llvm-project/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp

268 lines
10 KiB
C++

//===- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DbgValueHistoryCalculator.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cassert>
#include <map>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "dwarfdebug"
// \brief If @MI is a DBG_VALUE with debug value described by a
// defined register, returns the number of this register.
// In the other case, returns 0.
static unsigned isDescribedByReg(const MachineInstr &MI) {
assert(MI.isDebugValue());
assert(MI.getNumOperands() == 4);
// If location of variable is described using a register (directly or
// indirectly), this register is always a first operand.
return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
}
void DbgValueHistoryMap::startInstrRange(InlinedVariable Var,
const MachineInstr &MI) {
// Instruction range should start with a DBG_VALUE instruction for the
// variable.
assert(MI.isDebugValue() && "not a DBG_VALUE");
auto &Ranges = VarInstrRanges[Var];
if (!Ranges.empty() && Ranges.back().second == nullptr &&
Ranges.back().first->isIdenticalTo(MI)) {
DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
<< "\t" << Ranges.back().first << "\t" << MI << "\n");
return;
}
Ranges.push_back(std::make_pair(&MI, nullptr));
}
void DbgValueHistoryMap::endInstrRange(InlinedVariable Var,
const MachineInstr &MI) {
auto &Ranges = VarInstrRanges[Var];
// Verify that the current instruction range is not yet closed.
assert(!Ranges.empty() && Ranges.back().second == nullptr);
// For now, instruction ranges are not allowed to cross basic block
// boundaries.
assert(Ranges.back().first->getParent() == MI.getParent());
Ranges.back().second = &MI;
}
unsigned DbgValueHistoryMap::getRegisterForVar(InlinedVariable Var) const {
const auto &I = VarInstrRanges.find(Var);
if (I == VarInstrRanges.end())
return 0;
const auto &Ranges = I->second;
if (Ranges.empty() || Ranges.back().second != nullptr)
return 0;
return isDescribedByReg(*Ranges.back().first);
}
namespace {
// Maps physreg numbers to the variables they describe.
using InlinedVariable = DbgValueHistoryMap::InlinedVariable;
using RegDescribedVarsMap = std::map<unsigned, SmallVector<InlinedVariable, 1>>;
} // end anonymous namespace
// \brief Claim that @Var is not described by @RegNo anymore.
static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
InlinedVariable Var) {
const auto &I = RegVars.find(RegNo);
assert(RegNo != 0U && I != RegVars.end());
auto &VarSet = I->second;
const auto &VarPos = llvm::find(VarSet, Var);
assert(VarPos != VarSet.end());
VarSet.erase(VarPos);
// Don't keep empty sets in a map to keep it as small as possible.
if (VarSet.empty())
RegVars.erase(I);
}
// \brief Claim that @Var is now described by @RegNo.
static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
InlinedVariable Var) {
assert(RegNo != 0U);
auto &VarSet = RegVars[RegNo];
assert(!is_contained(VarSet, Var));
VarSet.push_back(Var);
}
// \brief Terminate the location range for variables described by register at
// @I by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
RegDescribedVarsMap::iterator I,
DbgValueHistoryMap &HistMap,
const MachineInstr &ClobberingInstr) {
// Iterate over all variables described by this register and add this
// instruction to their history, clobbering it.
for (const auto &Var : I->second)
HistMap.endInstrRange(Var, ClobberingInstr);
RegVars.erase(I);
}
// \brief Terminate the location range for variables described by register
// @RegNo by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
DbgValueHistoryMap &HistMap,
const MachineInstr &ClobberingInstr) {
const auto &I = RegVars.find(RegNo);
if (I == RegVars.end())
return;
clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr);
}
// \brief Returns the first instruction in @MBB which corresponds to
// the function epilogue, or nullptr if @MBB doesn't contain an epilogue.
static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
auto LastMI = MBB.getLastNonDebugInstr();
if (LastMI == MBB.end() || !LastMI->isReturn())
return nullptr;
// Assume that epilogue starts with instruction having the same debug location
// as the return instruction.
DebugLoc LastLoc = LastMI->getDebugLoc();
auto Res = LastMI;
for (MachineBasicBlock::const_reverse_iterator I = LastMI.getReverse(),
E = MBB.rend();
I != E; ++I) {
if (I->getDebugLoc() != LastLoc)
return &*Res;
Res = &*I;
}
// If all instructions have the same debug location, assume whole MBB is
// an epilogue.
return &*MBB.begin();
}
// \brief Collect registers that are modified in the function body (their
// contents is changed outside of the prologue and epilogue).
static void collectChangingRegs(const MachineFunction *MF,
const TargetRegisterInfo *TRI,
BitVector &Regs) {
for (const auto &MBB : *MF) {
auto FirstEpilogueInst = getFirstEpilogueInst(MBB);
for (const auto &MI : MBB) {
// Avoid looking at prologue or epilogue instructions.
if (&MI == FirstEpilogueInst)
break;
if (MI.getFlag(MachineInstr::FrameSetup))
continue;
// Look for register defs and register masks. Register masks are
// typically on calls and they clobber everything not in the mask.
for (const MachineOperand &MO : MI.operands()) {
// Skip virtual registers since they are handled by the parent.
if (MO.isReg() && MO.isDef() && MO.getReg() &&
!TRI->isVirtualRegister(MO.getReg())) {
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
++AI)
Regs.set(*AI);
} else if (MO.isRegMask()) {
Regs.setBitsNotInMask(MO.getRegMask());
}
}
}
}
}
void llvm::calculateDbgValueHistory(const MachineFunction *MF,
const TargetRegisterInfo *TRI,
DbgValueHistoryMap &Result) {
BitVector ChangingRegs(TRI->getNumRegs());
collectChangingRegs(MF, TRI, ChangingRegs);
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
RegDescribedVarsMap RegVars;
for (const auto &MBB : *MF) {
for (const auto &MI : MBB) {
if (!MI.isDebugValue()) {
// Not a DBG_VALUE instruction. It may clobber registers which describe
// some variables.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg()) {
// Ignore call instructions that claim to clobber SP. The AArch64
// backend does this for aggregate function arguments.
if (MI.isCall() && MO.getReg() == SP)
continue;
// If this is a virtual register, only clobber it since it doesn't
// have aliases.
if (TRI->isVirtualRegister(MO.getReg()))
clobberRegisterUses(RegVars, MO.getReg(), Result, MI);
// If this is a register def operand, it may end a debug value
// range.
else {
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
++AI)
if (ChangingRegs.test(*AI))
clobberRegisterUses(RegVars, *AI, Result, MI);
}
} else if (MO.isRegMask()) {
// If this is a register mask operand, clobber all debug values in
// non-CSRs.
for (unsigned I : ChangingRegs.set_bits()) {
// Don't consider SP to be clobbered by register masks.
if (unsigned(I) != SP && TRI->isPhysicalRegister(I) &&
MO.clobbersPhysReg(I)) {
clobberRegisterUses(RegVars, I, Result, MI);
}
}
}
}
continue;
}
assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
// Use the base variable (without any DW_OP_piece expressions)
// as index into History. The full variables including the
// piece expressions are attached to the MI.
const DILocalVariable *RawVar = MI.getDebugVariable();
assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
"Expected inlined-at fields to agree");
InlinedVariable Var(RawVar, MI.getDebugLoc()->getInlinedAt());
if (unsigned PrevReg = Result.getRegisterForVar(Var))
dropRegDescribedVar(RegVars, PrevReg, Var);
Result.startInstrRange(Var, MI);
if (unsigned NewReg = isDescribedByReg(MI))
addRegDescribedVar(RegVars, NewReg, Var);
}
// Make sure locations for register-described variables are valid only
// until the end of the basic block (unless it's the last basic block, in
// which case let their liveness run off to the end of the function).
if (!MBB.empty() && &MBB != &MF->back()) {
for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
auto CurElem = I++; // CurElem can be erased below.
if (TRI->isVirtualRegister(CurElem->first) ||
ChangingRegs.test(CurElem->first))
clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
}
}
}
}