forked from OSchip/llvm-project
961 lines
33 KiB
C++
961 lines
33 KiB
C++
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCCodeView.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixup.h"
|
|
#include "llvm/MC/MCFixupKindInfo.h"
|
|
#include "llvm/MC/MCFragment.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "assembler"
|
|
|
|
namespace {
|
|
namespace stats {
|
|
|
|
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
|
|
STATISTIC(EmittedRelaxableFragments,
|
|
"Number of emitted assembler fragments - relaxable");
|
|
STATISTIC(EmittedDataFragments,
|
|
"Number of emitted assembler fragments - data");
|
|
STATISTIC(EmittedCompactEncodedInstFragments,
|
|
"Number of emitted assembler fragments - compact encoded inst");
|
|
STATISTIC(EmittedAlignFragments,
|
|
"Number of emitted assembler fragments - align");
|
|
STATISTIC(EmittedFillFragments,
|
|
"Number of emitted assembler fragments - fill");
|
|
STATISTIC(EmittedOrgFragments,
|
|
"Number of emitted assembler fragments - org");
|
|
STATISTIC(evaluateFixup, "Number of evaluated fixups");
|
|
STATISTIC(FragmentLayouts, "Number of fragment layouts");
|
|
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
|
|
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
|
|
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
|
|
|
|
} // end namespace stats
|
|
} // end anonymous namespace
|
|
|
|
// FIXME FIXME FIXME: There are number of places in this file where we convert
|
|
// what is a 64-bit assembler value used for computation into a value in the
|
|
// object file, which may truncate it. We should detect that truncation where
|
|
// invalid and report errors back.
|
|
|
|
/* *** */
|
|
|
|
MCAssembler::MCAssembler(MCContext &Context, MCAsmBackend &Backend,
|
|
MCCodeEmitter &Emitter, MCObjectWriter &Writer)
|
|
: Context(Context), Backend(Backend), Emitter(Emitter), Writer(Writer),
|
|
BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
|
|
IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
|
|
VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
|
|
}
|
|
|
|
MCAssembler::~MCAssembler() = default;
|
|
|
|
void MCAssembler::reset() {
|
|
Sections.clear();
|
|
Symbols.clear();
|
|
IndirectSymbols.clear();
|
|
DataRegions.clear();
|
|
LinkerOptions.clear();
|
|
FileNames.clear();
|
|
ThumbFuncs.clear();
|
|
BundleAlignSize = 0;
|
|
RelaxAll = false;
|
|
SubsectionsViaSymbols = false;
|
|
IncrementalLinkerCompatible = false;
|
|
ELFHeaderEFlags = 0;
|
|
LOHContainer.reset();
|
|
VersionMinInfo.Major = 0;
|
|
|
|
// reset objects owned by us
|
|
getBackend().reset();
|
|
getEmitter().reset();
|
|
getWriter().reset();
|
|
getLOHContainer().reset();
|
|
}
|
|
|
|
bool MCAssembler::registerSection(MCSection &Section) {
|
|
if (Section.isRegistered())
|
|
return false;
|
|
Sections.push_back(&Section);
|
|
Section.setIsRegistered(true);
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
|
|
if (ThumbFuncs.count(Symbol))
|
|
return true;
|
|
|
|
if (!Symbol->isVariable())
|
|
return false;
|
|
|
|
const MCExpr *Expr = Symbol->getVariableValue();
|
|
|
|
MCValue V;
|
|
if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
|
|
return false;
|
|
|
|
if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
|
|
return false;
|
|
|
|
const MCSymbolRefExpr *Ref = V.getSymA();
|
|
if (!Ref)
|
|
return false;
|
|
|
|
if (Ref->getKind() != MCSymbolRefExpr::VK_None)
|
|
return false;
|
|
|
|
const MCSymbol &Sym = Ref->getSymbol();
|
|
if (!isThumbFunc(&Sym))
|
|
return false;
|
|
|
|
ThumbFuncs.insert(Symbol); // Cache it.
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
|
|
// Non-temporary labels should always be visible to the linker.
|
|
if (!Symbol.isTemporary())
|
|
return true;
|
|
|
|
// Absolute temporary labels are never visible.
|
|
if (!Symbol.isInSection())
|
|
return false;
|
|
|
|
if (Symbol.isUsedInReloc())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
|
|
// Linker visible symbols define atoms.
|
|
if (isSymbolLinkerVisible(S))
|
|
return &S;
|
|
|
|
// Absolute and undefined symbols have no defining atom.
|
|
if (!S.isInSection())
|
|
return nullptr;
|
|
|
|
// Non-linker visible symbols in sections which can't be atomized have no
|
|
// defining atom.
|
|
if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
|
|
*S.getFragment()->getParent()))
|
|
return nullptr;
|
|
|
|
// Otherwise, return the atom for the containing fragment.
|
|
return S.getFragment()->getAtom();
|
|
}
|
|
|
|
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
|
|
const MCFixup &Fixup, const MCFragment *DF,
|
|
MCValue &Target, uint64_t &Value) const {
|
|
++stats::evaluateFixup;
|
|
|
|
// FIXME: This code has some duplication with recordRelocation. We should
|
|
// probably merge the two into a single callback that tries to evaluate a
|
|
// fixup and records a relocation if one is needed.
|
|
|
|
// On error claim to have completely evaluated the fixup, to prevent any
|
|
// further processing from being done.
|
|
const MCExpr *Expr = Fixup.getValue();
|
|
MCContext &Ctx = getContext();
|
|
Value = 0;
|
|
if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
|
|
Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
|
|
return true;
|
|
}
|
|
if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
|
|
if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
|
|
Ctx.reportError(Fixup.getLoc(),
|
|
"unsupported subtraction of qualified symbol");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool IsPCRel = Backend.getFixupKindInfo(
|
|
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
|
|
|
|
bool IsResolved;
|
|
if (IsPCRel) {
|
|
if (Target.getSymB()) {
|
|
IsResolved = false;
|
|
} else if (!Target.getSymA()) {
|
|
IsResolved = false;
|
|
} else {
|
|
const MCSymbolRefExpr *A = Target.getSymA();
|
|
const MCSymbol &SA = A->getSymbol();
|
|
if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
|
|
IsResolved = false;
|
|
} else {
|
|
IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
|
|
*this, SA, *DF, false, true);
|
|
}
|
|
}
|
|
} else {
|
|
IsResolved = Target.isAbsolute();
|
|
}
|
|
|
|
Value = Target.getConstant();
|
|
|
|
if (const MCSymbolRefExpr *A = Target.getSymA()) {
|
|
const MCSymbol &Sym = A->getSymbol();
|
|
if (Sym.isDefined())
|
|
Value += Layout.getSymbolOffset(Sym);
|
|
}
|
|
if (const MCSymbolRefExpr *B = Target.getSymB()) {
|
|
const MCSymbol &Sym = B->getSymbol();
|
|
if (Sym.isDefined())
|
|
Value -= Layout.getSymbolOffset(Sym);
|
|
}
|
|
|
|
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
|
|
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
|
|
assert((ShouldAlignPC ? IsPCRel : true) &&
|
|
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
|
|
|
|
if (IsPCRel) {
|
|
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
|
|
|
|
// A number of ARM fixups in Thumb mode require that the effective PC
|
|
// address be determined as the 32-bit aligned version of the actual offset.
|
|
if (ShouldAlignPC) Offset &= ~0x3;
|
|
Value -= Offset;
|
|
}
|
|
|
|
// Let the backend adjust the fixup value if necessary, including whether
|
|
// we need a relocation.
|
|
Backend.processFixupValue(*this, Fixup, Target, IsResolved);
|
|
|
|
return IsResolved;
|
|
}
|
|
|
|
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
|
|
const MCFragment &F) const {
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Data:
|
|
return cast<MCDataFragment>(F).getContents().size();
|
|
case MCFragment::FT_Relaxable:
|
|
return cast<MCRelaxableFragment>(F).getContents().size();
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
return cast<MCCompactEncodedInstFragment>(F).getContents().size();
|
|
case MCFragment::FT_Fill:
|
|
return cast<MCFillFragment>(F).getSize();
|
|
|
|
case MCFragment::FT_LEB:
|
|
return cast<MCLEBFragment>(F).getContents().size();
|
|
|
|
case MCFragment::FT_SafeSEH:
|
|
return 4;
|
|
|
|
case MCFragment::FT_Align: {
|
|
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
|
|
unsigned Offset = Layout.getFragmentOffset(&AF);
|
|
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
|
|
// If we are padding with nops, force the padding to be larger than the
|
|
// minimum nop size.
|
|
if (Size > 0 && AF.hasEmitNops()) {
|
|
while (Size % getBackend().getMinimumNopSize())
|
|
Size += AF.getAlignment();
|
|
}
|
|
if (Size > AF.getMaxBytesToEmit())
|
|
return 0;
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Org: {
|
|
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
|
|
MCValue Value;
|
|
if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
|
|
getContext().reportError(OF.getLoc(),
|
|
"expected assembly-time absolute expression");
|
|
return 0;
|
|
}
|
|
|
|
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
|
|
int64_t TargetLocation = Value.getConstant();
|
|
if (const MCSymbolRefExpr *A = Value.getSymA()) {
|
|
uint64_t Val;
|
|
if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
|
|
getContext().reportError(OF.getLoc(), "expected absolute expression");
|
|
return 0;
|
|
}
|
|
TargetLocation += Val;
|
|
}
|
|
int64_t Size = TargetLocation - FragmentOffset;
|
|
if (Size < 0 || Size >= 0x40000000) {
|
|
getContext().reportError(
|
|
OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
|
|
"' (at offset '" + Twine(FragmentOffset) + "')");
|
|
return 0;
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Dwarf:
|
|
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
|
|
case MCFragment::FT_DwarfFrame:
|
|
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
|
|
case MCFragment::FT_CVInlineLines:
|
|
return cast<MCCVInlineLineTableFragment>(F).getContents().size();
|
|
case MCFragment::FT_CVDefRange:
|
|
return cast<MCCVDefRangeFragment>(F).getContents().size();
|
|
case MCFragment::FT_Dummy:
|
|
llvm_unreachable("Should not have been added");
|
|
}
|
|
|
|
llvm_unreachable("invalid fragment kind");
|
|
}
|
|
|
|
void MCAsmLayout::layoutFragment(MCFragment *F) {
|
|
MCFragment *Prev = F->getPrevNode();
|
|
|
|
// We should never try to recompute something which is valid.
|
|
assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
|
|
// We should never try to compute the fragment layout if its predecessor
|
|
// isn't valid.
|
|
assert((!Prev || isFragmentValid(Prev)) &&
|
|
"Attempt to compute fragment before its predecessor!");
|
|
|
|
++stats::FragmentLayouts;
|
|
|
|
// Compute fragment offset and size.
|
|
if (Prev)
|
|
F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
|
|
else
|
|
F->Offset = 0;
|
|
LastValidFragment[F->getParent()] = F;
|
|
|
|
// If bundling is enabled and this fragment has instructions in it, it has to
|
|
// obey the bundling restrictions. With padding, we'll have:
|
|
//
|
|
//
|
|
// BundlePadding
|
|
// |||
|
|
// -------------------------------------
|
|
// Prev |##########| F |
|
|
// -------------------------------------
|
|
// ^
|
|
// |
|
|
// F->Offset
|
|
//
|
|
// The fragment's offset will point to after the padding, and its computed
|
|
// size won't include the padding.
|
|
//
|
|
// When the -mc-relax-all flag is used, we optimize bundling by writting the
|
|
// padding directly into fragments when the instructions are emitted inside
|
|
// the streamer. When the fragment is larger than the bundle size, we need to
|
|
// ensure that it's bundle aligned. This means that if we end up with
|
|
// multiple fragments, we must emit bundle padding between fragments.
|
|
//
|
|
// ".align N" is an example of a directive that introduces multiple
|
|
// fragments. We could add a special case to handle ".align N" by emitting
|
|
// within-fragment padding (which would produce less padding when N is less
|
|
// than the bundle size), but for now we don't.
|
|
//
|
|
if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
|
|
assert(isa<MCEncodedFragment>(F) &&
|
|
"Only MCEncodedFragment implementations have instructions");
|
|
uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
|
|
|
|
if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
|
|
report_fatal_error("Fragment can't be larger than a bundle size");
|
|
|
|
uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
|
|
F->Offset, FSize);
|
|
if (RequiredBundlePadding > UINT8_MAX)
|
|
report_fatal_error("Padding cannot exceed 255 bytes");
|
|
F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
|
|
F->Offset += RequiredBundlePadding;
|
|
}
|
|
}
|
|
|
|
void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
|
|
bool New = !Symbol.isRegistered();
|
|
if (Created)
|
|
*Created = New;
|
|
if (New) {
|
|
Symbol.setIsRegistered(true);
|
|
Symbols.push_back(&Symbol);
|
|
}
|
|
}
|
|
|
|
void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
|
|
MCObjectWriter *OW) const {
|
|
// Should NOP padding be written out before this fragment?
|
|
unsigned BundlePadding = F.getBundlePadding();
|
|
if (BundlePadding > 0) {
|
|
assert(isBundlingEnabled() &&
|
|
"Writing bundle padding with disabled bundling");
|
|
assert(F.hasInstructions() &&
|
|
"Writing bundle padding for a fragment without instructions");
|
|
|
|
unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
|
|
if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
|
|
// If the padding itself crosses a bundle boundary, it must be emitted
|
|
// in 2 pieces, since even nop instructions must not cross boundaries.
|
|
// v--------------v <- BundleAlignSize
|
|
// v---------v <- BundlePadding
|
|
// ----------------------------
|
|
// | Prev |####|####| F |
|
|
// ----------------------------
|
|
// ^-------------------^ <- TotalLength
|
|
unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
|
|
if (!getBackend().writeNopData(DistanceToBoundary, OW))
|
|
report_fatal_error("unable to write NOP sequence of " +
|
|
Twine(DistanceToBoundary) + " bytes");
|
|
BundlePadding -= DistanceToBoundary;
|
|
}
|
|
if (!getBackend().writeNopData(BundlePadding, OW))
|
|
report_fatal_error("unable to write NOP sequence of " +
|
|
Twine(BundlePadding) + " bytes");
|
|
}
|
|
}
|
|
|
|
/// \brief Write the fragment \p F to the output file.
|
|
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
|
|
const MCFragment &F) {
|
|
MCObjectWriter *OW = &Asm.getWriter();
|
|
|
|
// FIXME: Embed in fragments instead?
|
|
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
|
|
|
|
Asm.writeFragmentPadding(F, FragmentSize, OW);
|
|
|
|
// This variable (and its dummy usage) is to participate in the assert at
|
|
// the end of the function.
|
|
uint64_t Start = OW->getStream().tell();
|
|
(void) Start;
|
|
|
|
++stats::EmittedFragments;
|
|
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Align: {
|
|
++stats::EmittedAlignFragments;
|
|
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
|
|
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
|
|
|
|
uint64_t Count = FragmentSize / AF.getValueSize();
|
|
|
|
// FIXME: This error shouldn't actually occur (the front end should emit
|
|
// multiple .align directives to enforce the semantics it wants), but is
|
|
// severe enough that we want to report it. How to handle this?
|
|
if (Count * AF.getValueSize() != FragmentSize)
|
|
report_fatal_error("undefined .align directive, value size '" +
|
|
Twine(AF.getValueSize()) +
|
|
"' is not a divisor of padding size '" +
|
|
Twine(FragmentSize) + "'");
|
|
|
|
// See if we are aligning with nops, and if so do that first to try to fill
|
|
// the Count bytes. Then if that did not fill any bytes or there are any
|
|
// bytes left to fill use the Value and ValueSize to fill the rest.
|
|
// If we are aligning with nops, ask that target to emit the right data.
|
|
if (AF.hasEmitNops()) {
|
|
if (!Asm.getBackend().writeNopData(Count, OW))
|
|
report_fatal_error("unable to write nop sequence of " +
|
|
Twine(Count) + " bytes");
|
|
break;
|
|
}
|
|
|
|
// Otherwise, write out in multiples of the value size.
|
|
for (uint64_t i = 0; i != Count; ++i) {
|
|
switch (AF.getValueSize()) {
|
|
default: llvm_unreachable("Invalid size!");
|
|
case 1: OW->write8 (uint8_t (AF.getValue())); break;
|
|
case 2: OW->write16(uint16_t(AF.getValue())); break;
|
|
case 4: OW->write32(uint32_t(AF.getValue())); break;
|
|
case 8: OW->write64(uint64_t(AF.getValue())); break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Data:
|
|
++stats::EmittedDataFragments;
|
|
OW->writeBytes(cast<MCDataFragment>(F).getContents());
|
|
break;
|
|
|
|
case MCFragment::FT_Relaxable:
|
|
++stats::EmittedRelaxableFragments;
|
|
OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
|
|
break;
|
|
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
++stats::EmittedCompactEncodedInstFragments;
|
|
OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
|
|
break;
|
|
|
|
case MCFragment::FT_Fill: {
|
|
++stats::EmittedFillFragments;
|
|
const MCFillFragment &FF = cast<MCFillFragment>(F);
|
|
uint8_t V = FF.getValue();
|
|
const unsigned MaxChunkSize = 16;
|
|
char Data[MaxChunkSize];
|
|
memcpy(Data, &V, 1);
|
|
for (unsigned I = 1; I < MaxChunkSize; ++I)
|
|
Data[I] = Data[0];
|
|
|
|
uint64_t Size = FF.getSize();
|
|
for (unsigned ChunkSize = MaxChunkSize; ChunkSize; ChunkSize /= 2) {
|
|
StringRef Ref(Data, ChunkSize);
|
|
for (uint64_t I = 0, E = Size / ChunkSize; I != E; ++I)
|
|
OW->writeBytes(Ref);
|
|
Size = Size % ChunkSize;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_LEB: {
|
|
const MCLEBFragment &LF = cast<MCLEBFragment>(F);
|
|
OW->writeBytes(LF.getContents());
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_SafeSEH: {
|
|
const MCSafeSEHFragment &SF = cast<MCSafeSEHFragment>(F);
|
|
OW->write32(SF.getSymbol()->getIndex());
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Org: {
|
|
++stats::EmittedOrgFragments;
|
|
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
|
|
|
|
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
|
|
OW->write8(uint8_t(OF.getValue()));
|
|
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Dwarf: {
|
|
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
|
|
OW->writeBytes(OF.getContents());
|
|
break;
|
|
}
|
|
case MCFragment::FT_DwarfFrame: {
|
|
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
|
|
OW->writeBytes(CF.getContents());
|
|
break;
|
|
}
|
|
case MCFragment::FT_CVInlineLines: {
|
|
const auto &OF = cast<MCCVInlineLineTableFragment>(F);
|
|
OW->writeBytes(OF.getContents());
|
|
break;
|
|
}
|
|
case MCFragment::FT_CVDefRange: {
|
|
const auto &DRF = cast<MCCVDefRangeFragment>(F);
|
|
OW->writeBytes(DRF.getContents());
|
|
break;
|
|
}
|
|
case MCFragment::FT_Dummy:
|
|
llvm_unreachable("Should not have been added");
|
|
}
|
|
|
|
assert(OW->getStream().tell() - Start == FragmentSize &&
|
|
"The stream should advance by fragment size");
|
|
}
|
|
|
|
void MCAssembler::writeSectionData(const MCSection *Sec,
|
|
const MCAsmLayout &Layout) const {
|
|
// Ignore virtual sections.
|
|
if (Sec->isVirtualSection()) {
|
|
assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
|
|
|
|
// Check that contents are only things legal inside a virtual section.
|
|
for (const MCFragment &F : *Sec) {
|
|
switch (F.getKind()) {
|
|
default: llvm_unreachable("Invalid fragment in virtual section!");
|
|
case MCFragment::FT_Data: {
|
|
// Check that we aren't trying to write a non-zero contents (or fixups)
|
|
// into a virtual section. This is to support clients which use standard
|
|
// directives to fill the contents of virtual sections.
|
|
const MCDataFragment &DF = cast<MCDataFragment>(F);
|
|
if (DF.fixup_begin() != DF.fixup_end())
|
|
report_fatal_error("cannot have fixups in virtual section!");
|
|
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
|
|
if (DF.getContents()[i]) {
|
|
if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
|
|
report_fatal_error("non-zero initializer found in section '" +
|
|
ELFSec->getSectionName() + "'");
|
|
else
|
|
report_fatal_error("non-zero initializer found in virtual section");
|
|
}
|
|
break;
|
|
}
|
|
case MCFragment::FT_Align:
|
|
// Check that we aren't trying to write a non-zero value into a virtual
|
|
// section.
|
|
assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
|
|
cast<MCAlignFragment>(F).getValue() == 0) &&
|
|
"Invalid align in virtual section!");
|
|
break;
|
|
case MCFragment::FT_Fill:
|
|
assert((cast<MCFillFragment>(F).getValue() == 0) &&
|
|
"Invalid fill in virtual section!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
uint64_t Start = getWriter().getStream().tell();
|
|
(void)Start;
|
|
|
|
for (const MCFragment &F : *Sec)
|
|
writeFragment(*this, Layout, F);
|
|
|
|
assert(getWriter().getStream().tell() - Start ==
|
|
Layout.getSectionAddressSize(Sec));
|
|
}
|
|
|
|
std::tuple<MCValue, uint64_t, bool>
|
|
MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
|
|
const MCFixup &Fixup) {
|
|
// Evaluate the fixup.
|
|
MCValue Target;
|
|
uint64_t FixedValue;
|
|
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
|
|
MCFixupKindInfo::FKF_IsPCRel;
|
|
if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
|
|
// The fixup was unresolved, we need a relocation. Inform the object
|
|
// writer of the relocation, and give it an opportunity to adjust the
|
|
// fixup value if need be.
|
|
getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
|
|
FixedValue);
|
|
}
|
|
return std::make_tuple(Target, FixedValue, IsPCRel);
|
|
}
|
|
|
|
void MCAssembler::layout(MCAsmLayout &Layout) {
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
errs() << "assembler backend - pre-layout\n--\n";
|
|
dump(); });
|
|
|
|
// Create dummy fragments and assign section ordinals.
|
|
unsigned SectionIndex = 0;
|
|
for (MCSection &Sec : *this) {
|
|
// Create dummy fragments to eliminate any empty sections, this simplifies
|
|
// layout.
|
|
if (Sec.getFragmentList().empty())
|
|
new MCDataFragment(&Sec);
|
|
|
|
Sec.setOrdinal(SectionIndex++);
|
|
}
|
|
|
|
// Assign layout order indices to sections and fragments.
|
|
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
|
|
MCSection *Sec = Layout.getSectionOrder()[i];
|
|
Sec->setLayoutOrder(i);
|
|
|
|
unsigned FragmentIndex = 0;
|
|
for (MCFragment &Frag : *Sec)
|
|
Frag.setLayoutOrder(FragmentIndex++);
|
|
}
|
|
|
|
// Layout until everything fits.
|
|
while (layoutOnce(Layout))
|
|
if (getContext().hadError())
|
|
return;
|
|
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
errs() << "assembler backend - post-relaxation\n--\n";
|
|
dump(); });
|
|
|
|
// Finalize the layout, including fragment lowering.
|
|
finishLayout(Layout);
|
|
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
errs() << "assembler backend - final-layout\n--\n";
|
|
dump(); });
|
|
|
|
// Allow the object writer a chance to perform post-layout binding (for
|
|
// example, to set the index fields in the symbol data).
|
|
getWriter().executePostLayoutBinding(*this, Layout);
|
|
|
|
// Evaluate and apply the fixups, generating relocation entries as necessary.
|
|
for (MCSection &Sec : *this) {
|
|
for (MCFragment &Frag : Sec) {
|
|
// Data and relaxable fragments both have fixups. So only process
|
|
// those here.
|
|
// FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
|
|
// being templated makes this tricky.
|
|
if (isa<MCEncodedFragment>(&Frag) &&
|
|
isa<MCCompactEncodedInstFragment>(&Frag))
|
|
continue;
|
|
if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag))
|
|
continue;
|
|
ArrayRef<MCFixup> Fixups;
|
|
MutableArrayRef<char> Contents;
|
|
if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
|
|
Fixups = FragWithFixups->getFixups();
|
|
Contents = FragWithFixups->getContents();
|
|
} else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
|
|
Fixups = FragWithFixups->getFixups();
|
|
Contents = FragWithFixups->getContents();
|
|
} else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
|
|
Fixups = FragWithFixups->getFixups();
|
|
Contents = FragWithFixups->getContents();
|
|
} else
|
|
llvm_unreachable("Unknown fragment with fixups!");
|
|
for (const MCFixup &Fixup : Fixups) {
|
|
uint64_t FixedValue;
|
|
bool IsPCRel;
|
|
MCValue Target;
|
|
std::tie(Target, FixedValue, IsPCRel) =
|
|
handleFixup(Layout, Frag, Fixup);
|
|
getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
|
|
IsPCRel);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MCAssembler::Finish() {
|
|
// Create the layout object.
|
|
MCAsmLayout Layout(*this);
|
|
layout(Layout);
|
|
|
|
raw_ostream &OS = getWriter().getStream();
|
|
uint64_t StartOffset = OS.tell();
|
|
|
|
// Write the object file.
|
|
getWriter().writeObject(*this, Layout);
|
|
|
|
stats::ObjectBytes += OS.tell() - StartOffset;
|
|
}
|
|
|
|
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
|
|
const MCRelaxableFragment *DF,
|
|
const MCAsmLayout &Layout) const {
|
|
MCValue Target;
|
|
uint64_t Value;
|
|
bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
|
|
if (Target.getSymA() &&
|
|
Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
|
|
Fixup.getKind() == FK_Data_1)
|
|
return false;
|
|
return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
|
|
Layout);
|
|
}
|
|
|
|
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
|
|
const MCAsmLayout &Layout) const {
|
|
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
|
|
// are intentionally pushing out inst fragments, or because we relaxed a
|
|
// previous instruction to one that doesn't need relaxation.
|
|
if (!getBackend().mayNeedRelaxation(F->getInst()))
|
|
return false;
|
|
|
|
for (const MCFixup &Fixup : F->getFixups())
|
|
if (fixupNeedsRelaxation(Fixup, F, Layout))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
|
|
MCRelaxableFragment &F) {
|
|
if (!fragmentNeedsRelaxation(&F, Layout))
|
|
return false;
|
|
|
|
++stats::RelaxedInstructions;
|
|
|
|
// FIXME-PERF: We could immediately lower out instructions if we can tell
|
|
// they are fully resolved, to avoid retesting on later passes.
|
|
|
|
// Relax the fragment.
|
|
|
|
MCInst Relaxed;
|
|
getBackend().relaxInstruction(F.getInst(), F.getSubtargetInfo(), Relaxed);
|
|
|
|
// Encode the new instruction.
|
|
//
|
|
// FIXME-PERF: If it matters, we could let the target do this. It can
|
|
// probably do so more efficiently in many cases.
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
SmallString<256> Code;
|
|
raw_svector_ostream VecOS(Code);
|
|
getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
|
|
|
|
// Update the fragment.
|
|
F.setInst(Relaxed);
|
|
F.getContents() = Code;
|
|
F.getFixups() = Fixups;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
|
|
uint64_t OldSize = LF.getContents().size();
|
|
int64_t Value;
|
|
bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
|
|
if (!Abs)
|
|
report_fatal_error("sleb128 and uleb128 expressions must be absolute");
|
|
SmallString<8> &Data = LF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
if (LF.isSigned())
|
|
encodeSLEB128(Value, OSE);
|
|
else
|
|
encodeULEB128(Value, OSE);
|
|
return OldSize != LF.getContents().size();
|
|
}
|
|
|
|
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
|
|
MCDwarfLineAddrFragment &DF) {
|
|
MCContext &Context = Layout.getAssembler().getContext();
|
|
uint64_t OldSize = DF.getContents().size();
|
|
int64_t AddrDelta;
|
|
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
|
|
assert(Abs && "We created a line delta with an invalid expression");
|
|
(void) Abs;
|
|
int64_t LineDelta;
|
|
LineDelta = DF.getLineDelta();
|
|
SmallString<8> &Data = DF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
|
|
AddrDelta, OSE);
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
|
|
MCDwarfCallFrameFragment &DF) {
|
|
MCContext &Context = Layout.getAssembler().getContext();
|
|
uint64_t OldSize = DF.getContents().size();
|
|
int64_t AddrDelta;
|
|
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
|
|
assert(Abs && "We created call frame with an invalid expression");
|
|
(void) Abs;
|
|
SmallString<8> &Data = DF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
|
|
MCCVInlineLineTableFragment &F) {
|
|
unsigned OldSize = F.getContents().size();
|
|
getContext().getCVContext().encodeInlineLineTable(Layout, F);
|
|
return OldSize != F.getContents().size();
|
|
}
|
|
|
|
bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
|
|
MCCVDefRangeFragment &F) {
|
|
unsigned OldSize = F.getContents().size();
|
|
getContext().getCVContext().encodeDefRange(Layout, F);
|
|
return OldSize != F.getContents().size();
|
|
}
|
|
|
|
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
|
|
// Holds the first fragment which needed relaxing during this layout. It will
|
|
// remain NULL if none were relaxed.
|
|
// When a fragment is relaxed, all the fragments following it should get
|
|
// invalidated because their offset is going to change.
|
|
MCFragment *FirstRelaxedFragment = nullptr;
|
|
|
|
// Attempt to relax all the fragments in the section.
|
|
for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
|
|
// Check if this is a fragment that needs relaxation.
|
|
bool RelaxedFrag = false;
|
|
switch(I->getKind()) {
|
|
default:
|
|
break;
|
|
case MCFragment::FT_Relaxable:
|
|
assert(!getRelaxAll() &&
|
|
"Did not expect a MCRelaxableFragment in RelaxAll mode");
|
|
RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
|
|
break;
|
|
case MCFragment::FT_Dwarf:
|
|
RelaxedFrag = relaxDwarfLineAddr(Layout,
|
|
*cast<MCDwarfLineAddrFragment>(I));
|
|
break;
|
|
case MCFragment::FT_DwarfFrame:
|
|
RelaxedFrag =
|
|
relaxDwarfCallFrameFragment(Layout,
|
|
*cast<MCDwarfCallFrameFragment>(I));
|
|
break;
|
|
case MCFragment::FT_LEB:
|
|
RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
|
|
break;
|
|
case MCFragment::FT_CVInlineLines:
|
|
RelaxedFrag =
|
|
relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
|
|
break;
|
|
case MCFragment::FT_CVDefRange:
|
|
RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
|
|
break;
|
|
}
|
|
if (RelaxedFrag && !FirstRelaxedFragment)
|
|
FirstRelaxedFragment = &*I;
|
|
}
|
|
if (FirstRelaxedFragment) {
|
|
Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
|
|
++stats::RelaxationSteps;
|
|
|
|
bool WasRelaxed = false;
|
|
for (iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
MCSection &Sec = *it;
|
|
while (layoutSectionOnce(Layout, Sec))
|
|
WasRelaxed = true;
|
|
}
|
|
|
|
return WasRelaxed;
|
|
}
|
|
|
|
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
|
|
// The layout is done. Mark every fragment as valid.
|
|
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
|
|
MCSection &Section = *Layout.getSectionOrder()[i];
|
|
Layout.getFragmentOffset(&*Section.rbegin());
|
|
computeFragmentSize(Layout, *Section.rbegin());
|
|
}
|
|
getBackend().finishLayout(*this, Layout);
|
|
}
|