
|
|
/// Remap a node's operands using the given functor.
|
|
///
|
|
/// Iterate through the operands of \c N and update them in place using \c
|
|
/// mapOperand.
|
|
///
|
|
/// \pre N.isDistinct() or N.isTemporary().
|
|
template <class OperandMapper>
|
|
void remapOperands(MDNode &N, OperandMapper mapOperand);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Value *Mapper::mapValue(const Value *V) {
|
|
ValueToValueMapTy::iterator I = getVM().find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != getVM().end()) {
|
|
assert(I->second && "Unexpected null mapping");
|
|
return I->second;
|
|
}
|
|
|
|
// If we have a materializer and it can materialize a value, use that.
|
|
if (auto *Materializer = getMaterializer()) {
|
|
if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
|
|
getVM()[V] = NewV;
|
|
return NewV;
|
|
}
|
|
}
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V)) {
|
|
if (Flags & RF_NullMapMissingGlobalValues)
|
|
return nullptr;
|
|
return getVM()[V] = const_cast<Value *>(V);
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
// Inline asm may need *type* remapping.
|
|
FunctionType *NewTy = IA->getFunctionType();
|
|
if (TypeMapper) {
|
|
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
|
|
|
|
if (NewTy != IA->getFunctionType())
|
|
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
|
|
IA->hasSideEffects(), IA->isAlignStack());
|
|
}
|
|
|
|
return getVM()[V] = const_cast<Value *>(V);
|
|
}
|
|
|
|
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
|
|
const Metadata *MD = MDV->getMetadata();
|
|
|
|
if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
|
|
// Look through to grab the local value.
|
|
if (Value *LV = mapValue(LAM->getValue())) {
|
|
if (V == LAM->getValue())
|
|
return const_cast<Value *>(V);
|
|
return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
|
|
}
|
|
|
|
// FIXME: always return nullptr once Verifier::verifyDominatesUse()
|
|
// ensures metadata operands only reference defined SSA values.
|
|
return (Flags & RF_IgnoreMissingLocals)
|
|
? nullptr
|
|
: MetadataAsValue::get(V->getContext(),
|
|
MDTuple::get(V->getContext(), None));
|
|
}
|
|
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return getVM()[V] = const_cast<Value *>(V);
|
|
|
|
// Map the metadata and turn it into a value.
|
|
auto *MappedMD = mapMetadata(MD);
|
|
if (MD == MappedMD)
|
|
return getVM()[V] = const_cast<Value *>(V);
|
|
return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
|
|
return mapBlockAddress(*BA);
|
|
|
|
auto mapValueOrNull = [this](Value *V) {
|
|
auto Mapped = mapValue(V);
|
|
assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
|
|
"Unexpected null mapping for constant operand without "
|
|
"NullMapMissingGlobalValues flag");
|
|
return Mapped;
|
|
};
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = nullptr;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = mapValueOrNull(Op);
|
|
if (!Mapped)
|
|
return nullptr;
|
|
if (Mapped != Op)
|
|
break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return getVM()[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo) {
|
|
Mapped = mapValueOrNull(C->getOperand(OpNo));
|
|
if (!Mapped)
|
|
return nullptr;
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
}
|
|
}
|
|
Type *NewSrcTy = nullptr;
|
|
if (TypeMapper)
|
|
if (auto *GEPO = dyn_cast<GEPOperator>(C))
|
|
NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
|
|
if (isa<ConstantArray>(C))
|
|
return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return getVM()[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return getVM()[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return getVM()[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
|
|
Function *F = cast<Function>(mapValue(BA.getFunction()));
|
|
|
|
// F may not have materialized its initializer. In that case, create a
|
|
// dummy basic block for now, and replace it once we've materialized all
|
|
// the initializers.
|
|
BasicBlock *BB;
|
|
if (F->empty()) {
|
|
DelayedBBs.push_back(DelayedBasicBlock(BA));
|
|
BB = DelayedBBs.back().TempBB.get();
|
|
} else {
|
|
BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
|
|
}
|
|
|
|
return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
|
|
}
|
|
|
|
Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
|
|
getVM().MD()[Key].reset(Val);
|
|
return Val;
|
|
}
|
|
|
|
Metadata *Mapper::mapToSelf(const Metadata *MD) {
|
|
return mapToMetadata(MD, const_cast<Metadata *>(MD));
|
|
}
|
|
|
|
Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
|
|
if (!Op)
|
|
return nullptr;
|
|
|
|
if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
|
|
#ifndef NDEBUG
|
|
if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
|
|
assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
|
|
M.getVM().getMappedMD(Op)) &&
|
|
"Expected Value to be memoized");
|
|
else
|
|
assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
|
|
"Expected result to be memoized");
|
|
#endif
|
|
return *MappedOp;
|
|
}
|
|
|
|
const MDNode &N = *cast<MDNode>(Op);
|
|
if (N.isDistinct())
|
|
return mapDistinctNode(N);
|
|
return None;
|
|
}
|
|
|
|
static Metadata *cloneOrBuildODR(const MDNode &N) {
|
|
auto *CT = dyn_cast<DICompositeType>(&N);
|
|
// If ODR type uniquing is enabled, we would have uniqued composite types
|
|
// with identifiers during bitcode reading, so we can just use CT.
|
|
if (CT && CT->getContext().isODRUniquingDebugTypes() &&
|
|
CT->getIdentifier() != "")
|
|
return const_cast<DICompositeType *>(CT);
|
|
return MDNode::replaceWithDistinct(N.clone());
|
|
}
|
|
|
|
MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
|
|
assert(N.isDistinct() && "Expected a distinct node");
|
|
assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
|
|
DistinctWorklist.push_back(
|
|
cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
|
|
? M.mapToSelf(&N)
|
|
: M.mapToMetadata(&N, cloneOrBuildODR(N))));
|
|
return DistinctWorklist.back();
|
|
}
|
|
|
|
static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
|
|
Value *MappedV) {
|
|
if (CMD.getValue() == MappedV)
|
|
return const_cast<ConstantAsMetadata *>(&CMD);
|
|
return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
|
|
}
|
|
|
|
Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
|
|
if (!Op)
|
|
return nullptr;
|
|
|
|
if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
|
|
return *MappedOp;
|
|
|
|
if (isa<MDString>(Op))
|
|
return const_cast<Metadata *>(Op);
|
|
|
|
if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
|
|
return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
|
|
|
|
return None;
|
|
}
|
|
|
|
Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
|
|
auto Where = Info.find(&Op);
|
|
assert(Where != Info.end() && "Expected a valid reference");
|
|
|
|
auto &OpD = Where->second;
|
|
if (!OpD.HasChanged)
|
|
return Op;
|
|
|
|
// Lazily construct a temporary node.
|
|
if (!OpD.Placeholder)
|
|
OpD.Placeholder = Op.clone();
|
|
|
|
return *OpD.Placeholder;
|
|
}
|
|
|
|
template <class OperandMapper>
|
|
void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
|
|
assert(!N.isUniqued() && "Expected distinct or temporary nodes");
|
|
for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
|
|
Metadata *Old = N.getOperand(I);
|
|
Metadata *New = mapOperand(Old);
|
|
|
|
if (Old != New)
|
|
N.replaceOperandWith(I, New);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// An entry in the worklist for the post-order traversal.
|
|
struct POTWorklistEntry {
|
|
MDNode *N; ///< Current node.
|
|
MDNode::op_iterator Op; ///< Current operand of \c N.
|
|
|
|
/// Keep a flag of whether operands have changed in the worklist to avoid
|
|
/// hitting the map in \a UniquedGraph.
|
|
bool HasChanged = false;
|
|
|
|
POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
|
|
assert(G.Info.empty() && "Expected a fresh traversal");
|
|
assert(FirstN.isUniqued() && "Expected uniqued node in POT");
|
|
|
|
// Construct a post-order traversal of the uniqued subgraph under FirstN.
|
|
bool AnyChanges = false;
|
|
SmallVector<POTWorklistEntry, 16> Worklist;
|
|
Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
|
|
(void)G.Info[&FirstN];
|
|
while (!Worklist.empty()) {
|
|
// Start or continue the traversal through the this node's operands.
|
|
auto &WE = Worklist.back();
|
|
if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
|
|
// Push a new node to traverse first.
|
|
Worklist.push_back(POTWorklistEntry(*N));
|
|
continue;
|
|
}
|
|
|
|
// Push the node onto the POT.
|
|
assert(WE.N->isUniqued() && "Expected only uniqued nodes");
|
|
assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
|
|
auto &D = G.Info[WE.N];
|
|
AnyChanges |= D.HasChanged = WE.HasChanged;
|
|
D.ID = G.POT.size();
|
|
G.POT.push_back(WE.N);
|
|
|
|
// Pop the node off the worklist.
|
|
Worklist.pop_back();
|
|
}
|
|
return AnyChanges;
|
|
}
|
|
|
|
MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
|
|
MDNode::op_iterator E, bool &HasChanged) {
|
|
while (I != E) {
|
|
Metadata *Op = *I++; // Increment even on early return.
|
|
if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
|
|
// Check if the operand changes.
|
|
HasChanged |= Op != *MappedOp;
|
|
continue;
|
|
}
|
|
|
|
// A uniqued metadata node.
|
|
MDNode &OpN = *cast<MDNode>(Op);
|
|
assert(OpN.isUniqued() &&
|
|
"Only uniqued operands cannot be mapped immediately");
|
|
if (G.Info.insert(std::make_pair(&OpN, Data())).second)
|
|
return &OpN; // This is a new one. Return it.
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void MDNodeMapper::UniquedGraph::propagateChanges() {
|
|
bool AnyChanges;
|
|
do {
|
|
AnyChanges = false;
|
|
for (MDNode *N : POT) {
|
|
auto &D = Info[N];
|
|
if (D.HasChanged)
|
|
continue;
|
|
|
|
if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
|
|
auto Where = Info.find(Op);
|
|
return Where != Info.end() && Where->second.HasChanged;
|
|
}))
|
|
continue;
|
|
|
|
AnyChanges = D.HasChanged = true;
|
|
}
|
|
} while (AnyChanges);
|
|
}
|
|
|
|
void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
|
|
// Construct uniqued nodes, building forward references as necessary.
|
|
SmallVector<MDNode *, 16> CyclicNodes;
|
|
for (auto *N : G.POT) {
|
|
auto &D = G.Info[N];
|
|
if (!D.HasChanged) {
|
|
// The node hasn't changed.
|
|
M.mapToSelf(N);
|
|
continue;
|
|
}
|
|
|
|
// Remember whether this node had a placeholder.
|
|
bool HadPlaceholder(D.Placeholder);
|
|
|
|
// Clone the uniqued node and remap the operands.
|
|
TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
|
|
remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
|
|
if (Optional<Metadata *> MappedOp = getMappedOp(Old))
|
|
return *MappedOp;
|
|
(void)D;
|
|
assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
|
|
return &G.getFwdReference(*cast<MDNode>(Old));
|
|
});
|
|
|
|
auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
|
|
M.mapToMetadata(N, NewN);
|
|
|
|
// Nodes that were referenced out of order in the POT are involved in a
|
|
// uniquing cycle.
|
|
if (HadPlaceholder)
|
|
CyclicNodes.push_back(NewN);
|
|
}
|
|
|
|
// Resolve cycles.
|
|
for (auto *N : CyclicNodes)
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
}
|
|
|
|
Metadata *MDNodeMapper::map(const MDNode &N) {
|
|
assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
|
|
assert(!(M.Flags & RF_NoModuleLevelChanges) &&
|
|
"MDNodeMapper::map assumes module-level changes");
|
|
|
|
// Require resolved nodes whenever metadata might be remapped.
|
|
assert(N.isResolved() && "Unexpected unresolved node");
|
|
|
|
Metadata *MappedN =
|
|
N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
|
|
while (!DistinctWorklist.empty())
|
|
remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
|
|
if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
|
|
return *MappedOp;
|
|
return mapTopLevelUniquedNode(*cast<MDNode>(Old));
|
|
});
|
|
return MappedN;
|
|
}
|
|
|
|
Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
|
|
assert(FirstN.isUniqued() && "Expected uniqued node");
|
|
|
|
// Create a post-order traversal of uniqued nodes under FirstN.
|
|
UniquedGraph G;
|
|
if (!createPOT(G, FirstN)) {
|
|
// Return early if no nodes have changed.
|
|
for (const MDNode *N : G.POT)
|
|
M.mapToSelf(N);
|
|
return &const_cast<MDNode &>(FirstN);
|
|
}
|
|
|
|
// Update graph with all nodes that have changed.
|
|
G.propagateChanges();
|
|
|
|
// Map all the nodes in the graph.
|
|
mapNodesInPOT(G);
|
|
|
|
// Return the original node, remapped.
|
|
return *getMappedOp(&FirstN);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct MapMetadataDisabler {
|
|
ValueToValueMapTy &VM;
|
|
|
|
MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
|
|
VM.disableMapMetadata();
|
|
}
|
|
|
|
~MapMetadataDisabler() { VM.enableMapMetadata(); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
|
|
// If the value already exists in the map, use it.
|
|
if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
|
|
return *NewMD;
|
|
|
|
if (isa<MDString>(MD))
|
|
return const_cast<Metadata *>(MD);
|
|
|
|
// This is a module-level metadata. If nothing at the module level is
|
|
// changing, use an identity mapping.
|
|
if ((Flags & RF_NoModuleLevelChanges))
|
|
return const_cast<Metadata *>(MD);
|
|
|
|
if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
|
|
// Disallow recursion into metadata mapping through mapValue.
|
|
MapMetadataDisabler MMD(getVM());
|
|
|
|
// Don't memoize ConstantAsMetadata. Instead of lasting until the
|
|
// LLVMContext is destroyed, they can be deleted when the GlobalValue they
|
|
// reference is destructed. These aren't super common, so the extra
|
|
// indirection isn't that expensive.
|
|
return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
|
|
}
|
|
|
|
assert(isa<MDNode>(MD) && "Expected a metadata node");
|
|
|
|
return None;
|
|
}
|
|
|
|
Metadata *Mapper::mapMetadata(const Metadata *MD) {
|
|
assert(MD && "Expected valid metadata");
|
|
assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
|
|
|
|
if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
|
|
return *NewMD;
|
|
|
|
return MDNodeMapper(*this).map(*cast<MDNode>(MD));
|
|
}
|
|
|
|
void Mapper::flush() {
|
|
// Flush out the worklist of global values.
|
|
while (!Worklist.empty()) {
|
|
WorklistEntry E = Worklist.pop_back_val();
|
|
CurrentMCID = E.MCID;
|
|
switch (E.Kind) {
|
|
case WorklistEntry::MapGlobalInit:
|
|
E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
|
|
remapGlobalObjectMetadata(*E.Data.GVInit.GV);
|
|
break;
|
|
case WorklistEntry::MapAppendingVar: {
|
|
unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
|
|
mapAppendingVariable(*E.Data.AppendingGV.GV,
|
|
E.Data.AppendingGV.InitPrefix,
|
|
E.AppendingGVIsOldCtorDtor,
|
|
makeArrayRef(AppendingInits).slice(PrefixSize));
|
|
AppendingInits.resize(PrefixSize);
|
|
break;
|
|
}
|
|
case WorklistEntry::MapGlobalAliasee:
|
|
E.Data.GlobalAliasee.GA->setAliasee(
|
|
mapConstant(E.Data.GlobalAliasee.Aliasee));
|
|
break;
|
|
case WorklistEntry::RemapFunction:
|
|
remapFunction(*E.Data.RemapF);
|
|
break;
|
|
}
|
|
}
|
|
CurrentMCID = 0;
|
|
|
|
// Finish logic for block addresses now that all global values have been
|
|
// handled.
|
|
while (!DelayedBBs.empty()) {
|
|
DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
|
|
DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
|
|
}
|
|
}
|
|
|
|
void Mapper::remapInstruction(Instruction *I) {
|
|
// Remap operands.
|
|
for (Use &Op : I->operands()) {
|
|
Value *V = mapValue(Op);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
Op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingLocals) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = mapValue(PN->getIncomingBlock(i));
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingLocals) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (const auto &MI : MDs) {
|
|
MDNode *Old = MI.second;
|
|
MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
|
|
if (New != Old)
|
|
I->setMetadata(MI.first, New);
|
|
}
|
|
|
|
if (!TypeMapper)
|
|
return;
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (auto CS = CallSite(I)) {
|
|
SmallVector<Type *, 3> Tys;
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
Tys.reserve(FTy->getNumParams());
|
|
for (Type *Ty : FTy->params())
|
|
Tys.push_back(TypeMapper->remapType(Ty));
|
|
CS.mutateFunctionType(FunctionType::get(
|
|
TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
|
|
return;
|
|
}
|
|
if (auto *AI = dyn_cast<AllocaInst>(I))
|
|
AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
GEP->setSourceElementType(
|
|
TypeMapper->remapType(GEP->getSourceElementType()));
|
|
GEP->setResultElementType(
|
|
TypeMapper->remapType(GEP->getResultElementType()));
|
|
}
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|
|
|
|
void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
|
|
GO.getAllMetadata(MDs);
|
|
GO.clearMetadata();
|
|
for (const auto &I : MDs)
|
|
GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
|
|
}
|
|
|
|
void Mapper::remapFunction(Function &F) {
|
|
// Remap the operands.
|
|
for (Use &Op : F.operands())
|
|
if (Op)
|
|
Op = mapValue(Op);
|
|
|
|
// Remap the metadata attachments.
|
|
remapGlobalObjectMetadata(F);
|
|
|
|
// Remap the argument types.
|
|
if (TypeMapper)
|
|
for (Argument &A : F.args())
|
|
A.mutateType(TypeMapper->remapType(A.getType()));
|
|
|
|
// Remap the instructions.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
remapInstruction(&I);
|
|
}
|
|
|
|
void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
|
|
bool IsOldCtorDtor,
|
|
ArrayRef<Constant *> NewMembers) {
|
|
SmallVector<Constant *, 16> Elements;
|
|
if (InitPrefix) {
|
|
unsigned NumElements =
|
|
cast<ArrayType>(InitPrefix->getType())->getNumElements();
|
|
for (unsigned I = 0; I != NumElements; ++I)
|
|
Elements.push_back(InitPrefix->getAggregateElement(I));
|
|
}
|
|
|
|
PointerType *VoidPtrTy;
|
|
Type *EltTy;
|
|
if (IsOldCtorDtor) {
|
|
// FIXME: This upgrade is done during linking to support the C API. See
|
|
// also IRLinker::linkAppendingVarProto() in IRMover.cpp.
|
|
VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
|
|
auto &ST = *cast<StructType>(NewMembers.front()->getType());
|
|
Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
|
|
EltTy = StructType::get(GV.getContext(), Tys, false);
|
|
}
|
|
|
|
for (auto *V : NewMembers) {
|
|
Constant *NewV;
|
|
if (IsOldCtorDtor) {
|
|
auto *S = cast<ConstantStruct>(V);
|
|
auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
|
|
auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
|
|
Constant *Null = Constant::getNullValue(VoidPtrTy);
|
|
NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
|
|
} else {
|
|
NewV = cast_or_null<Constant>(mapValue(V));
|
|
}
|
|
Elements.push_back(NewV);
|
|
}
|
|
|
|
GV.setInitializer(ConstantArray::get(
|
|
cast<ArrayType>(GV.getType()->getElementType()), Elements));
|
|
}
|
|
|
|
void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
|
|
unsigned MCID) {
|
|
assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
|
|
assert(MCID < MCs.size() && "Invalid mapping context");
|
|
|
|
WorklistEntry WE;
|
|
WE.Kind = WorklistEntry::MapGlobalInit;
|
|
WE.MCID = MCID;
|
|
WE.Data.GVInit.GV = &GV;
|
|
WE.Data.GVInit.Init = &Init;
|
|
Worklist.push_back(WE);
|
|
}
|
|
|
|
void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
|
|
Constant *InitPrefix,
|
|
bool IsOldCtorDtor,
|
|
ArrayRef<Constant *> NewMembers,
|
|
unsigned MCID) {
|
|
assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
|
|
assert(MCID < MCs.size() && "Invalid mapping context");
|
|
|
|
WorklistEntry WE;
|
|
WE.Kind = WorklistEntry::MapAppendingVar;
|
|
WE.MCID = MCID;
|
|
WE.Data.AppendingGV.GV = &GV;
|
|
WE.Data.AppendingGV.InitPrefix = InitPrefix;
|
|
WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
|
|
WE.AppendingGVNumNewMembers = NewMembers.size();
|
|
Worklist.push_back(WE);
|
|
AppendingInits.append(NewMembers.begin(), NewMembers.end());
|
|
}
|
|
|
|
void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
|
|
unsigned MCID) {
|
|
assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
|
|
assert(MCID < MCs.size() && "Invalid mapping context");
|
|
|
|
WorklistEntry WE;
|
|
WE.Kind = WorklistEntry::MapGlobalAliasee;
|
|
WE.MCID = MCID;
|
|
WE.Data.GlobalAliasee.GA = &GA;
|
|
WE.Data.GlobalAliasee.Aliasee = &Aliasee;
|
|
Worklist.push_back(WE);
|
|
}
|
|
|
|
void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
|
|
assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
|
|
assert(MCID < MCs.size() && "Invalid mapping context");
|
|
|
|
WorklistEntry WE;
|
|
WE.Kind = WorklistEntry::RemapFunction;
|
|
WE.MCID = MCID;
|
|
WE.Data.RemapF = &F;
|
|
Worklist.push_back(WE);
|
|
}
|
|
|
|
void Mapper::addFlags(RemapFlags Flags) {
|
|
assert(!hasWorkToDo() && "Expected to have flushed the worklist");
|
|
this->Flags = this->Flags | Flags;
|
|
}
|
|
|
|
static Mapper *getAsMapper(void *pImpl) {
|
|
return reinterpret_cast<Mapper *>(pImpl);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class FlushingMapper {
|
|
Mapper &M;
|
|
|
|
public:
|
|
explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
|
|
assert(!M.hasWorkToDo() && "Expected to be flushed");
|
|
}
|
|
|
|
~FlushingMapper() { M.flush(); }
|
|
|
|
Mapper *operator->() const { return &M; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer)
|
|
: pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
|
|
|
|
ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
|
|
|
|
unsigned
|
|
ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
|
|
ValueMaterializer *Materializer) {
|
|
return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
|
|
}
|
|
|
|
void ValueMapper::addFlags(RemapFlags Flags) {
|
|
FlushingMapper(pImpl)->addFlags(Flags);
|
|
}
|
|
|
|
Value *ValueMapper::mapValue(const Value &V) {
|
|
return FlushingMapper(pImpl)->mapValue(&V);
|
|
}
|
|
|
|
Constant *ValueMapper::mapConstant(const Constant &C) {
|
|
return cast_or_null<Constant>(mapValue(C));
|
|
}
|
|
|
|
Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
|
|
return FlushingMapper(pImpl)->mapMetadata(&MD);
|
|
}
|
|
|
|
MDNode *ValueMapper::mapMDNode(const MDNode &N) {
|
|
return cast_or_null<MDNode>(mapMetadata(N));
|
|
}
|
|
|
|
void ValueMapper::remapInstruction(Instruction &I) {
|
|
FlushingMapper(pImpl)->remapInstruction(&I);
|
|
}
|
|
|
|
void ValueMapper::remapFunction(Function &F) {
|
|
FlushingMapper(pImpl)->remapFunction(F);
|
|
}
|
|
|
|
void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
|
|
Constant &Init,
|
|
unsigned MCID) {
|
|
getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
|
|
}
|
|
|
|
void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
|
|
Constant *InitPrefix,
|
|
bool IsOldCtorDtor,
|
|
ArrayRef<Constant *> NewMembers,
|
|
unsigned MCID) {
|
|
getAsMapper(pImpl)->scheduleMapAppendingVariable(
|
|
GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
|
|
}
|
|
|
|
void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
|
|
unsigned MCID) {
|
|
getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
|
|
}
|
|
|
|
void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
|
|
getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
|
|
}
|