llvm-project/compiler-rt/lib/builtins/hexagon/memcpy_forward_vp4cp4n2.S

126 lines
3.4 KiB
ArmAsm

//===----------------------Hexagon builtin routine ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// An optimized version of a memcpy which is equivalent to the following loop:
//
// volatile unsigned *dest;
// unsigned *src;
//
// for (i = 0; i < num_words; ++i)
// *dest++ = *src++;
//
// The corresponding C prototype for this function would be
// void hexagon_memcpy_forward_vp4cp4n2(volatile unsigned *dest,
// const unsigned *src,
// unsigned num_words);
//
// *** Both dest and src must be aligned to 32-bit boundaries. ***
// The code does not perform any runtime checks for this, and will fail
// in bad ways if this requirement is not met.
//
// The "forward" in the name refers to the fact that the function copies
// the words going forward in memory. It is incorrect to use this function
// for cases where the original code copied words in any other order.
//
// *** This function is only for the use by the compiler. ***
// The only indended use is for the LLVM compiler to generate calls to
// this function, when a mem-copy loop, like the one above, is detected.
.text
// Inputs:
// r0: dest
// r1: src
// r2: num_words
.globl hexagon_memcpy_forward_vp4cp4n2
.balign 32
.type hexagon_memcpy_forward_vp4cp4n2,@function
hexagon_memcpy_forward_vp4cp4n2:
// Compute r3 to be the number of words remaining in the current page.
// At the same time, compute r4 to be the number of 32-byte blocks
// remaining in the page (for prefetch).
{
r3 = sub(##4096, r1)
r5 = lsr(r2, #3)
}
{
// The word count before end-of-page is in the 12 lowest bits of r3.
// (If the address in r1 was already page-aligned, the bits are 0.)
r3 = extractu(r3, #10, #2)
r4 = extractu(r3, #7, #5)
}
{
r3 = minu(r2, r3)
r4 = minu(r5, r4)
}
{
r4 = or(r4, ##2105344) // 2105344 = 0x202000
p0 = cmp.eq(r3, #0)
if (p0.new) jump:nt .Lskipprolog
}
l2fetch(r1, r4)
{
loop0(.Lprolog, r3)
r2 = sub(r2, r3) // r2 = number of words left after the prolog.
}
.falign
.Lprolog:
{
r4 = memw(r1++#4)
memw(r0++#4) = r4.new
} :endloop0
.Lskipprolog:
{
// Let r3 = number of whole pages left (page = 1024 words).
r3 = lsr(r2, #10)
if (cmp.eq(r3.new, #0)) jump:nt .Lskipmain
}
{
loop1(.Lout, r3)
r2 = extractu(r2, #10, #0) // r2 = r2 & 1023
r3 = ##2105472 // r3 = 0x202080 (prefetch info)
}
// Iterate over pages.
.falign
.Lout:
// Prefetch each individual page.
l2fetch(r1, r3)
loop0(.Lpage, #512)
.falign
.Lpage:
r5:4 = memd(r1++#8)
{
memw(r0++#8) = r4
memw(r0+#4) = r5
} :endloop0:endloop1
.Lskipmain:
{
r3 = ##2105344 // r3 = 0x202000 (prefetch info)
r4 = lsr(r2, #3) // r4 = number of 32-byte blocks remaining.
p0 = cmp.eq(r2, #0)
if (p0.new) jumpr:nt r31
}
{
r3 = or(r3, r4)
loop0(.Lepilog, r2)
}
l2fetch(r1, r3)
.falign
.Lepilog:
{
r4 = memw(r1++#4)
memw(r0++#4) = r4.new
} :endloop0
jumpr r31
.size hexagon_memcpy_forward_vp4cp4n2, . - hexagon_memcpy_forward_vp4cp4n2