llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp

331 lines
10 KiB
C++

//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LoopPredication pass tries to convert loop variant range checks to loop
// invariant by widening checks across loop iterations. For example, it will
// convert
//
// for (i = 0; i < n; i++) {
// guard(i < len);
// ...
// }
//
// to
//
// for (i = 0; i < n; i++) {
// guard(n - 1 < len);
// ...
// }
//
// After this transformation the condition of the guard is loop invariant, so
// loop-unswitch can later unswitch the loop by this condition which basically
// predicates the loop by the widened condition:
//
// if (n - 1 < len)
// for (i = 0; i < n; i++) {
// ...
// }
// else
// deoptimize
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#define DEBUG_TYPE "loop-predication"
using namespace llvm;
namespace {
class LoopPredication {
/// Represents an induction variable check:
/// icmp Pred, <induction variable>, <loop invariant limit>
struct LoopICmp {
ICmpInst::Predicate Pred;
const SCEVAddRecExpr *IV;
const SCEV *Limit;
LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
const SCEV *Limit)
: Pred(Pred), IV(IV), Limit(Limit) {}
LoopICmp() {}
};
ScalarEvolution *SE;
Loop *L;
const DataLayout *DL;
BasicBlock *Preheader;
Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
Instruction *InsertAt);
Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
IRBuilder<> &Builder);
bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
public:
LoopPredication(ScalarEvolution *SE) : SE(SE){};
bool runOnLoop(Loop *L);
};
class LoopPredicationLegacyPass : public LoopPass {
public:
static char ID;
LoopPredicationLegacyPass() : LoopPass(ID) {
initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
getLoopAnalysisUsage(AU);
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LoopPredication LP(SE);
return LP.runOnLoop(L);
}
};
char LoopPredicationLegacyPass::ID = 0;
} // end namespace llvm
INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
"Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
"Loop predication", false, false)
Pass *llvm::createLoopPredicationPass() {
return new LoopPredicationLegacyPass();
}
PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
LoopPredication LP(&AR.SE);
if (!LP.runOnLoop(&L))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
Optional<LoopPredication::LoopICmp>
LoopPredication::parseLoopICmp(ICmpInst *ICI) {
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
const SCEV *LHSS = SE->getSCEV(LHS);
if (isa<SCEVCouldNotCompute>(LHSS))
return None;
const SCEV *RHSS = SE->getSCEV(RHS);
if (isa<SCEVCouldNotCompute>(RHSS))
return None;
// Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
if (SE->isLoopInvariant(LHSS, L)) {
std::swap(LHS, RHS);
std::swap(LHSS, RHSS);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
if (!AR || AR->getLoop() != L)
return None;
return LoopICmp(Pred, AR, RHSS);
}
Value *LoopPredication::expandCheck(SCEVExpander &Expander,
IRBuilder<> &Builder,
ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS, Instruction *InsertAt) {
Type *Ty = LHS->getType();
assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
return Builder.CreateICmp(Pred, LHSV, RHSV);
}
/// If ICI can be widened to a loop invariant condition emits the loop
/// invariant condition in the loop preheader and return it, otherwise
/// returns None.
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
SCEVExpander &Expander,
IRBuilder<> &Builder) {
DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
DEBUG(ICI->dump());
auto RangeCheck = parseLoopICmp(ICI);
if (!RangeCheck) {
DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
return None;
}
ICmpInst::Predicate Pred = RangeCheck->Pred;
const SCEVAddRecExpr *IndexAR = RangeCheck->IV;
const SCEV *RHSS = RangeCheck->Limit;
auto CanExpand = [this](const SCEV *S) {
return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
};
if (!CanExpand(RHSS))
return None;
DEBUG(dbgs() << "IndexAR: ");
DEBUG(IndexAR->dump());
bool IsIncreasing = false;
if (!SE->isMonotonicPredicate(IndexAR, Pred, IsIncreasing))
return None;
// If the predicate is increasing the condition can change from false to true
// as the loop progresses, in this case take the value on the first iteration
// for the widened check. Otherwise the condition can change from true to
// false as the loop progresses, so take the value on the last iteration.
const SCEV *NewLHSS = IsIncreasing
? IndexAR->getStart()
: SE->getSCEVAtScope(IndexAR, L->getParentLoop());
if (NewLHSS == IndexAR) {
DEBUG(dbgs() << "Can't compute NewLHSS!\n");
return None;
}
DEBUG(dbgs() << "NewLHSS: ");
DEBUG(NewLHSS->dump());
if (!CanExpand(NewLHSS))
return None;
DEBUG(dbgs() << "NewLHSS is loop invariant and safe to expand. Expand!\n");
Instruction *InsertAt = Preheader->getTerminator();
return expandCheck(Expander, Builder, Pred, NewLHSS, RHSS, InsertAt);
}
bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
SCEVExpander &Expander) {
DEBUG(dbgs() << "Processing guard:\n");
DEBUG(Guard->dump());
IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
// The guard condition is expected to be in form of:
// cond1 && cond2 && cond3 ...
// Iterate over subconditions looking for for icmp conditions which can be
// widened across loop iterations. Widening these conditions remember the
// resulting list of subconditions in Checks vector.
SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Checks;
unsigned NumWidened = 0;
do {
Value *Condition = Worklist.pop_back_val();
if (!Visited.insert(Condition).second)
continue;
Value *LHS, *RHS;
using namespace llvm::PatternMatch;
if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
Worklist.push_back(LHS);
Worklist.push_back(RHS);
continue;
}
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
Checks.push_back(NewRangeCheck.getValue());
NumWidened++;
continue;
}
}
// Save the condition as is if we can't widen it
Checks.push_back(Condition);
} while (Worklist.size() != 0);
if (NumWidened == 0)
return false;
// Emit the new guard condition
Builder.SetInsertPoint(Guard);
Value *LastCheck = nullptr;
for (auto *Check : Checks)
if (!LastCheck)
LastCheck = Check;
else
LastCheck = Builder.CreateAnd(LastCheck, Check);
Guard->setOperand(0, LastCheck);
DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
return true;
}
bool LoopPredication::runOnLoop(Loop *Loop) {
L = Loop;
DEBUG(dbgs() << "Analyzing ");
DEBUG(L->dump());
Module *M = L->getHeader()->getModule();
// There is nothing to do if the module doesn't use guards
auto *GuardDecl =
M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
if (!GuardDecl || GuardDecl->use_empty())
return false;
DL = &M->getDataLayout();
Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
// Collect all the guards into a vector and process later, so as not
// to invalidate the instruction iterator.
SmallVector<IntrinsicInst *, 4> Guards;
for (const auto BB : L->blocks())
for (auto &I : *BB)
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::experimental_guard)
Guards.push_back(II);
if (Guards.empty())
return false;
SCEVExpander Expander(*SE, *DL, "loop-predication");
bool Changed = false;
for (auto *Guard : Guards)
Changed |= widenGuardConditions(Guard, Expander);
return Changed;
}